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Periodicity and Applications to some Stochastic
Integrodifferential Equations
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Abstract. In the present work, for a separable complex Hilbert space V, we introduce the
concept of doubly-measure pseudo S-asymptotically Bloch-type periodicity to define the space

of (ν, µ)−pseudo S-asymptotically Bloch-type periodic (or (ω, k)−periodic) stochastic process

with values in the complex Banach space of all strongly-measurable, p-integrable V-valued
random variables. We first looked into some completeness, composition and convolution the-

orems for such stochastic processes. Second, the existence and uniqueness in the pth-mean

(ν, µ)−pseudo S-asymptotically Bloch-type periodic ((ν, µ)-PSABP, in short) mild solutions
of some stochastic integrodifferential equations is formally investigated. In conclusion, we

provide examples to support our findings.
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The theory of (ω, k)-periodic (or Bloch-type periodic) phenomena has its origins in the
publication [4] by F. Bloch, investigating the crystalline solid’s conductivity. Bloch-
type periodic functions have been formally examined by N’guérékata and Hasler in
[31], and thus, ω-periodicity and ω-anti-periodicity concepts become particular cases
of this notion. To characterize the impact of perturbations on (ω, k)–periodic func-
tions, some quasi-(ω, k)-periodicity concepts are presented in some publications. For
example, the asymptotically Bloch periodic function has been studied with its ap-
plications in [31, 32, 17], while notions of (pseudo) S-asymptotically (ω, k)–periodic
functions have been investigated with its applications in [14, 15, 16]. The previ-
ous mentioned quasi-Bloch periodicity’s notions can be viewed as generalization of
classical asymptotically ω-periodic and (pseudo) S-asymptotically ω-periodic func-
tions in the deterministic case which have been examined in several researches, see
[12, 2, 11, 35, 8, 9, 28, 29, 24, 33, 34, 42, 40, 46].

On the other hand, with the aid of measure theory, Blot et al. [6] introduced the
notions µ-ergodic function and provided some fundamental properties of µ-pseudo-
almost periodic (µ-PAP) functions which encloses the classical concepts of PAP func-
tions due to Zhang [47, 48, 49] and weighted PAP functions introduced by Diagana
[25, 26] as particular cases. From then on, many papers have been devoted to the
study of µ-PAP function from many ways [27]. Due to the fact that most real life phe-
nomena are basically stochastic rather than deterministic, a tremendous interest in
generalizing certain classical deterministic concepts to stochastic one has been noted
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in the literature. For instance, in [23] the authors introduced and studied the con-
cept of pth-mean µ-PAP processes and obtained sufficient condition for the existence
of pth-mean µ-PAP mild solutions to some class of non-linear stochastic evolution
equations. The authors of [7] formulated the notion of (ν, µ)-pseudo almost periodic
processes and gave some results for well-posedness of (ν, µ)-pseudo almost periodic
mild solutions in pth-mean sense for a class of non-linear stochastic evolution systems.

However, we mentioned that the researches which focus on the notion of S-asympto-
tically ω-periodicity for stochastic processes and related application on stochastic
evolution systems is rather well furnished (see [21, 50, 51, 45]). Moreover, up to now,
no work has been reported yet regarding the concept of (ν, µ)-PSABP in the pth-mean
sense for stochastic processes, which mainly motivates this present study. This issue
is interesting and new and, hence, the question even if there exists a (ν, µ)-PSABP
mild solution in pth-mean sense is still untreated for stochastic evolutions systems.

In this work there are three fundamental goals, described as follows:
(1) Firstly, we introduce a new concept of pth-mean (ν, µ)-pseudo S-asymptotically

Bloch-type periodic for stochastic processes and establish some composition,
completeness, and convolution theorems for such stochastic processes.

(2) Secondly, we investigate the existence and uniqueness of pth-mean (ν, µ)-pseudo
S-asymptotically Bloch-type periodic mild solutions to the following stochastic
evolution equations:

dz(τ) =

[
Az(τ) + α

∫ τ

−∞

(τ − u)b−1

Γ(b)
e−a(τ−u)Az(u)du+ g(τ, z(τ))

]
dτ

+f(τ, z(τ))dW (τ), τ ∈ R,
(1)

where A is a closed linear operator generator of an uniformly stable and strongly
continuous family operators {R(τ)}τ≥0 ⊂ B(V) on a separable complex Hilbert
space V, α 6= 0, a > 0, b ≥ 1, z, g, f are V-valued stochastic processes, Γ(·) is
the Gamma function. Here (W (τ))τ∈R represents a two-sided and standard one-
dimensional Brownian motion on V. If f(τ, z(τ)) ≡ 0, then problem (1)degrades
to the following deterministic semilinear integro-differential equation

d

dτ
z(τ) = Az(τ) +

∫ τ

−∞
ξ(τ − u)Az(u)du+ g(τ, z(τ)), τ ∈ R. (2)

where ξ(τ) =
α(τ)b−1

Γ(b)
e−a τ . In [35], Lizama and N’Guérékata provided suf-

ficient conditions for the existence and uniqueness of bounded solutions, such
as (asymptotically) ω-periodic solutions, S-asymptotically ω-periodic solutions,
(asymptotically, pseudo) almost periodic and (asymptotically, pseudo) almost
automorphic solutions to problem (1) when g is bounded continuous with cer-
tain recurrence. For bounded solutions to some occurence of problem (2) with
some specific kernels ξ(·), we refer to [10, 19, 36] and its references to address
this issue.

(3) Thirdly, we give also the existence and uniqueness of pth-mean (ν, µ)-pseudo
S-asymptotically Bloch-type periodic mild solutions to the following class of
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stochastic fractional evolution equations:


∂ατ z(τ) = Az(τ) + α

∫ τ

−∞

(τ − u)b−1

Γ(b)
e−a(τ−u)Az(u)du+ g(τ, z(τ))

+f(τ, z(τ)
dW (τ)

dτ
, τ ∈ R,

(3)

where ∂ατ denotes the Weyl fractional derivative of order α > 0, A generate a α-
resolvent family {Rα(τ)}τ≥0 on a Hilbert space V. Noted that when f(τ, z(τ)) ≡
0, then problem (3) is reduced to the following deterministic semilinear integro-
differential equation

∂ατ z(τ) = Az(τ) +

∫ τ

−∞
ξ(τ − u)Az(u)du+ g(τ, z(τ)), τ ∈ R, (4)

where ξ(τ) =
α(τ)b−1

Γ(b)
e−a τ . With some specific kernels ξ(·), bounded solutions

to problem (4) is first explored in [44], in which the existence and uniqueness
of (asymptotically) ω-periodic solutions, S-asymptotically ω-periodic solutions,
(asymptotically, pseudo) almost periodic and (asymptotically, pseudo) almost
automorphic solutions are studied when g is a bounded continuous function with
certain condition. Some existence results of weighted pseudo almost automorphic
solutions to problem (3) when g is Stepanov-like weighted pseudo almost auto-
morphic are established in [13], and the existence and uniqueness of weighted
pseudo antiperiodic solutions to problem (3)) when g is Stepanov-like weighted
pseudo antiperiodic is accomplished in[3]. Oueama-Guengai and N’Guérékata
[41] studied the existence and uniqueness of S-asymptotically ω-periodic and
(ω, k)-Bloch periodic solutions to problem (3) when g is a bounded continuous
function satisfying additional conditions.

Let us mention that some special forms of problems (1) and (3) have also been in-
vestigated but to the best of our knowledge, no work has been published on the exis-
tence and uniqueness of pth-mean (ν, µ)-pseudo S-asymptotically Bloch-type periodic
mild solutions of the above problems and we propose extending the recent results on
Bloch-type periodic (or (ω, k)−periodic) stochastic process developed in [21, 22, 39].
Additionally, the present work can be considered as a continuation of [41, 44, 31] in
the stochastic setting when it comes to Bloch- periodic process. Note that, problems
of types (1) and (3) usually arises in the models of viscoelastic materials or mem-
ory materials where stochastic effects need to be considered (see for instance [37]).
The obtained outcomes show that for each pth-mean (ν, µ)-pseudo S-asymptotically
Bloch-type periodic input, the output is still a bounded and continuous mild solu-
tions to the reference equation, which is also pth-mean (ν, µ)-pseudo S-asymptotically
Bloch-type periodic.

