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Closure operators and Galois connections in categories of
modules

Alexandru Dincă

Abstract. In this paper we define a Galois connection between modules and rings. In case of
finite generated modules over a principal ring we characterize the closed subsets with respect
to associated closure operators.
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1. Prerequisites

In [1] are presented the next definitions and theorems

Definition 1.1. Let S be a set. A function

cl : P(S) → P(S)

with the properties:
(∀X ⊆ S) cl(X) ⊇ X
(∀X, Y ⊆ S) X ⊆ Y ⇒ cl(X) ⊆ cl(Y )
(∀X ⊆ S) cl(cl(X)) = cl(X)

is called a closure operator on S.

If cl is a closure operator on S, the subsets X ⊆ S satisfying cl(X) = X, equiv-
alently, the subsets of the form cl(Y ) (Y ⊆ S) are called the closed subsets of S
under cl.

Definition 1.2. Let S, T be sets. A pair of maps

λ : P(S) → P(T ), µ : P(T ) → P(S)

with the properties
i) (∀A,A′ ⊆ S) A ⊆ A′ ⇒ λ(A) ⊇ λ(A′)

(∀B,B′ ⊆ T ) B ⊆ B′ ⇒ µ(B) ⊇ µ(B′)
ii) (∀A ⊆ S) (µ ◦ λ)(A) ⊇ A

(∀B ⊆ T ) (λ ◦ µ)(B) ⊇ B
is called a Galois connection between the sets S and T .

Theorem 1.1. If λ : P(S) → P(T ) and µ : P(T ) → P(S) is a Galois connection
between the sets S and T , then:

i) µ ◦ λ : P(S) → P(S) and λ ◦µ : P(T ) → P(T ) are closure operators on S and T
respectively.

ii) The sets λ(A) (A ⊆ S) are precisely the closed subsets of T and the sets µ(B)
(B ⊆ T ) are precisely the closed subsets of S with respect to these closure opera-
tors.
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iii) The maps λ and µ, restricted to closed sets give an antiisomorphism between the
complete lattices of closed subsets of S and T .

If M is a module over the ring R and x ∈ M , then

AnnR(x) := {a ∈ R | ax = 0}. (1)

If R is a principal ring, then AnnR(x) is a principal ideal generated by an element
denoted µx and called the order of x.

The next reprezentation theorem is proved in [3].

Theorem 1.2. (of invariant factors) Let M be a finite generated module over the
principal ring R. Then there are m,n ∈ N, m ≤ n and x1, ..., xn ∈ M so that

M = Rx1 ⊕ ...⊕Rxm ⊕Rxm+1 ⊕ ...⊕Rxn (2)

where µxi
∼ di 6= 0, di /∈ U(R), for 1 ≤ i ≤ m, d1|d2|...|dm and µxj

= 0 for
m < j ≤ n.

d1, ..., dm are called the invariant factors of M .

2. A Galois connection in category of modules

Let R be a unitary commutative ring and M a R−module. We define two maps:

λ : P(R) → P(M)

λ(A) := {x ∈ M |AnnR(x) ⊇ A} (A ⊆ R) (3)

µ : P(M) → P(R)

µ(L) := {x ∈ R | (∀x ∈ L) ax = 0} =
⋂

x∈L

AnnR(x) (L ⊆ M). (4)

Theorem 2.1. The maps λ and µ define a Galois connection between the sets R and
M .

Proof. If A,A′ ∈ P(R) and A ⊆ A′, then from (3) it results λ(A) ⊇ λ(A′). Analogous,
if L, L′ ∈ P(M) and L ⊆ L′, then from (4) it results µ(L) ⊇ µ(L′). Also, from (3)
and (4) it results

(∀A ⊆ R) (µ ◦ λ)(A) ⊇ A

(∀L ⊆ M) (λ ◦ µ)(L) ⊇ L.

