Closure operators and Galois connections in categories of modules

Alexandru Dincă

ABSTRACT. In this paper we define a Galois connection between modules and rings. In case of finite generated modules over a principal ring we characterize the closed subsets with respect to associated closure operators.

2000 Mathematics Subject Classification. 06A15, 06A23. Key words and phrases. Lattices, Galois connections, closure operators, closed subsets.

1. Prerequisites

In [1] are presented the next definitions and theorems

Definition 1.1. Let S be a set. A function

 $cl: \mathcal{P}(S) \to \mathcal{P}(S)$

with the properties:

 $\begin{array}{l} (\forall X \subseteq S) \quad cl(X) \supseteq X \\ (\forall X, Y \subseteq S) \quad X \subseteq Y \Rightarrow cl(X) \subseteq cl(Y) \\ (\forall X \subseteq S) \quad cl(cl(X)) = cl(X) \end{array}$

is called a closure operator on S.

If cl is a closure operator on S, the subsets $X \subseteq S$ satisfying cl(X) = X, equivalently, the subsets of the form cl(Y) ($Y \subseteq S$) are called **the closed subsets of** S **under** cl.

Definition 1.2. Let S, T be sets. A pair of maps

$$\lambda: \mathcal{P}(S) \to \mathcal{P}(T), \quad \mu: \mathcal{P}(T) \to \mathcal{P}(S)$$

with the properties

 $\begin{array}{ll} \mathrm{i)} & (\forall A, A' \subseteq S) & A \subseteq A' & \Rightarrow \lambda(A) \supseteq \lambda(A') \\ & (\forall B, B' \subseteq T) & B \subseteq B' & \Rightarrow \mu(B) \supseteq \mu(B') \\ \mathrm{ii)} & (\forall A \subseteq S) & (\mu \circ \lambda)(A) \supseteq A \end{array}$

 $(\forall B \subseteq T) \quad (\lambda \circ \mu)(B) \supseteq B$

is called a Galois connection between the sets S and T.

Theorem 1.1. If $\lambda : \mathcal{P}(S) \to \mathcal{P}(T)$ and $\mu : \mathcal{P}(T) \to \mathcal{P}(S)$ is a Galois connection between the sets S and T, then:

- i) $\mu \circ \lambda : \mathcal{P}(S) \to \mathcal{P}(S)$ and $\lambda \circ \mu : \mathcal{P}(T) \to \mathcal{P}(T)$ are closure operators on S and T respectively.
- ii) The sets λ(A) (A ⊆ S) are precisely the closed subsets of T and the sets μ(B) (B ⊆ T) are precisely the closed subsets of S with respect to these closure operators.

- iii) The maps λ and μ , restricted to closed sets give an antiisomorphism between the complete lattices of closed subsets of S and T.
 - If M is a module over the ring R and $x \in M$, then

$$Ann_R(x) := \{ a \in R \, | \, ax = 0 \}.$$
(1)

If R is a principal ring, then $Ann_R(x)$ is a principal ideal generated by an element denoted μ_x and called **the order of** x.

The next reprezentation theorem is proved in [3].

Theorem 1.2. (of invariant factors) Let M be a finite generated module over the principal ring R. Then there are $m, n \in \mathbb{N}$, $m \leq n$ and $x_1, ..., x_n \in M$ so that

$$M = Rx_1 \oplus \ldots \oplus Rx_m \oplus Rx_{m+1} \oplus \ldots \oplus Rx_n \tag{2}$$

where $\mu_{x_i} \sim d_i \neq 0$, $d_i \notin U(R)$, for $1 \leq i \leq m$, $d_1|d_2|...|d_m$ and $\mu_{x_j} = 0$ for $m < j \leq n$.

 $d_1, ..., d_m$ are called the invariant factors of M.

2. A Galois connection in category of modules

Let R be a unitary commutative ring and M a R-module. We define two maps:

$$\lambda : \mathcal{P}(R) \to \mathcal{P}(M)$$

$$\lambda(A) := \{ x \in M \mid Ann_R(x) \supseteq A \} \quad (A \subseteq R)$$

$$\mu : \mathcal{P}(M) \to \mathcal{P}(R)$$
(3)

$$\mu(L) := \{ x \in R \mid (\forall x \in L) \ ax = 0 \} = \bigcap_{x \in L} Ann_R(x) \quad (L \subseteq M).$$

$$\tag{4}$$

Theorem 2.1. The maps λ and μ define a Galois connection between the sets R and M.