This paper is organized as follows: Section 1 is concerned with some basic defini-
tions, lemmas, notations, and mainly focused on properties of pth-mean (ν, µ)-pseudo
S-asymptotically Bloch-type periodicity. Section 2 is concerned to applications to
some stochastic evolution equations in Hilbert spaces. To end this work, we give
some illustrations in Section 3.
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1. Preliminaries

Suppose that (0,F ,P) represents a probability space, (V, ‖ ·‖) is a complex separable
Hilbert space and

(
Lp(0,V), ‖ · ‖Lp

)
(p ≥ 2) is the complex Banach space of all

strongly-measurable, p-integrable V-valued random variables, equipped with the norm

‖ψ‖Lp = (E‖ψ‖p)1/p, ψ ∈ Lp(0,V),

where E(·) is the expectation defined by (E‖ψ‖)p =

∫
0

‖ψ‖pdP. For each τ ∈ R, Fτ

is the σ-field generated by the random variables
{
W (u), u ≤ τ

}
and the P-null sets.

Definition 1.1. A stochastic process ψ : R→ Lp(0,V) is referred to as stochastically
bounded and continuous process if there exist ζ > 0 such that

E‖ψ(τ)‖p =

∫
0

‖ψ(τ)‖pdP < ζ, ∀τ ∈ R

and

lim
u→v

E‖ψ(u)− ψ(v)‖p = 0 for all v ∈ R.

We will use the notation (BC (R,Lp(0,V)) , ‖ · ‖∞) (for p ≥ 2) represents the
complex Banach space of all stochastically bounded and continuous processes ψ :

R→ Lp(0,V) such that ‖ψ‖∞ =

(
sup
s∈R

E‖ψ(s)‖p
)1/p

<∞.

The following particular Burkholder-Davis-Gundy type.

Lemma 1.1. [?] Let q > 0 and ψ : [0, q]×0→ Lp(0,V) be an Fτ -adapted measurable
stochastic process such that ∫ q

0

E‖ψ(%)‖2d% <∞ a. s.

Then ∀ p ≥ 1, ∃Cp > 0 such that

E sup
τ∈[0,q]

∥∥∥∥∫ τ

0

ψ(%)dW (%)

∥∥∥∥p ≤ CpE(∫ q

0

‖ψ(%)‖2d%
)p/2

.

1.1. pth-mean (ν, µ)-pseudo S-asymptotically Bloch-type periodic process.
We use the symbol B to represent the Lebesgue σ-field of R, and the set of all positive
measures µ on B such that µ(R) = +∞ and µ([q1, q2]) < +∞ for all q1, q2,∈ R
(q1 ≤ q2) will be denoted by M.

Definition 1.2. Let µ ∈M and p ≥ 2. A stochastic process ψ ∈ BC (R,Lp(0,V)) is
referred as pth-mean (ν, µ)−speudo-S-asymptotically Bloch-type periodic (or (ω, k)
periodic) if for given ω ∈ R, k ∈ R,

lim
m→+∞

1

ν([−m,m])

∫ m

−m
E‖ψ(s+ ω)− eikωψ(s)‖pdµ(s) = 0.



ON DOUBLY-MEASURE PSEUDO S-ASYMPTOTICALLY BLOCH TYPE PERIODICITY 489

The set of all the pth-mean (ν, µ)-pseudo-S-asymptotically (ω, k)-periodic stochas-
tic processes is denoted by SABPν,µω,k (R,Lp(0,V)) and

SABPν,µω,k(R× Lp(0,V),Lp(0,V)) =

{
h(·, z) ∈ SABPν,µω,k (R,Lp(0,V))

| for any z ∈ Lp(0,V)

}
.

Now, we can show the following basic properties.

Lemma 1.2. Let p ≥ 2 and z1, z2, z ∈ SABPν,µω,k (R,Lp(0,V)). The subsequent
results hold:

(a): z1 + z2 ∈ SABPν,µω,k (R,Lp(0,V)), and az ∈ SABPν,µω,k (R,Lp(0,V)) for each
a ∈ C.

(b): Assume that lim sup
m→+∞

ν([−m,m])

µ([−m,m])
= l <∞;

then
(
SABPν,µω,k (R,Lp(0,V)) , ‖ · ‖∞

)
is a Banach space.

Proof. (a) Using Definition 1.2, we have

1

ν([−m,m])

∫ m

−m
E‖(z1 + z2)(τ + ω)− eikω(z1 + z2)(τ)‖pdµ(τ)

≤ 2p−1

ν([−m,m])

∫ m

−m
E‖z1(τ + ω)− eikωz1(τ)‖pdµ(τ)

+
2p−1

ν([−m,m])

∫ m

−m
E‖z2(τ + ω)− eikωz2(τ)‖pdµ(τ)

−→ 0 as m→∞

and

1

ν([−m,m])

∫ m

−m
E‖az(τ + ω)− eikωaz(τ)‖pdµ(τ)

=
|a|p

ν([−m,m])

∫ m

−m
E‖z(τ + ω)− eikωz(τ)‖pdµ(τ)

−→ 0 as m→∞.

Thus z1 + z2, a z ∈ SABPν,µω,k (R,Lp(0,V)).

(b) Let {zn}n ⊆ SABPν,µω,k (R,Lp(0,V)) such that lim
n→∞

‖zn − z‖∞ = 0 as n→∞.

We have

1

ν([−m,m])

∫ m

−m
E‖z(τ + ω)− eikωz(τ)‖pdµ(τ)

=
1

ν([−m,m])

∫ m

−m
E‖z(τ + ω)− zn(τ + ω) + zn(τ + ω)− eikωzn(τ) + eikωzn(τ)− eikωz(τ)‖pdµ(τ)

≤ 3p−1

ν([−m,m])

∫ m

−m
E‖z(τ + ω)− zn(τ + ω)‖pdµ(τ) +

3p−1

ν([−m,m])

∫ m

−m
E‖zn(τ + ω)− eikωzn(τ)‖pdµ(τ)

+
3p−1

ν([−m,m])

∫ m

−m
E‖eikωzn(τ)− eikωz(τ)‖pdµ(τ)
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≤3p−1 µ([−m,m])

ν([−m,m])
sup
τ∈R

(E‖z(τ)− zn(τ)‖p) +
3p−1

ν([−m,m])

∫ m

−m
E‖zn(τ + ω)− eikωzn(τ)‖pdµ(τ)

+ 3p−1 µ([−m,m])

ν([−m,m])
sup
τ∈R

(E‖zn(τ)− z(τ)‖p) .

It follows that,

lim sup
m→+∞

1

ν([−m,m])

∫ m

−m
E‖z(τ + ω)− eikωz(τ)‖pdµ(τ)

≤ 3p−1 l ‖z − zn‖p∞ + 3p−1 lim sup
m→+∞

1

ν([−m,m])

∫ m

−m
E‖zn(τ + ω)− eikωzn(τ)‖pdµ(τ)

+ 3p−1 l ‖zn − z‖p∞.

Since lim
n→∞

‖zn − z‖p = 0 and

lim
m→+∞

3p−1

ν([−m,m])

∫ m

−m
E‖zn(τ + ω)− eikωzn(τ)‖pdµ(τ) = 0,

we deduce that

lim
m→+∞

1

ν([−m,m])

∫ m

−m
E‖z(τ + ω)− eikωz(τ)‖pdµ(τ) = 0.

This implies that the space SABPν,µω,k (R,Lp(0,V)) is a closed sub-space of

BC (R,Lp(0,V)), so it is a Banach space equipped with the sup-norm. �

The following lemma offers a characterization of processes belonging to the class
of pth-mean (ν, µ)−speudo-S-asymptotically Bloch-type periodic.