Hence, the pair of maps (λ, µ) defines a Galois connection between R and M . ¤

From Theorem 1.1 we deduce

Consequence 2.1. i) µ◦λ : P(R) → P(R) and λ◦µ : P(M) → P(M) are closure
operators on R and M respectively.

ii) The sets λ(A) (A ⊆ R) are precisely the closed subsets of M with respect to λ◦µ
and the sets µ(L) (L ⊆ M) are precisely the closed subsets of R with respect to
µ ◦ λ.

iii) The maps λ and µ restricted to the closed subsets give an antiisomorphism be-
tween the complete lattice of µ ◦λ closed subsets of R and the complete lattice of
λ ◦ µ closed subsets of M .
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3. About the lattice associated to a factorial ring

The next construction is usual. Let S be a nonempty set and ρ a preorder relation
on S (ρ is transitive and reflexive). Let ρd be the dual relation of ρ defined by

(x, y) ∈ ρd ⇔ (y, x) ∈ ρ.

We note ρ̂ = ρ ∩ ρd. Hence

xρ̂y ⇔ x ρ y and x ρ̂ y ⇔ x ρ y and y ρ x.

ρ̂ is an equivalence relation on S and we note x̂ = ρ̂(x) the equivalence class of
x ∈ S. Let Ŝ = S/ρ̂ be the factor set of S by ρ̂. We define a relation ρ on Ŝ so

x̂ ρ ŷ ⇔ x ρ y (x, y ∈ S).

ρ is well defined. Moreover, ρ is an order relation on Ŝ.
We apply this construction in case when S = R is an entire ring and ρ = | is the

divisibility relation on R

a|b ⇔ ∃c ∈ R so that b = ac (a, b ∈ R).

In this case ρd =
...,

a
...b ⇔ ∃c ∈ R so that a = bc (a, b ∈ R)

and ρ̂ =∼ is the divisibility associated relation on R

a ∼ b ⇔ a|b and b|a (a, b ∈ R).

R̂ = R/ ∼= {â | a ∈ R} is the set of equivalence classes with respect to ρ̂. The
relation ρ:

a ρ b ⇔ a|b (a, b ∈ R)

is an order relation on R̂.
Moreover, if R is a factorial ring, then (R̂, ρ) is a lattice: â ∧ b̂ = d̂ where d is the

greatest common divisor of a and b, â∨ b̂ = m̂ where m is the least common multiple
of a and b.

The notions of greatest common divisor and least common multiple may be ex-
tended to infinite sets.

Let R be an entire ring and X ⊆ R. We say d ∈ R is the greatest common divisor
of X and we note d ∼ d(X) if:

i) (∀a ∈ X) d|a;
ii) d′ ∈ R and (∀a ∈ X) d′|a ⇒ d′|d
We say m ∈ R is the least common multiple of X and we note m ∼ m(X) if:
i) (∀a ∈ X) a|m;
ii) m′ ∈ R and (∀a ∈ X) a|m′ ⇒ m|m′

Theorem 3.1. Let R be a factorial ring. Then (R̂, ρ) is a complete lattice.

Proof. 1̂ is the least element of lattice R̂ and 0̂ is the greatest element of lattice R̂. It
is sufficient to show that every infinite subset of R has one greatest common divisor
and one least common multiple.

Usually, we consider (pi)i∈I a complete system of representants for ρ̂ equivalence
classes of prime (irreducible) elements. If a ∈ R \ {0}, then a allows a canonical
decomposition (unique):

a = u
∏

i∈I

pαi
i
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where u ∈ U(R), αi ∈ N, i ∈ I and almost all zero.
Let X = {aj | j ∈ J} ⊆ R, where J is an infinite set. If 0 ∈ X, then d(X) ∼

d(X \ {0}) and m(X) ∼ 0. Next, 0 /∈ X. Let

aj = uj

∏

i∈I

p
αij

i

be the canonical decomposition of elements aj , j ∈ J .