Proof. If $A, A' \in \mathcal{P}(R)$ and $A \subseteq A'$, then from (3) it results $\lambda(A) \supseteq \lambda(A')$. Analogous, if $L, L' \in \mathcal{P}(M)$ and $L \subseteq L'$, then from (4) it results $\mu(L) \supseteq \mu(L')$. Also, from (3) and (4) it results

$$(\forall A \subseteq R) \quad (\mu \circ \lambda)(A) \supseteq A (\forall L \subseteq M) \quad (\lambda \circ \mu)(L) \supseteq L.$$

Hence, the pair of maps (λ, μ) defines a Galois connection between R and M.

From Theorem 1.1 we deduce

Consequence 2.1. i) $\mu \circ \lambda : \mathcal{P}(R) \to \mathcal{P}(R)$ and $\lambda \circ \mu : \mathcal{P}(M) \to \mathcal{P}(M)$ are closure operators on R and M respectively.

- ii) The sets λ(A) (A ⊆ R) are precisely the closed subsets of M with respect to λ ∘ μ and the sets μ(L) (L ⊆ M) are precisely the closed subsets of R with respect to μ ∘ λ.
- iii) The maps λ and μ restricted to the closed subsets give an antiisomorphism between the complete lattice of μ ∘ λ closed subsets of R and the complete lattice of λ ∘ μ closed subsets of M.

3. About the lattice associated to a factorial ring

The next construction is usual. Let S be a nonempty set and ρ a preorder relation on S (ρ is transitive and reflexive). Let ρ^d be the dual relation of ρ defined by

$$(x,y) \in \rho^d \Leftrightarrow (y,x) \in \rho.$$

We note $\hat{\rho} = \rho \cap \rho^d$. Hence

 $x\widehat{\rho}y \Leftrightarrow x \rho y \text{ and } x \widehat{\rho}y \Leftrightarrow x \rho y \text{ and } y \rho x.$

 $\widehat{\rho}$ is an equivalence relation on S and we note $\widehat{x} = \widehat{\rho}(x)$ the equivalence class of $x \in S$. Let $\widehat{S} = S/\widehat{\rho}$ be the factor set of S by $\widehat{\rho}$. We define a relation $\overline{\rho}$ on \widehat{S} so

$$\widehat{x}\,\overline{\rho}\,\widehat{y} \Leftrightarrow x\,\rho\,y \quad (x,y\in S).$$

 $\overline{\rho}$ is well defined. Moreover, $\overline{\rho}$ is an order relation on \widehat{S} .

We apply this construction in case when S = R is an entire ring and $\rho = |$ is the divisibility relation on R

$$a|b \Leftrightarrow \exists c \in R \text{ so that } b = ac \quad (a, b \in R).$$

In this case $\rho^d = \dot{\vdots}$,

$$a:b \Leftrightarrow \exists c \in R \text{ so that } a = bc \quad (a, b \in R)$$

and $\hat{\rho} = \sim$ is the divisibility associated relation on R

$$a \sim b \Leftrightarrow a | b \text{ and } b | a \quad (a, b \in R).$$

 $\widehat{R} = R/ \sim = \{\widehat{a} \mid a \in R\}$ is the set of equivalence classes with respect to $\widehat{\rho}$. The relation $\overline{\rho}$:

$$a \overline{\rho} b \Leftrightarrow a | b \quad (a, b \in R)$$

is an order relation on \widehat{R} .

Moreover, if R is a factorial ring, then $(\widehat{R}, \overline{\rho})$ is a lattice: $\widehat{a} \wedge \widehat{b} = \widehat{d}$ where d is the greatest common divisor of a and b, $\widehat{a} \vee \widehat{b} = \widehat{m}$ where m is the least common multiple of a and b.

The notions of greatest common divisor and least common multiple may be extended to infinite sets.

Let R be an entire ring and $X \subseteq R$. We say $d \in R$ is the greatest common divisor of X and we note $d \sim d(X)$ if:

i) $(\forall a \in X) \quad d|a;$

ii) $d' \in R$ and $(\forall a \in X)$ $d'|a \Rightarrow d'|d$

We say $m \in R$ is the least common multiple of X and we note $m \sim m(X)$ if:

i) $(\forall a \in X) \quad a|m;$

ii) $m' \in R$ and $(\forall a \in X)$ $a|m' \Rightarrow m|m'$

Theorem 3.1. Let R be a factorial ring. Then $(\widehat{R}, \overline{\rho})$ is a complete lattice.