Lemma 1.3. Let ν, µ ∈ M such that lim sup
m→+∞

µ([−m,m])

ν([−m,m])
= l < ∞, Y be a bounded

interval (possibly Y = ∅) and z ∈ BC (R,Lp(0,V)), then the following assertions are
equivalent:
(1) z ∈ SABPν,µω,k (R,Lp(0,V));

(2) lim
m→∞

1

ν([−m,m]\Y )

∫
[−m,m]\Y

E‖z(τ + ω)− eikωz(τ)‖pdµ(τ) = 0;

(3) For each ε > 0,

lim
m→+∞

µ(Qm,ε(z))
ν([−m,m]\Y )

= 0, (5)

where Qm,ε(z) = {τ ∈ [−m,m]\Y : E‖z(τ + ω)− eikωz(τ)‖p ≥ ε}.

Proof. Claim 1 : Let prove that (1)⇐⇒ (2).

Denote by A = ν(Y ) and B =

∫
Y

E‖z(τ+ω)−eikωz(τ)‖pdµ(τ) and C = µ(Y ). Thanks

to the boundedness of the interval Y and z ∈ BC (R,Lp(0,V)), we deduce that A,
B and C are finite. Let m > 0 be such that Y ⊂ [−m,m] and ν([−m,m]\Y ) > 0.
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Then, we have

1

ν([−m,m]\Y )

∫
[−m,m]\Y

E‖z(τ + ω)− eikωz(τ)‖pdµ(τ)

=
1

ν([−m,m])−A

(∫
[−m,m]

E‖z(τ + ω)− eikωz(τ)‖pdµ(τ)−B
)

=
ν([−m,m])

ν([−m,m])−A

(
1

ν([−m,m])

∫
[−m,m]

E‖z(τ + ω)− eikωz(τ)‖pdµ(τ)− B

ν([−m,m])

)
.

(6)

Since ν(R) = +∞, we derive that

1

ν([−m,m])

∫
[−m,m]

E‖z(τ + ω)− eikωz(τ)‖pdµ(τ) = 0.

Claim 2 : We prove that (2) =⇒ (3).
Suppose that (2) holds. For given ε > 0, we have

1

ν([−m,m]\Y )

∫
µ([−m,m]\Y )

E‖z(τ + ω)− eikωz(τ)‖pdµ(τ)

≥ 1

ν([−m,m]\Y )

∫
Qm,ε(z)

E‖z(τ + ω)− eikωz(τ)‖pdµ(τ)

≥ε µ(Qm,ε(z))
ν([−m,m]\Y )

≥ 0.

Consequently, for m large enough, we get (3).
Claim 3 : We prove that (3) =⇒ (2)
Suppose that (3) hold. Let z ∈ BC (R,Lp(0,V)). There exists a positive number

ζ > 0 such that E‖z(τ)‖p ≤ ζ for τ ∈ R. Since lim
m→+∞

µ(Qm,ε(z))
ν([−m,m]\Y )

= 0, we derive

that for any ε > 0, there exists ζ > 0 such that for m ≥ ζ,

µ(Qm,ε(z))
ν([−m,m]\Y )

≤ ε

2pζ + 1
.

We have

1

ν([−m,m]\Y )

∫ m

−m
E‖z(τ + ω)− eikωz(τ)‖p dµ(τ)

=
1

ν([−m,m]\Y )

∫
Qm,ε(z)

E‖z(τ + ω)− eikωz(τ)‖p dµ(τ)

+
1

ν([−m,m]\Y )

∫
([−m,m]\Y )\Qm,ε(z)

E‖z(τ + ω)− eikωz(τ)‖pdµ(τ)

≤ 1

ν([−m,m]\Y )

∫
Qm,ε(z)

2p−1 (E‖z(τ + ω)‖p + E‖z(τ)‖p) dµ(τ)

+
1

ν([−m,m]\Y )

∫
([−m,m]\Y )\Qm,ε(z)

ε dµ(τ)

≤2pζ
µ(Qm,ε(z))

ν([−m,m]\Y )
+

ε

ν([−m,m]\Y )

∫
[−m,m]\Y

dµ(τ)
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≤ 2pζ

2pζ + 1
ε+

εµ([−m,m]\Y )

ν([−m,m]\Y )
≤ ε+

µ([−m,m])− µ(Y )

ν([−m,m])− ν(Y )
ε

≤ε+
µ([−m,m])

ν([−m,m])
×

1− µ(Y )
µ([−m,m])

1− ν(Y )
ν([−m,m])

ε.

By the fact that µ(R) = ν(R) = +∞ and lim sup
m→+∞

µ([−m,m])

ν([−m,m])
= l < ∞, it follows

that

lim sup
m→+∞

1

ν([−m,m]\Y )

∫ m

−m
E‖z(τ + ω)− eikωz(τ)‖p dµ(τ) ≤ (1 + l)ε.

This implies that (2) holds. �

Definition 1.3 ([5]). Let µ1 and µ2 ∈ M. µ1 is referred to be equivalent to µ2

(µ1 ∼ µ2) If there exist constants α and β > 0 and a bounded interval Y (eventually
Y = ∅) such that

αµ1(K) ≤ µ2(K) ≤ βµ1(K)

for K ∈ B verifying K ∩ Y = Ø.

Theorem 1.4. Let µ1, µ2, ν1 and ν2 ∈M. If µ1 ∼ µ2 and ν1 ∼ ν2, then

SABPν1,µ1

ω,k (R,Lp(0,V)) = SABPν2,µ2

ω,k (R,Lp(0,V)).

Proof. Since µ1 ∼ µ2, ν1 ∼ ν2 and B the Lebesgue σ-field R, there exist α, β, α̃, β̃ > 0,
such that

αµ1 ≤ µ2 ≤ β µ1 and α̃ ν1 ≤ ν2 ≤ β̃ ν1.
We obtain for m sufficiently large

α

β̃

µ1

{
τ ∈ [−m,m]\Y : E‖z(τ + ω)− eikωz(τ)‖p ≥ ε

}
ν1{τ ∈ [−m,m]\Y }

≤
µ2

{
τ ∈ [−m,m]\Y : E‖z(τ + ω)− eikωz(τ)‖p ≥ ε

}
ν2{τ ∈ [−m,m]\Y }

≤ β

α̃

µ1

{
τ ∈ [−m,m]\Y : E‖z(τ + ω)− eikωz(τ)‖p ≥ ε

}
ν1{τ ∈ [−m,m]\Y }

.

By using Lemma 1.3, we deduce that

SABPω,k(R,Lp(0,V), µ1) = SABPω,k(R,Lp(0,V), µ2)

�

For µ ∈M and y ∈ R, we let µy the positive measure on (R,B) defined by

µy(X) = µ({x+ y : x ∈ X}) for X ∈ B.
Now, from µ ∈M, we come up with the subsequent assumption:

(H0) For all y ∈ R, there exists a bounded interval Y and q > 0 satisfying

µy(X) ≤ q µ(X) when X ∈ B satisfies X ∩ Y = Ø.

And, we recall the following useful result:
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Lemma 1.5 ([5]). Let µ ∈M.
(i): µ fulfills (H0) if and only if µ ∼ µy for all y ∈ R.
(ii): If condition (H0) hold, then for all σ > 0,

lim sup
m→+∞

µ([−m− σ,m+ σ])

µ([−m,m])
< +∞.

Lemma 1.6. Let ν, µ ∈M and f ∈ SABPν,µω,k (R,Lp(0,V)). If µ, ν fulfills (H0) then

fy ∈ SABPν,µω,k (R,Lp(0,V)) for each y ∈ R, where fy(τ) := f(τ + y) for each τ ∈ R.