d(X) ∼
∏

i∈I

pαi
i ,

where αi = minj∈J αij , i ∈ I.
Clearly,

∧{x̂ |x ∈ X} = d̂(X)

and (R̂, ρ) is a lower semicomplete semilattice.
Let I0 := {i ∈ I | ∃j ∈ J so that αij 6= 0}. If I0 is infinite, then m(X) ∼ 0. If I0 is

finite but there is i0 ∈ I0 such that {αi0j | j ∈ J} is unbounded, then again m(X) ∼ 0.
If I0 is finite and all the sets {αij | j ∈ J}, i ∈ I0, are bounded, then

m(X) ∼
∏

i∈I

pβi

i

where βi = max{αij | j ∈ J}.
Clearly,

∨{x̂ |x ∈ X} = m̂(X)

and (R̂, ρ) is an upper semicomplete semilattice.
Thus, (R̂, ρ) is a complete lattice. ¤

Theorem 3.2. If R is a factorial ring and X is an infinite subset of R, then there
is a finite subset X ′ of X, so that

d(X) ∼ d(X ′).

Proof. We use the notices of Theorem 3.1 and we suppose 0 /∈ X.

X = {aj | j ∈ J}, aj = uj

∏

i∈I

p
αij

i .

Let s ∈ J , arbitrarily chosen, but fixed and

{i1, ..., ir} = {i ∈ I |αis 6= 0}, αi = min{αij | j ∈ J}, i ∈ I.

If i /∈ {i1, ..., ir}, then αi = 0.
For k ∈ 1, r let jk chosen so that αikjk

= αik
.

We take
X ′ = {as, aj1 ..., ajr}.

Then

d(X ′) ∼
r∏

k=1

p
αik

k =
∏

i∈I

pαi
i ∼ d(X).

¤
Consequence 3.1. Let R be a principal ring and X = {aj | j ∈ J} a nonempty subset
of R. Then there are cj ∈ R, j ∈ J , almost all zero, so that

d(X) ∼
∑

j∈J

cjaj .
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Proof. If X is finite then the result is known. Since R is a principal ring it results
that R is a factorial ring. If X is infinite subset of R, then, since Theorem 3.2 there
is a finite subset J0 of J so that

d(X) ∼ d(X ′)

where X ′ = {aj | j ∈ J0}.
There are cj ∈ R, j ∈ J0 such that

d(X ′) ∼
∑

j∈J0

cjaj .

For j ∈ J \ J0 we take cj = 0. Then

d(X) ∼ d(X ′) ∼
∑

j∈J

cjaj .

¤

4. Characterization of closed subsets with respect to closure operator λ◦µ

From Theorem 1.1 it results that the closet subsets of M with respect to closure
operator λ ◦ µ are precisely the sets λ(A), A ⊆ R.

Lemma 4.1. Let R be a principal ring and M a R−module. If A ⊆ R, then

λ(A) = λ({d}), where d ∼ d(A).

Proof. If A = ∅ or A = {0}, then d(A) = 0 and λ(A) = λ({0}) = M . If A 6= ∅ and
A 6= {0}, then there is a finite subset A′ = {a1, ..., an} ⊆ A such that d(A) ∼ d(A′) ∼ d
(Theorem 3.2).

There are u1, ..., un ∈ A such that

d = u1a1 + ... + urar.

If x ∈ λ(A), then AnnR(x) ⊇ A ⊇ A′.

dx = u1a1x + ... + urarx = 0

Thus x ∈ λ({d}).
Conversely, if x ∈ λ({d}), then AnnR(x) 3 d.

(∀a ∈ A) d|a ⇒ ax = 0

It results that AnnR(x) ⊇ A and x ∈ λ(A). Therefore λ(A) = λ({d}). ¤

For x ∈ R, we note

x+ =
{

x, if x ≥ 0,
0, if x < 0.

Theorem 4.1. Let M = Rx1 ⊕ ... ⊕ Rxm ⊕ ... ⊕ Rxn be a finite generated module
over the principal ring R and

di =
∏

j∈I

p
αji

j , i ∈ 1,m

the invariant factors of M . Let d =
∏

j∈I

p
sj

j ∈ R \ {0}. Then

λ({d}) = Rt1x1 ⊕ ...⊕Rtmxm
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where
ti =

∏

j∈I

p
βji

j , βji = (αji − sj)+, j ∈ J, i ∈ 1, m.