Proof. $\widehat{1}$ is the least element of lattice \widehat{R} and $\widehat{0}$ is the greatest element of lattice \widehat{R} . It is sufficient to show that every infinite subset of R has one greatest common divisor and one least common multiple.

Usually, we consider $(p_i)_{i \in I}$ a complete system of representants for $\hat{\rho}$ equivalence classes of prime (irreducible) elements. If $a \in R \setminus \{0\}$, then a allows a canonical decomposition (unique):

$$a = u \prod_{i \in I} p_i^{\alpha_i}$$

where $u \in U(R)$, $\alpha_i \in \mathbb{N}$, $i \in I$ and almost all zero.

Let $X = \{a_j | j \in J\} \subseteq R$, where J is an infinite set. If $0 \in X$, then $d(X) \sim d(X \setminus \{0\})$ and $m(X) \sim 0$. Next, $0 \notin X$. Let

$$a_j = u_j \prod_{i \in I} p_i^{\alpha_{ij}}$$

be the canonical decomposition of elements $a_j, j \in J$.

$$d(X) \sim \prod_{i \in I} p_i^{\alpha_i},$$

where $\alpha_i = \min_{j \in J} \alpha_{ij}, i \in I$.

Clearly,

$$\wedge \{\widehat{x} \,|\, x \in X\} = \widehat{d(X)}$$

and $(\widehat{R}, \overline{\rho})$ is a lower semicomplete semilattice.

Let $I_0 := \{i \in I \mid \exists j \in J \text{ so that } \alpha_{ij} \neq 0\}$. If I_0 is infinite, then $m(X) \sim 0$. If I_0 is finite but there is $i_0 \in I_0$ such that $\{\alpha_{i_0j} \mid j \in J\}$ is unbounded, then again $m(X) \sim 0$. If I_0 is finite and all the sets $\{\alpha_{ij} \mid j \in J\}$, $i \in I_0$, are bounded, then

$$m(X) \sim \prod_{i \in I} p_i^{\beta_i}$$

where $\beta_i = \max\{\alpha_{ij} \mid j \in J\}.$ Clearly,

$$\vee \{ \widehat{x} \, | \, x \in X \} = \widehat{m(X)}$$

and $(\widehat{R}, \overline{\rho})$ is an upper semicomplete semilattice.

Thus, $(\widehat{R}, \overline{\rho})$ is a complete lattice.

Theorem 3.2. If R is a factorial ring and X is an infinite subset of R, then there is a finite subset X' of X, so that

$$d(X) \sim d(X').$$

Proof. We use the notices of Theorem 3.1 and we suppose $0 \notin X$.

$$X = \{a_j \, | \, j \in J\}, \quad a_j = u_j \prod_{i \in I} p_i^{\alpha_{ij}}.$$

Let $s \in J$, arbitrarily chosen, but fixed and

$$\{i_1, ..., i_r\} = \{i \in I \mid \alpha_{is} \neq 0\}, \quad \alpha_i = \min\{\alpha_{ij} \mid j \in J\}, \quad i \in I.$$

If $i \notin \{i_1, ..., i_r\}$, then $\alpha_i = 0$. For $k \in \overline{1, r}$ let j_k chosen so that $\alpha_{i_k j_k} = \alpha_{i_k}$. We take

$$X' = \{a_s, a_{j_1}..., a_{j_r}\}.$$

Then

$$d(X') \sim \prod_{k=1}^r p_k^{\alpha_{i_k}} = \prod_{i \in I} p_i^{\alpha_i} \sim d(X).$$

Consequence 3.1. Let R be a principal ring and $X = \{a_j | j \in J\}$ a nonempty subset of R. Then there are $c_j \in R$, $j \in J$, almost all zero, so that

$$d(X) \sim \sum_{j \in J} c_j a_j.$$

Proof. If X is finite then the result is known. Since R is a principal ring it results that R is a factorial ring. If X is infinite subset of R, then, since Theorem 3.2 there is a finite subset J_0 of J so that

$$d(X) \sim d(X')$$

where $X' = \{a_j | j \in J_0\}.$

There are $c_j \in R, j \in J_0$ such that

$$d(X') \sim \sum_{j \in J_0} c_j a_j.$$

For $j \in J \setminus J_0$ we take $c_j = 0$. Then

$$d(X) \sim d(X') \sim \sum_{j \in J} c_j a_j.$$

4. Characterization of closed subsets with respect to closure operator $\lambda \circ \mu$

From Theorem 1.1 it results that the closet subsets of M with respect to closure operator $\lambda \circ \mu$ are precisely the sets $\lambda(A)$, $A \subseteq R$.