Proof. Let f ∈ SABPν,µω,k (R,Lp(0,V)) and y ∈ R. It gives that

0 ≤
1

ν([−m,m])

∫
[−m,m]

E‖f(τ + y + ω)− eikωf(τ + y)‖pdµ(τ)

=
ν([−m− |y|,m+ |y|])

ν([−m,m])
·
(

1

ν([−m− |y|,m+ |y|])

∫
[−m,m]

E‖f(τ + y + ω)− eikωf(τ + y)‖pdµ(τ)

)
=
ν([−m− |y|,m+ |y|])

ν([−m,m])
·
(

1

ν([−m− |y|,m+ |y|])

∫
[−m+y,m+y]

E‖f(τ + ω)− eikωf(τ)‖pdµ−y(τ)

)
≤
ν([−m− |y|,m+ |y|])

ν([−m,m])
·
(

q

ν([−m− |y|,m+ |y|])

∫
[−m−|y|,m+|y|]

E‖f(τ + ω)− eikωf(τ)‖pdµ(τ)

)
,

where q > 0 is a constant, ensuring the equivalence between µ and µy. Thanks to
Lemma 1.5-(ii), we derive that fy ∈ SABPν,µω,k (R,Lp(0,V)) for all y ∈ R. �

Now, present some compositions results and convolutions theorems for pth-mean
(ν, µ)-pseudo S-asymptotically (ω, k)-periodic stochastic processes. Let ν, µ ∈ M,
h ∈ BC(R× Lp(0,V),Lp(0,V)) and consider the following assumptions:

(H0): For all (s, ψ) ∈ R× Lp(0,V),

lim
m→∞

1

ν([−m,m])

∫ m

−m
E‖h(s+ ω, ψ)− eikωh(s, e−ikωψ)‖pdµ(s) = 0 (7)

uniformly on any bounded set of Lp(0,V).
(H1): There exists a number L > 0 such that for any z1, z2 ∈ Lp(0,V),

E‖h(τ, z1)− h(τ, z2)‖p ≤ L.E‖z1 − z2‖p,

uniformly for all τ ∈ R.
(H2): For any ε > 0 and any bounded subset B ⊂ Lp(0,V), there exist Tε,B ∈ R

and δε,B > 0 such that

E‖h(τ, z1)− h(τ, z2)‖p ≤ ε

for all z1, z2 ∈ B with E‖z1 − z2‖p ≤ δε,B and τ ≥ Tε,B .
We now state the following composition results.

Theorem 1.7. Let µ, ν ∈ M. If h ∈ BC(R × Lp(0,V),Lp(0,V)) satisfies (H0) −
(H1), then h(·, z(·)) ∈ SABPν,µω,k (R,Lp(0,V)) for every z ∈ SABPν,µω,k (R,Lp(0,V)).

Proof. Since z ∈ SABPν,µω,k (R,Lp(0,V)), for each τ ∈ R, we have

lim
m→+∞

1

ν([−m,m])

∫ m

−m
E‖z(τ + ω)− eikωz(τ)‖pdµ(τ) = 0.
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We have

0 ≤ 1

ν([−m,m])

∫ m

−m
E‖h(τ + ω, z(τ + ω))− eikωh(τ, z(τ))‖pdµ(τ)

≤ 2p−1

ν([−m,m])

∫ m

−m
E‖h(τ + ω, z(τ + ω))− eikωh(τ, e−ikωz(τ + ω))‖pdµ(τ)

+
2p−1

ν([−m,m])

∫ m

−m
E‖eikωh(τ, e−ikωz(τ + ω))− eikωh(τ, z(τ))‖pdµ(τ)

≤ 2p−1

ν([−m,m])

∫ m

−m
E‖h(τ + ω, z(τ + ω))− eikωh(τ, e−ikωz(τ + ω))‖pdµ(τ)

+
2p−1L

ν([−m,m])

∫ m

−m
E‖e−ikωz(τ + ω))− z(τ)‖pdµ(τ)

→ 0 as m→ +∞.

Thus,

lim
m→+∞

1

ν([−m,m])

∫ m

−m
E‖h(τ + ω, z(τ + ω))− eikωh(τ, z(τ))‖pdµ(τ) = 0,

i.e., h(·, z(·)) ∈ SABPν,µω,k (R,Lp(0,V)). �

Theorem 1.8. Let ν, µ ∈M such that lim sup
m→+∞

µ([−m,m])

ν([−m,m])
= l <∞. If h ∈ BC(R×

Lp(0,V),Lp(0,V)) satisfies (H0) and (H2), then h(·, z(·)) ∈ SABPν,µω,k (R,Lp(0,V))

for every z ∈ SABPν,µω,k (R,Lp(0,V)).

Proof. By z ∈ SABPν,µω,k (R,Lp(0,V)), Lemma 1.3 and assumption (H0), for any
ε > 0, there exists qε > 0 such that for each m ≥ qε,

1

ν([−m,m])

∫ m

−m
E‖h(τ + ω, z(τ + ω))− eikωh(s, e−ikωz(τ + ω))‖pµ(τ) <

ε

2p−1

and
µ(Qm,ε(z))
ν([−m,m])

≤ ε

22p−1‖h‖p∞ + 1
,

where Qm,ε(z) = {τ ∈ [−m,m] : E‖z(τ + ω)− eikωz(τ)‖p ≥ ε}. Thanks to condition
(H2), we have that for any ε > 0, there exists δε,B := ε and Tε,B := qε such that

E‖h(τ, e−ikωz(τ + ω))− h(τ, z(τ))‖p ≤ ε

2p−1

whenever E‖z(τ + ω)− eikωz(τ)‖p ≤ ε and |τ | ≥ qε

1

ν([−m,m])

∫ m

−m
E‖h(τ + ω, z(τ + ω))− eikωh(τ, z(τ))‖p dµ(τ)

≤ 2p−1

ν([−m,m])

∫ m

−m
E‖h(τ, e−ikωz(τ + ω))− eikωh(τ, e−ikωz(τ + ω))‖pdµ(τ)

+
2p−1

ν([−m,m])

∫ m

−m
E‖eikωh(s, e−ikωz(τ + ω))− eikωh(τ, z(τ))‖pdµ(τ)
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≤ε+
2p−1

ν([−m,m])

∫
[−m,m]\Qm,ε(z)

E‖h(τ, e−ikωz(τ + ω))− h(τ, z(τ))‖pdµ(τ)

+
2p−1

ν([−m,m])

∫
Qm,ε(z)

E‖h(τ, e−ikωz(τ + ω))− h(τ, z(τ))‖pdµ(τ)

≤ε+
ε

ν([−m,m])

∫
[−m,m]\Qm,ε(z)

dµ(τ) +
2p−1

ν([−m,m])

∫
Qm,ε(z)

2p‖h‖p∞dµ(τ)

≤ε+
ε

ν([−m,m])

∫ m

−m
dµ(τ) +

22p−1‖h‖p∞
ν([−m,m])

∫
Qm,ε(z)

dµ(τ)

≤ε+ ε
µ([−m,m])

ν[−m,m]
+ 22p−1‖h‖p∞

µ(Qm,ε(z))
ν[−m,m]

≤ε+ ε l +
22p−1‖h‖p∞

22p−1‖h‖p∞ + 1
ε ≤ (2 + l)ε

for each m ≥ qε. Thus

lim
m→∞

1

ν([−m,m])

∫ m

−m
E‖h(τ + ω, z(τ + ω))− eikωh(τ, z(τ))‖p dµ(τ) = 0.

This completes the proof. �

Lemma 1.9. Let ν, µ ∈M satisfy (H0). If {K(τ)}τ≥0 ⊂ B(V) is uniformly 1-integra-
ble and strongly continuous family of operators, and X ∈ SABPν,µω,k (R,Lp(0,V)),
then

Φ(τ) =

∫ τ

−∞
K(τ − s)X(s)ds ∈ SABPν,µω,k (R,Lp(0,V)) .