Proof. d · ti =
∏

j∈I

p
sj+βji

j .

Since sj + βji = sj + (αji − sj)+ ≥ αji, it results di|dti and dtixi = 0, i ∈ 1,m.
Hence

λ({d}) ⊇ Rt1x1 ⊕ ...⊕Rtmxm.

Conversely, let x ∈ λ({d}).
x = a1x1 + ... + amxm + am+1xm+1 + ... + anxn

and 0 = dx = da1x1 + ... + damxm + dam+1xm+1 + ... + danxn.
It follows that daixi = 0, for i ∈ 1, n.
For i > m, µxi

= 0 ⇒ dai = 0 ⇒ ai = 0.
For i ≤ m ⇒ di|dai .
If ai = 0, then aixi ∈ Rtixi.
If ai 6= 0, ai = ui

∏

j∈I

p
γji

j , then dai = ui

∏

j∈I

p
sj+γji

j .

di|dai ⇒ αji ≤ sj + γji.

If αji ≥ sj , then βji = αji − sj ≤ γji.
If αji < sj , then βji = 0 ≤ γji.
Hence, ti|ai and aixi ∈ Rtixi. Finally,

x ∈ Rt1x1 + ... + Rtmxm

and λ({d}) = Rt1x1 + ... + Rtmxm. ¤

Theorem 4.2. Let M = Rx1 ⊕ ... ⊕ Rxm ⊕ ... ⊕ Rxn be a finite generated module
over the principal ring R and

di =
∏

j∈I

p
αji

j , i ∈ 1,m

the invariant factors of M . Let (sj)j∈I ∈ NI where sj are almost all zero. Let

ti =
∏

j∈I

p
βji

j , βji = (αji − sj)+, j ∈ I, i ∈ 1,m.

Then
L = Rt1x1 ⊕ ...⊕Rtmxm (5)

is a closed subset of M with respect to λ ◦ µ.

Proof. Let d =
∏

j∈I p
sj

j . Repeating the calculation from Theorem 4.1 we obtain

λ({d}) = L

Hence, L is a closed subset of M with respect to λ ◦ µ. ¤

Consequence 4.1. Let M be a finite generated module over the principal ring R.
Then the closed subsets of M with respect to closure operator λ ◦ µ are precisely M
and the submodules of the form (5) from Theorem 4.2.



32 A. DINCĂ

5. Characterization of closed subsets with respect to closure operator µ◦λ

From Theorem 1.1 it results that the closed subsets of R with respect to closure
operator µ ◦ λ are precisely the sets µ(L), L ⊆ M .

We consider a finite generated module M over the principal ring R:

M = Rx1 ⊕ ...⊕Rxm ⊕ ...⊕Rxn

where µxi ∼ di, i ∈ 1,m are the invariant factors of M and µxi = 0, i ∈ m + 1, n.

t(M) = Rx1 ⊕ ...⊕Rxm

is the torsion submodule of M .

P = Rxm+1 ⊕ ...⊕Rxn

is a free module.
If x ∈ M , then there are y ∈ t(M) and z ∈ P such that x = y + z.
Let L ⊆ M . If there is x = y + z ∈ L with z ∈ P \ {0} then

(∀a ∈ R) ax = 0 ⇒ ay = az = 0 ⇒ a = 0.

Hence, µ(L) = {0}.
if L ⊆ t(M) then (∀x ∈ L)dm · x = 0 and

µ(L) = ∩x∈LAnnR(x) ⊇ (dm).

Because µ(L) is an ideal and R is a principal ring, there is d ∈ R so that µ(L) = (d)
and d|dm.

Conversely, let d ∈ R so that d|dm. There is t ∈ R so that dm = dt. µtxm ∼ d.
For L = {txm},

µ(L) = AnnR(txm) = (µtxm) = (d).
We proved:

Theorem 5.1. Let M be a finite generated module over the principal ring R. Then
the closed subsets of R with respect to closure operator µ ◦ λ are precisely the ideals
{0} and (d) with d|dm, where dm is the last invariant factor of M .
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