Lemma 4.1. Let R be a principal ring and M a R-module. If $A \subseteq R$, then

$$\lambda(A) = \lambda(\{d\}), \text{ where } d \sim d(A).$$

Proof. If $A = \emptyset$ or $A = \{0\}$, then d(A) = 0 and $\lambda(A) = \lambda(\{0\}) = M$. If $A \neq \emptyset$ and $A \neq \{0\}$, then there is a finite subset $A' = \{a_1, ..., a_n\} \subseteq A$ such that $d(A) \sim d(A') \sim d$ (Theorem 3.2).

There are $u_1, ..., u_n \in A$ such that

$$d = u_1 a_1 + \ldots + u_r a_r.$$

If $x \in \lambda(A)$, then $Ann_R(x) \supseteq A \supseteq A'$.

$$dx = u_1 a_1 x + \dots + u_r a_r x = 0$$

Thus $x \in \lambda(\{d\})$.

Conversely, if $x \in \lambda(\{d\})$, then $Ann_R(x) \ni d$.

$$(\forall a \in A) \quad d|a \Rightarrow ax = 0$$

It results that $Ann_R(x) \supseteq A$ and $x \in \lambda(A)$. Therefore $\lambda(A) = \lambda(\{d\})$.

For $x \in \mathbb{R}$, we note

$$x_{+} = \begin{cases} x, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Theorem 4.1. Let $M = Rx_1 \oplus ... \oplus Rx_m \oplus ... \oplus Rx_n$ be a finite generated module over the principal ring R and

$$d_i = \prod_{j \in I} p_j^{\alpha_{ji}}, \quad i \in \overline{1, m}$$

the invariant factors of M. Let $d = \prod_{j \in I} p_j^{s_j} \in R \setminus \{0\}$. Then

$$\lambda(\{d\}) = Rt_1x_1 \oplus \ldots \oplus Rt_mx_m$$

30

where

$$t_i = \prod_{j \in I} p_j^{\beta_{ji}}, \ \beta_{ji} = (\alpha_{ji} - s_j)_+, \quad j \in J, \quad i \in \overline{1, m}.$$

Proof. $d \cdot t_i = \prod_{j \in I} p_j^{s_j + \beta_{ji}}.$

Since $s_j + \beta_{ji} = s_j + (\alpha_{ji} - s_j)_+ \ge \alpha_{ji}$, it results $d_i | dt_i$ and $dt_i x_i = 0, i \in \overline{1, m}$. Hence

$$\Lambda(\{d\}) \supseteq Rt_1 x_1 \oplus \ldots \oplus Rt_m x_m.$$

Conversely, let $x \in \lambda(\{d\})$.

$$x = a_1 x_1 + \dots + a_m x_m + a_{m+1} x_{m+1} + \dots + a_n x_n$$

and $0 = dx = da_1x_1 + \ldots + da_mx_m + da_{m+1}x_{m+1} + \ldots + da_nx_n$. It follows that $da_ix_i = 0$, for $i \in \overline{1, n}$.

For i > m, $\mu_{x_i} = 0 \Rightarrow da_i = 0 \Rightarrow a_i = 0$. For $i \le m \Rightarrow d_i | da_i$. If $a_i = 0$, then $a_i x_i \in Rt_i x_i$. If $a_i \ne 0$, $a_i = u_i \prod_{j \in I} p_j^{\gamma_{ji}}$, then $da_i = u_i \prod_{j \in I} p_j^{s_j + \gamma_{ji}}$.

$$d_i | da_i \Rightarrow \alpha_{ji} \le s_j + \gamma_{ji}.$$

If $\alpha_{ji} \geq s_j$, then $\beta_{ji} = \alpha_{ji} - s_j \leq \gamma_{ji}$. If $\alpha_{ji} < s_j$, then $\beta_{ji} = 0 \leq \gamma_{ji}$. Hence, $t_i | a_i$ and $a_i x_i \in Rt_i x_i$. Finally,

$$x \in Rt_1x_1 + \ldots + Rt_mx_m$$

and $\lambda(\{d\}) = Rt_1x_1 + ... + Rt_mx_m$.