Proof. Since the operator family {K(τ)}τ≥0 is uniformly 1-integrable, there exists

M > 0 such that

∫ ∞
0

‖K(τ)‖dt ≤M . Let X ∈ SABPν,µω,k (R,Lp(0,V)) , then for any

m > 0 we get

1

ν([−m,m])

∫ m

−m
E‖Φ(τ + ω)− eikωΦ(τ)‖pdµ(τ)

=
1

ν([−m,m])

∫ m

−m
E

∥∥∥∥∫ τ+ω

−∞
K(τ + ω − s)X(s)ds− eikω

∫ τ

−∞
K(τ − s)X(s)ds

∥∥∥∥p dµ(τ)

=
1

ν([−m,m])

∫ m

−m
E

∥∥∥∥∫ τ

−∞
K(τ − s)X(s+ ω)ds− eikω

∫ τ

−∞
K(τ − s)X(s)ds

∥∥∥∥p dµ(τ)

=
1

ν([−m,m])

∫ m

−m
E

∥∥∥∥∫ τ

−∞
K(τ − s)[X(s+ ω)− eikωX(s)]ds

∥∥∥∥p dµ(τ)

=
1

ν([−m,m])

∫ m

−m
E

(∥∥∥∥∫ τ

−∞
K(τ − s)[X(s+ ω)− eikωX(s)]ds

∥∥∥∥)p dµ(τ)

≤ 1

ν([−m,m])

∫ m

−m
E

(∫ τ

−∞
‖K(τ − s)‖

∥∥X(s+ ω)− eikωX(s)
∥∥ ds)p dµ(τ)
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≤ 1

ν([−m,m])

∫ m

−m
E

(∫ τ

−∞
‖K(τ − s)‖

p−1
p ‖K(τ − s)‖

1
p
∥∥X(s+ ω)− eikωX(s)

∥∥ ds)p dµ(τ)

≤ 1

ν([−m,m])

∫ m

−m
E

([∫ τ

−∞

(
‖K(τ − s)‖

p−1
p

) p
p−1

ds

] p−1
p

×

[∫ τ

−∞

(
‖K(τ − s)‖

1
p
∥∥X(s+ ω)− eikωX(s)

∥∥)p ds] 1
p

)p
dµ(τ)

≤ 1

ν([−m,m])

∫ m

−m

([∫ τ

−∞
‖K(τ − s)‖ ds

]p−1
×
[∫ τ

−∞
‖K(τ − s)‖E

∥∥X(s+ ω)− eikωX(s)
∥∥p ds]) dµ(τ).

From the Fubini theorem, it follows that

≤ Mp−1

ν([−m,m])

∫ m

−m

[∫ ∞
0

‖K(s)‖ E‖X(τ − s+ ω)− eikωX(τ − s)‖pds
]
dµ(τ)

= Mp−1
∫ ∞
0

‖K(s)‖
[

1

ν([−m,m])

∫ m

−m
E‖X(τ − s+ ω)− eikωX(τ − s)‖pdµ(τ)

]
ds

= Mp−1
∫ ∞
0

‖K(s)‖
[

1

ν([−m,m])

∫ m

−m
E‖X−s(τ + ω)− eikωX−s(τ)‖pdµ(τ)

]
ds.

Since X ∈ SABPν,µω,k (R,Lp(0,V)), thanks to Lemma 1.6, we know that for any s ∈ R,
we have

lim
m→∞

1

ν([−m,m])

∫ m

−m
E‖X−s(τ + ω)− eikωX−s(τ)‖pdµ(τ) = 0.

Then Lebesgue dominated convergence theorem yield that∫ ∞
0

‖K(s)‖
[

1

ν([−m,m])

∫ m

−m
E‖X−s(τ + ω)− eikωX−s(τ)‖pdµ(τ)

]
ds→ 0

as m→ +∞. Therefore

lim
m→+∞

Mp−1
∫ ∞
0

‖K(s)‖
[

1

ν([−m,m])

∫ m

−m
E‖X−s(τ + ω)− eikωX−s(τ)‖pdµ(τ)

]
ds = 0.

It proves that Φ ∈ SABPν,µω,k (R,Lp(0,V)). �

Lemma 1.10. Let ν, µ ∈ M satisfy (H0). If {K(τ)}τ≥0 ⊂ B(V) is uniformly
2−integrable and strongly continuous family of operators.
Suppose that g ∈ SABPν,µω,k (R,Lp(0,V)), then

Ψ(τ) =

∫ τ

−∞
K(τ − s)g(s)dW (s) ∈ SABPν,µω,k (R,Lp(0,V)) .
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Proof. We have

1

ν([−m,m])

∫ m

−m
E‖Ψ(τ + ω)− eikωΨ(τ)‖pdµ(τ)

=
1

ν([−m,m])

∫ m

−m
E

∥∥∥∥∫ τ+ω

−∞
K(τ + ω − s)g(s)dW (s)− eikω

∫ τ

−∞
K(τ − s)g(s)dW (s)

∥∥∥∥p dµ(τ)

=
1

ν([−m,m])

∫ m

−m
E

∥∥∥∥∫ τ

−∞
K(τ − s)g(s+ ω)dW (s+ ω)− eikω

∫ τ

−∞
K(τ − s)g(s)dW (s)

∥∥∥∥p dµ(τ).

Let W̃ (s) = W (s+ ω)−W (ω). We know that W̃ is a Brownian motion and has the
same distribution as W . Then we obtain

1

ν([−m,m])

∫ m

−m
E‖Ψ(τ + ω)− eikωΨ(τ)‖pdµ(τ)

=
1

ν([−m,m])

∫ m

−m
E

∥∥∥∥∫ τ

−∞
K(τ − s)g(s+ ω)dW̃ (s)− eikω

∫ τ

−∞
K(τ − s)g(s)dW̃ (s)

∥∥∥∥p dµ(τ)

=
1

ν([−m,m])

∫ m

−m
E

∥∥∥∥∫ τ

−∞
K(τ − s)

[
g(s+ ω)− eikωg(s)

]
dW̃ (s)

∥∥∥∥p dµ(τ).

Since g ∈ SABPν,µω,k (R,Lp(0,V)) and for all τ ∈ R, g(τ) ∈ Lp(0,V) ⊂ L2(Ω,V) then∫ τ

−∞
E
∥∥K(τ − s)

[
g(s+ ω)− eikωg(s)

]∥∥2 ds
≤2 sup

s∈R
E ‖g(s)‖2

∫ ∞
0

‖K(s)‖2 ds <∞ for all τ ∈ R.

Then by Lemma 1.1, there exists Cp > 0 such that

1

ν([−m,m])

∫ m

−m
E‖Ψ(τ + ω)− eikωΨ(τ)‖pdµ(τ)

≤Cp
1

ν([−m,m])

∫ m

−m
E

(∫ τ

−∞

∥∥K(τ − s)
[
g(s+ ω)− eikωg(s)

]∥∥2 ds)p/2 dµ(τ).

Therefore, using Hölder’s inequality and the Fubini’s theorem, we obtain that

1

ν([−m,m])

∫ m

−m
E‖Ψ(τ + ω)− eikωΨ(τ)‖pdµ(τ)

≤Cp
1

ν([−m,m])

∫ m

−m
E

[(∫ τ

−∞

(
‖K(τ − s)‖2.

p−2
p

) p
p−2

ds

) p−2
p

×
(∫ τ

−∞

(
‖K(τ − s)‖

4
p ‖g(s+ ω)− eikωg(s)‖2

) p
2

ds

) 2
p

]p/2
dµ(τ)

≤Cp
(∫ τ

−∞
‖K(τ − s)‖2ds

) p−2
2

×
∫ ∞
0

‖K(s)‖2
[

1

ν([−m,m])

∫ m

−m
E‖g(τ − s+ ω)− eikωg(τ − s)‖pdµ(τ)

]
ds.
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Since g ∈ SABPν,µω,k (R,Lp(0,V)) and {K(τ)}τ≥0 is uniformly 2−integrable, therefore
using Lemma 1.6 and Lebesgue dominated converge theorem, we obtain that

lim
m→+∞

1

ν([−m,m])

∫ m

−m
E‖Ψ(τ + ω)− eikωΨ(τ)‖pdµ(τ) = 0. (8)

which proves that Ψ ∈ SABPν,µω,k (R,Lp(0,V)). �

2. Existence of pth-mean (ν, µ)-speudo S-asymptotically Bloch-type peri-
odic mild solutions

Firstly, we discuss the existence and uniqueness of (ν, µ)-pseudo S-asymptotically
(ω, k)-periodic mild solution for problem(1). We state the following conditions:

(A1) A generates an immediately norm continuous C0-semigroup on a Hilbert space
V.

(A2) Re
(

(−α)1/b)− a
)
< 0 and

sup
{

Re(λ), λ ∈ C : λ(λ+ a)b((λ+ a)b + α)−1 ∈ σ(A)
}
< 0.

Let us consider the following linear Cauchy problem

z′(τ) = Az(τ) + α

∫ τ

−∞

(τ − s)b−1

Γ(b)
e−a(τ−s)Az(s)ds+ g(τ), τ ∈ R. (9)

Under conditions (A1)-(A2), from [18, Proposition 3.1], we know that there exists a
uniformly stable and strongly continuous family operators {R(τ)}τ≥0 ⊂ B(V), i.e.,
there exist constants d1, d2 > 0 such that for all τ > 0,

‖R(τ)‖ ≤ d1e−d2τ . (10)

From [18, Theorem 3.2], the mild solution of problem (9) can be expressed by

z(τ) =

∫ τ

−∞
R(τ − s)g(s)ds.

Motivated by [18], we present the concept of mild solution for the stochastic integrod-
ifferential equation (1).

Definition 2.1. An Gτ -progressively measurable process {z(τ)}τ∈R is referred to as
a mild solution of problem (1) if for τ ∈ R, z(τ) P-almost surely satisfies the following
integral equation

z(τ) =

∫ τ

−∞
R(τ − s)g(s, z(s))ds+

∫ τ

−∞
R(τ − s)f(s, z(s))dW (s). (11)

Theorem 2.1. Let µ, ν ∈ M satisfy (H0) and lim sup
m→+∞

ν([−m,m])

µ([−m,m])
< ∞. Suppose

that (A1)-(A2) hold and g, f ∈ BC(R× Lp(0,V),Lp(0,V)), such that for all (τ, x) ∈
R× Lp(0,V),

lim
m→∞

1

ν([−m,m])

∫ m

−m
E‖f(τ + ω, x)− eikωf(τ, e−ikωx)‖pdµ(τ) = 0 and

lim
m→∞

1

ν([−m,m])

∫ m

−m
E‖g(τ + ω, x)− eikωg(τ, e−ikωx)‖pdµ(τ) = 0.
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uniformly on any bounded set of Lp(0,V). In addition, assume that there exist con-
stants L,L′ > 0 such that for any v1, v2 ∈ Lp(0,V),

E‖g(τ, v1)− g(τ, v2)‖p ≤ LE‖v1 − v2‖p,
E‖f(τ, v1)− f(τ, v2)‖p ≤ L′ E‖v1 − v2‖p,

uniformly for all τ ∈ R. Then problem (1) admit a unique mild solution z ∈
SABPν,µω,k (R,Lp(0,V)) in p-th mean sense on R, if

2p−1
[

(d1)p

(d2)p
L+

Cp(d1)p

(2d2)p/2
L′
]
< 1 for p > 2

and [
2(d1)2

(d2)2
L+

(d1)2

(d2)
L′
]
< 1 for p = 2.

Proof. Define the operator S : SABPν,µω,k (R,Lp(0,V))→ SABPν,µω,k (R,Lp(0,V)) by

(Sz)(τ) =

∫ τ

−∞
R(τ − s)g(s, z(s))ds+

∫ τ

−∞
R(τ − s)f(s, z(s))dW (s), (12)

where {R(τ)}τ≥0 satisfies the relation (10).
From Theorem 1.7, for each z ∈ SABPν,µω,k (R,Lp(0,V)), the stochastic processes

τ 7−→ f(τ, z(τ)), τ 7−→ g(τ, z(τ)) belongs to SABPν,µω,k (R,Lp(0,V)). It follows from

Lemmas 1.9, 1.10 and 1.2-(a) that Sz ∈ SABPν,µω,k (R,Lp(0,V)).

For all v1, v2 ∈ SABPν,µω,k (R,Lp(0,V)), we have

E‖(Sv1)(τ)− (Sv2)(τ)‖p ≤2p−1E‖
∫ τ

−∞
R(τ − s)[g(s, v1(s))− g(s, v2(s))]ds‖p

+ 2p−1E‖
∫ τ

−∞
R(τ − s)[f(s, v1(s))− f(s, v2(s))]dW (s)‖p

=2p−1(J1 + J2),

where, for p > 2

J1 =E‖
∫ τ

−∞
R(τ − s)[g(s, v1(s))− g(s, v2(s))]ds‖p

≤
(∫ τ

−∞
‖R(τ − s)‖ds

)p−1 ∫ τ

−∞
‖R(τ − s)‖E‖g(s, v1(s))− g(s, v2(s))‖pds

≤ (d1)p

(d2)p−1
L

∫ τ

−∞
e−d2(τ−s) E‖v1(s)− v2(s)‖pds

≤ (d1)p

(d2)p−1
L

∫ τ

−∞
e−d2(τ−s) E‖v1(s)− v2(s)‖pds

≤ (d1)p

(d2)p
L sup
τ∈R

E‖v1(τ)− v2(τ)‖p,
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and

J2 =E‖
∫ τ

−∞
R(τ − s)[f(s, v1(s))− f(s, v2(s))]dW (s)‖p

≤Cp
(∫ τ

−∞
E ‖R(τ − s) [f(s, v1(s))− f(s, v2(s))]‖2 ds

)p/2
≤Cp

(∫ τ

−∞
‖R(τ − s)‖2ds

) p−2
2
∫ τ

−∞
‖R(τ − s)‖2 E‖f(s, v1(s))− f(s, v2(s))‖pds

≤Cp(d1)p−2
(∫ τ

−∞
e−2d2(τ−s)ds

) p−2
2

(d1)2
∫ τ

−∞
e−2d2(τ−s) E‖f(s, v1(s))− f(s, v2(s))‖pds

≤Cp(d1)p

(2d2)p/2
L′ sup

τ∈R
E‖v1(τ)− v2(τ)‖p.

Therefore,

‖Sv1 − Sv2‖p∞ ≤ 2p−1
[

(d1)p

(d2)p
L+

Cp(d1)p

(2d2)p/2
L′
]
‖v1 − v2‖2∞.

In the case p = 2, from Ito’s isometry identity and by similar calculations, we obtain
that

E‖(Sv1)(τ)− (Sv2)(τ)‖2

≤2E‖
∫ τ

−∞
R(τ − s)[g(s, v1(s))− g(s, v2(s))]ds‖2

+ 2E‖
∫ τ

−∞
R(τ − s)[f(s, v1(s))− f(s, v2(s))]dW (s)‖2

≤2(d1)2
(∫ τ

−∞
e−d2(τ−s)ds

)∫ τ

−∞
e−d2(τ−s) E‖g(s, v1(s))− g(s, v2(s))‖2ds

+ 2(d1)2
∫ τ

−∞
e−2d2(τ−s) E‖g(s, v1(s))− g(s, v2(s))‖2ds

≤2(d1)2

(d2)2
L sup
τ∈R

E‖v1(τ)− v2(τ)‖2 +
(d1)2

(d2)
L′ sup

τ∈R
E‖v1(τ)− v2(τ)‖2

≤
[

2(d1)2

(d2)2
L+

(d1)2

(d2)
L′
]
‖v1 − v2‖2∞.

Then S is a contraction mapping in the Banach space SABPν,µω,k (R,Lp(0,V)) owing
to the condition

2p−1
[

(d1)p

(d2)p
L+

Cp(d1)p

(2d2)p/2
L′
]
< 1 for p > 2

and [
2(d1)2

(d2)2
L+

(d1)2

(d2)
L′
]
< 1 for p = 2.