Theorem 4.2. Let $M = Rx_1 \oplus ... \oplus Rx_m \oplus ... \oplus Rx_n$ be a finite generated module over the principal ring R and

$$d_i = \prod_{j \in I} p_j^{\alpha_{ji}}, \quad i \in \overline{1, m}$$

the invariant factors of M. Let $(s_j)_{j \in I} \in \mathbb{N}^I$ where s_j are almost all zero. Let

$$t_i = \prod_{j \in I} p_j^{\beta_{ji}}, \ \beta_{ji} = (\alpha_{ji} - s_j)_+, \quad j \in I, \quad i \in \overline{1, m}.$$

Then

 $L = Rt_1 x_1 \oplus \dots \oplus Rt_m x_m \tag{5}$

is a closed subset of M with respect to $\lambda \circ \mu$.

Proof. Let $d = \prod_{j \in I} p_j^{s_j}$. Repeating the calculation from Theorem 4.1 we obtain

 $\lambda(\{d\}) = L$

Hence, L is a closed subset of M with respect to $\lambda \circ \mu$.

Consequence 4.1. Let M be a finite generated module over the principal ring R. Then the closed subsets of M with respect to closure operator $\lambda \circ \mu$ are precisely M and the submodules of the form (5) from Theorem 4.2.

5. Characterization of closed subsets with respect to closure operator $\mu \circ \lambda$

From Theorem 1.1 it results that the closed subsets of R with respect to closure operator $\mu \circ \lambda$ are precisely the sets $\mu(L)$, $L \subseteq M$.

We consider a finite generated module M over the principal ring R:

 $M = Rx_1 \oplus \ldots \oplus Rx_m \oplus \ldots \oplus Rx_n$

where $\mu_{x_i} \sim d_i$, $i \in \overline{1, m}$ are the invariant factors of M and $\mu_{x_i} = 0$, $i \in \overline{m+1, n}$.

 $t(M) = Rx_1 \oplus \ldots \oplus Rx_m$

is the torsion submodule of M.

$$P = Rx_{m+1} \oplus \ldots \oplus Rx_n$$

is a free module.

If $x \in M$, then there are $y \in t(M)$ and $z \in P$ such that x = y + z. Let $L \subseteq M$. If there is $x = y + z \in L$ with $z \in P \setminus \{0\}$ then

$$(\forall a \in R) ax = 0 \Rightarrow ay = az = 0 \Rightarrow a = 0.$$

Hence, $\mu(L) = \{0\}$. if $L \subseteq t(M)$ then $(\forall x \in L)d_m \cdot x = 0$ and

$$\mu(L) = \cap_{x \in L} Ann_R(x) \supseteq (d_m).$$

Because $\mu(L)$ is an ideal and R is a principal ring, there is $d \in R$ so that $\mu(L) = (d)$ and $d|d_m$.

Conversely, let $d \in R$ so that $d|d_m$. There is $t \in R$ so that $d_m = dt$. $\mu_{tx_m} \sim d$. For $L = \{tx_m\}$,

$$\mu(L) = Ann_R(tx_m) = (\mu_{tx_m}) = (d).$$

We proved:

Theorem 5.1. Let M be a finite generated module over the principal ring R. Then the closed subsets of R with respect to closure operator $\mu \circ \lambda$ are precisely the ideals $\{0\}$ and (d) with $d|d_m$, where d_m is the last invariant factor of M.

References

- G. Bergman, An Invitation to General Algebra and Universal Constructions, Published by Henry Helson, Berkeley, USA, 1998.
- [2] S. Lang, Algebra, Addison-Wesley Publishing Company, London, 1970.
- [3] I. Ion and N. Radu, Algebra, E.D.P., București 1991.
- [4] A. Dincă, Lecții de algebră, Universitaria, Craiova, 2000.

(Alexandru Dincă) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRAIOVA, AL.I. CUZA STREET, NO. 13, CRAIOVA RO-200585, ROMANIA, TEL. & FAX: 40-251412673 *E-mail address*: aldinca@central.ucv.ro