Thus there exists a unique z ∈ SABPν,µω,k (R,Lp(0,V)) such that Sz = z via Banach
fixed point theorem. �

Now, we discuss the existence and uniqueness of (ν, µ)-pseudo S-asymptotically
(ω, k)-periodic mild solution for Eq.(3). To prove the existence of mild solutions of
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Eq.(3), we need to recall some facts about Weyl fractional integral and derivative of
order α > 0, and α-resolvent operators that will be used to develop the main results
of this section. For more details on properties α-resolvent operators, one can take
reference to [44]. Now, suppose that X is a Banach space. For a given function
h : R→ X, the Weyl fractional integral of order α > 0 is defined by

∂−ατ h(τ) :=
1

Γ(α)

∫ τ

−∞
(τ − s)α−1h(s)ds, τ ∈ R,

when this integral is convergent. The Weyl fractional derivative ∂ατ of order α is
defined by

∂ατ h(τ) =
dn

dτn
∂−(n−α)τ h(τ), τ ∈ R,

where n = [α] + 1, and the notation [α] represents the integer part of α. Now, Let
A be a closed and linear operator with domain D(A) defined on a Banach space X,
and α > 0. For a given kernel b(·) ∈ L1

loc(R+), it is said that A is the generator of a
α-resolvent family if there exists ξ > 0 and a strongly continuous family Rα : R+ →
B(X) such that {

λα

1 + b̂(λ)
: Re(λ) > ξ

}
⊆ ρ(A)

and for all y ∈ X,

(λα−(1+ b̂(λ))A)−1y =
1

1 + b̂(λ)

(
λα

1 + b̂(λ)
−A

)−1
y =

∫ ∞
0

e−λtRα(τ)ydτ, Reλ > ξ.

{Rα(τ)}τ≥0 is called the α-resolvent family generated by the operator A.
Motivated by Ponce [44], we present the concept of mild solutions for Eq.(3).

Definition 2.2. An Fτ -progressively measurable process {z(τ)}τ∈R is referred to as
a mild solution of problem (1) if it satisfies the following stochastic integral equation

z(τ) =

∫ τ

−∞
Rα(τ − s)g(s, z(s))ds+

∫ τ

−∞
Rα(τ − s)f(s, z(s))dW (s)

for all τ ∈ R, where {Rα(τ)}τ≥0 the resolvent family generated by the operator A.

Theorem 2.2. Let µ, ν ∈M satisfy (H0) and lim sup
m→+∞

ν([−m,m])

µ([−m,m])
<∞. Suppose that

(A1)-(A2) hold. Suppose that {Rα(τ)}τ≥0 ⊂ B(V) such that Rα ∈ L1(R+) ∩ L2(R+)
and g, f ∈ BC(R× Lp(0,V),Lp(0,V)), such that for all (τ, x) ∈ R× Lp(0,V),

lim
m→∞

1

ν([−m,m])

∫ m

−m
E‖f(τ + ω, x)− eikωf(τ, e−ikωx)‖pdµ(τ) = 0

lim
m→∞

1

ν([−m,m])

∫ m

−m
E‖g(τ + ω, x)− eikωg(τ, e−ikωx)‖pdµ(τ) = 0,

uniformly on any bounded set of Lp(0,V). In addition, assume that there exist con-
stants Cp, L, L

′ > 0 such that for any v1, v2 ∈ Lp(0,V),

E‖g(τ, v1)− g(τ, v2)‖p ≤ LE‖v1 − v2‖p,
E‖f(τ, v1)− f(τ, v2)‖p ≤ L′ E‖v1 − v2‖p,
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uniformly for all τ ∈ R. Then equation (3) has a unique mild solution
z ∈ SABPν,µω,k (R,Lp(0,V)) in pth-mean sense on R, if

2p−1 [L (‖Rα‖L1)
p

+ CpL
′ (‖Rα‖L2)

p
] < 1 for p > 2,

and

2

(
‖Rα‖2L1L+ L′‖Rα‖2L2

)
< 1 for p = 2.

Proof. Define the operator S : SABPν,µω,k (R,Lp(0,V))→ SABPν,µω,k (R,Lp(0,V)) by

(Sz)(τ) =

∫ τ

−∞
Rα(τ − s)g(s, z(s))ds+

∫ τ

−∞
Rα(τ − s)f(s, z(s))dW (s), (13)

where {R(τ)}τ≥0 satisfies the relation (10).
From Theorem 1.7, for each z ∈ SABPν,µω,k (R,Lp(0,V)), the stochastic processes

ς 7−→ f(ς, z(ς)), ς 7−→ g(ς, z(ς)) belongs to SABPν,µω,k (R,Lp(0,V)). It follows from

Lemmas 1.9, 1.10 and 1.2-(a) that Sz ∈ SABPν,µω,k (R,Lp(0,V)). Let v1, v2 ∈ Lp(0,V).
For p > 2, we have by Lemma 1.1 and Hölder’s inequality

E‖(Sv1)(τ)− (Sv2)(τ)‖p

≤2p−1E

∥∥∥∥∫ τ

−∞
Rα(τ − s)[g(s, v1(s))− g(s, v2(s))]ds

∥∥∥∥p
+ 2p−1E

∥∥∥∥∫ τ

−∞
Rα(τ − s)[f(s, v1(s))− f(s, v2(s))]dW (s)

∥∥∥∥p
≤2p−1

(∫ τ

−∞
‖Rα(τ − s)‖ds

)p−1 ∫ τ

−∞
‖Rα(τ − s)‖E‖g(s, v1(s))− g(s, v2(s))‖pds

+ 2p−1Cp

(∫ τ

−∞
‖Rα(τ − s)‖2ds

) p−2
2

×
∫ τ

−∞
‖Rα(τ − s)‖2 E‖f(s, v1(s))− f(s, v2(s))‖pds

≤2p−1

(∫ τ

−∞
‖Rα(τ − s)‖ds

)p−1 ∫ τ

−∞
‖Rα(τ − s)‖E‖g(s, v1(s))− g(s, v2(s))‖pds

+ 2p−1Cp

(∫ τ

−∞
‖Rα(τ − s)‖2ds

) p−2
2
∫ τ

−∞
‖Rα(τ − s)‖2 E‖f(s, v1(s))− f(s, v2(s))‖pds

≤2p−1L‖v1 − v2‖p∞
(∫ τ

−∞
‖Rα(τ − s)‖ds

)p−1 ∫ τ

−∞
‖Rα(τ − s)‖ ds

+ 2p−1CpL
′‖v1 − v2‖p∞

(∫ τ

−∞
‖Rα(τ − s)‖2ds

) p−2
2
∫ τ

−∞
‖Rα(τ − s)‖2ds

≤2p−1L‖v1 − v2‖p∞
(∫ τ

−∞
‖Rα(τ − s)‖ds

)p
+ 2p−1CpL

′‖v1 − v2‖p∞
(∫ τ

−∞
‖Rα(τ − s)‖2ds

) p
2

≤2p−1L‖v1 − v2‖p∞ (‖Rα‖L1)p + 2p−1CpL
′‖v1 − v2‖p∞ (‖Rα‖L2)p

≤2p−1 [L (‖Rα‖L1)p + CpL
′ (‖Rα‖L2)p

]
‖v1 − v2‖p∞.
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In the case p = 2, from Ito’s isometry identity and by similar calculations, we obtain
that

E‖(Sv1)(τ)− (Sv2)(τ)‖2 ≤2E‖
∫ τ

−∞
R(τ − s)[g(s, v1(s))− g(s, v2(s))]ds‖2

+ 2E‖
∫ τ

−∞
R(τ − s)[f(s, v1(s))− f(s, v2(s))]dW (s)‖2

≤2
[
L‖Rα‖2L1 + L′‖Rα‖2L2

]
‖v1 − v2‖2∞.

Since

2p−1 [L (‖Rα‖L1)
p

+ CpL
′ (‖Rα‖L2)

p
] < 1, for p > 2

and

2

(
‖Rα‖2L1L+ L′‖Rα‖2L2

)
< 1, for p = 2,

we deduce that S is a contraction mapping in the Banach space SABPν,µω,k (R,Lp(0,V)).

Consequently, there exists a unique z ∈ SABPν,µω,k (R,Lp(0,V)) such that Sz = z via
Banach fixed point theorem. �

3. Examples

To apply our theoretical results, we take the measures µ and ν, whose Radon-Nikodym
derivative are given respectively

ρ(τ) =

{
eτ for τ ≤ 0,

1 for τ > 0

and

ρ̃(τ) = |τ |, τ ∈ R.
That is,

µ(Y ) =

∫
Y

ρ(τ)dτ and ν(Y ) =

∫
Y

ρ̃(τ)dτ for Y ∈ B,

where dτ denotes the Lebesgue measure on R and B the Lebesgue σ-field R. From
[6], we know that ν and µ satisfies (H0) and simple computation yield that

lim sup
m→+∞

µ([−m,m])

ν([−m,m])
= 0 <∞.

Let f(τ, z)(s) = M1(τ, z)(s) + M̃1(τ, z)(s), and g(τ, z)(s) = M2(τ, z)(s) + M̃2(τ, z)(s),
where

M1(τ, z)(s) = γ(τ)σ1(z(s)), M2(τ, z)(s) = γ(τ)σ2(z(s))

M̃1(τ, z)(s) = γ(τ) arctan(τ) cos(z(s)) and M̃2(τ, z)(s) = γ(τ) arctan(τ) sin(z(s)).

We suppose that γ(τ) is continuous, bounded and w-periodic and for σi (i = 1, 2)
verifies the conditions

σi(e
ikwx) = eikwσi(x), and E‖σi(u)− σi(v)‖2V ≤ Li E‖u− v‖2V, i = 1, 2.

Since for (i = 1, 2), we obtain

Mi(τ + w, z)(s) = γ(τ + w)σi(z(s)) = γ(τ)eikwσi(e
−ikwz(s)) = eikwMi(τ, e

−ikwz)(s),
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then we get following estimation:

0 ≤ 1

ν([−m,m])

∫ m

−m
E‖f(τ + ω, z)− eikωf(τ, e−ikωz)‖2Vdµ(τ)

=
1

ν([−m,m])

∫ m

−m
E‖γ(τ + ω)M1(τ + ω, z) + M̃1(τ + ω, z)

− eikω
(
γ(τ)M1(τ, e−ikωz) + M̃1(τ, e−ikωz)

)
‖2V dµ(τ)

≤ ‖γ‖2∞
ν([−m,m])

∫ m

−m
E‖M̃1(τ + w, z)− eikωM̃1(τ, e−ikωz)‖2V dµ(τ)

≤ ‖γ‖2∞
ν([−m,m])

∫ m

−m
E‖ arctan(τ + ω) cos(z)− arctan(τ)eikω cos(e−ikωz)‖2V dµ(τ)

≤ 2‖γ‖2∞
ν([−m,m])

∫ m

−m

(
|arctan(τ + ω)|2 + |arctan(τ)|2

)
dµ(τ)

≤ 2‖γ‖2∞
ν([−m,m])

∫ m

−m

π2

2
dµ(τ) = π2‖γ‖2∞

µ([−m,m])

ν([−m,m])
→ 0 as r →∞.

Similarly we have

lim
m→+∞

1

ν([−m,m])

∫ m

−m
E‖g(τ + ω, z)− eikωg(τ, e−ikωz)‖2Vdµ(τ) = 0.

Let u, v ∈ L2(Ω,V) and τ ∈ R, then we have following estimation:

E‖f(τ, u)− f(τ, v)‖2V ≤ 2‖γ‖2∞
(
E‖σ1(u)− σ1(v)‖2V + E‖ cosu− cos v‖2V

)
≤ 2‖γ‖2∞

(
L1E‖u− v‖2V + E‖u− v‖2V

)
≤ 2‖γ‖2∞

(
L1 + 1

)
E‖u− v‖2V.

Similarly, we obtain

E‖g(τ, u)− g(τ, v)‖2V ≤ 2‖γ‖2∞
(
L2 + 1

)
E‖u− v‖2V.

Example 3.1.

Consider the stochastic partial stochastic integro-differential equations as follows:
dy(τ, x) =

[
∂2y(τ, x)

∂x2
− 1

2

∫ τ

−∞

τ − s
Γ(2)

e−(τ−s)
∂2y(s, x)

∂x2
ds+ f(τ, y(τ, x))

]
dt

+g(τ, y(τ, x))dW (τ)), (τ, x) ∈ R× (0, π),

y(0, τ) = y(π, τ) = 0,

(14)

where W (τ) is a two-sided and standard one-dimensional Brownian motion defined
on the filtered probability space (Ω,F , P,Fτ ) with Fτ = σ{W (w)−W (v)|w, v ≤ τ}.

Let V = L2[0, π] and define A :=
∂2

∂x2
, with domain

D(A) = {y ∈ V : y, y′ are absolutely continuous, y′′ ∈ V, y(0) = y(π) = 0}.
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The problem (14) can be written into the form (1) with y(τ)(x) = y(τ, x), α = 1/2,
a = 1 and ν = 2. From [18, Example 4.6], there exists a uniformly exponentially stable
family of operators {R(τ)}τ≥0 such that ‖R(τ)‖ ≤ Ce−δτ . Therefore, by Theorem
2.1, the problem (14) has a unique square-mean (ν, µ)-pseudo S-asymptotically Bloch-

type periodic mild solution on R if only ‖γ‖2∞ <

(
(
2L1

δ
+ L2)

C2

δ

)−1
.

Example 3.2.

Let V = L2[0, π] , 1 < α < 2, ρ > 0 and consider the problem
∂αt y(τ, x) = −ρ y(τ, x)− ρ2

4

∫ τ

−∞

(τ − s)α−1

Γ(α)
y(τ, x)ds

+g(τ, y(τ, x)) + f(τ, y(τ, x))
∂W (τ)

∂τ
, (τ, x) ∈ R× (0, π),

u(0, τ) = u(π, τ) = 0.

(15)

Putting y(τ)(x) = y(τ, x), α = a and A = ρI, I is the identity operator on the Hilbert
space V, the problem (15) can be written into the form (3). It follows from [[44],
Example 4.17] that A generates a α-resolvent family {Rα(τ)}τ≥0 with its Laplace
transform satisfying

R̂α(λ) =
λα

(λα + ρ/2)2
=

λα−ρ/2

(λα + ρ/2)
· λα−ρ/2

(λα + ρ/2)

and

Rα(τ) = (r ∗ r)(τ) where r(τ) = τ
α
2 Eα,α/2

(
− ρ

2
τα
)

and Eα,α/2(·) is the Mittag-Leffter function (see [1]). From [[43], Theorem 4.12],

Rα ∈ L1(R+) ∩ L2(R+). Therefore, by Theorem 2.2, the problem (15) has a unique
square-mean (ν, µ)−pseudo S-asymptotically Bloch-type periodic mild solution on R
if only ‖γ‖∞ is small enough.
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[19] Y.K. Chang, X.Y. Wei, G. M. N’Guérékata, Some new results on bounded solutions to a semi-

linear integro-differential equation in Banach spaces, J. Integral Equ. Appl. 27 (2015), 153–178.
[20] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge, 1992.

[21] A. Diop, M.M. Mbaye, G.M. N’Guérékata, Y.K. Chang, On square-mean S-asymptotically
Bloch-type periodicity of some stochastic evolution equations, Analele Universităţii Oradea

Fasc. Matematica 30 (2023), no. 2, 83–112.

[22] A. Diop, M.M. Mbaye, Y.K. Chang, G.M. N’Guérékata, Measure Pseudo-S-asymptotically
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