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Doubly-measure Pseudo S-asymptotically Bloch Type
Periodicity and Applications to some Stochastic
Integrodifferential Equations
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ABSTRACT. In the present work, for a separable complex Hilbert space V, we introduce the
concept of doubly-measure pseudo S-asymptotically Bloch-type periodicity to define the space
of (v, u)—pseudo S-asymptotically Bloch-type periodic (or (w, k)—periodic) stochastic process
with values in the complex Banach space of all strongly-measurable, p-integrable V-valued
random variables. We first looked into some completeness, composition and convolution the-
orems for such stochastic processes. Second, the existence and uniqueness in the p*?-mean
(v, p)—pseudo S-asymptotically Bloch-type periodic ((v, u)-PSABP, in short) mild solutions
of some stochastic integrodifferential equations is formally investigated. In conclusion, we
provide examples to support our findings.
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The theory of (w, k)-periodic (or Bloch-type periodic) phenomena has its origins in the
publication [4] by F. Bloch, investigating the crystalline solid’s conductivity. Bloch-
type periodic functions have been formally examined by N’guérékata and Hasler in
[31], and thus, w-periodicity and w-anti-periodicity concepts become particular cases
of this notion. To characterize the impact of perturbations on (w, k)-periodic func-
tions, some quasi-(w, k)-periodicity concepts are presented in some publications. For
example, the asymptotically Bloch periodic function has been studied with its ap-
plications in [31, 32, 17], while notions of (pseudo) S-asymptotically (w, k)—periodic
functions have been investigated with its applications in [14, 15, 16]. The previ-
ous mentioned quasi-Bloch periodicity’s notions can be viewed as generalization of
classical asymptotically w-periodic and (pseudo) S-asymptotically w-periodic func-
tions in the deterministic case which have been examined in several researches, see
’ ) ? ? ? ’ ]

[ Y ) Y ) Y ) ) *

On the other hand, with the aid of measure theory, Blot et al. [6] introduced the
notions p-ergodic function and provided some fundamental properties of p-pseudo-
almost periodic (u-PAP) functions which encloses the classical concepts of PAP func-

tions due to Zhang [17, 48, 49] and weighted PAP functions introduced by Diagana
[25, 26] as particular cases. From then on, many papers have been devoted to the
study of u-PAP function from many ways [27]. Due to the fact that most real life phe-

nomena are basically stochastic rather than deterministic, a tremendous interest in
generalizing certain classical deterministic concepts to stochastic one has been noted
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in the literature. For instance, in [23] the authors introduced and studied the con-
cept of pt*-mean p-PAP processes and obtained sufficient condition for the existence
of pt"-mean p-PAP mild solutions to some class of non-linear stochastic evolution
equations. The authors of [7] formulated the notion of (v, u)-pseudo almost periodic
processes and gave some results for well-posedness of (v, u)-pseudo almost periodic
mild solutions in p*"-mean sense for a class of non-linear stochastic evolution systems.
However, we mentioned that the researches which focus on the notion of S-asympto-
tically w-periodicity for stochastic processes and related application on stochastic
evolution systems is rather well furnished (see [21, 50, 51, 45]). Moreover, up to now,
no work has been reported yet regarding the concept of (v, u)-PSABP in the pt"-mean
sense for stochastic processes, which mainly motivates this present study. This issue
is interesting and new and, hence, the question even if there exists a (v, u)-PSABP
mild solution in p**-mean sense is still untreated for stochastic evolutions systems.
In this work there are three fundamental goals, described as follows:

(1) Firstly, we introduce a new concept of p*"-mean (v, u)-pseudo S-asymptotically
Bloch-type periodic for stochastic processes and establish some composition,
completeness, and convolution theorems for such stochastic processes.

(2) Secondly, we investigate the existence and uniqueness of p**-mean (v, u)-pseudo
S-asymptotically Bloch-type periodic mild solutions to the following stochastic
evolution equations:

T (r—u)b?
dz(1) = |:AZ(T) + a/ 7( ) e_a(T_“)Az(u)du +g(r,2(1)) | dr

—oo I(b)
+f(r,z(m)dW(r), 7€R,

(1)

where A is a closed linear operator generator of an uniformly stable and strongly
continuous family operators {R(7)},>0 C B(V) on a separable complex Hilbert
space V, a« #0,a >0, b > 1, z, g, f are V-valued stochastic processes, I'(-) is
the Gamma function. Here (W (7)) cg represents a two-sided and standard one-
dimensional Brownian motion on V. If f(7,z(7)) = 0, then problem (1)degrades
to the following deterministic semilinear integro-differential equation

d T
%z(r) = Az(r) + / E(r —u)Az(u)du + g(1,2(1)), T€ER. (2)
a(r)b~! . .
where &(7) = We_a”. In [35], Lizama and N’Guérékata provided suf-

ficient conditions for the existence and uniqueness of bounded solutions, such
as (asymptotically) w-periodic solutions, S-asymptotically w-periodic solutions,
(asymptotically, pseudo) almost periodic and (asymptotically, pseudo) almost
automorphic solutions to problem (1) when g is bounded continuous with cer-
tain recurrence. For bounded solutions to some occurence of problem (2) with
some specific kernels £(-), we refer to [10, 19, 36] and its references to address
this issue.

(3) Thirdly, we give also the existence and uniqueness of p!’-mean (v, u)-pseudo
S-asymptotically Bloch-type periodic mild solutions to the following class of
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stochastic fractional evolution equations:

o _ T (T — U’)b_l —a(T—u)
0% z(1) = Az(1) + « Ty e Az(u)du + g(T, 2(7))
AW (7) ®)
+f(7,z(7) pa eR,

where 02 denotes the Weyl fractional derivative of order a > 0, A generate a a-
resolvent family {R,(7)}->0 on a Hilbert space V. Noted that when f(7, 2(7)) =
0, then problem (3) is reduced to the following deterministic semilinear integro-
differential equation

0% z(1) = Az(1) + /_T E(r —u)Az(u)du + g(1,2(7)), TER, (4)

b—1
where £(7) = a(;()b)e_aT. With some specific kernels £(-), bounded solutions
to problem (4) is first explored in [44], in which the existence and uniqueness
of (asymptotically) w-periodic solutions, S-asymptotically w-periodic solutions,
(asymptotically, pseudo) almost periodic and (asymptotically, pseudo) almost
automorphic solutions are studied when ¢ is a bounded continuous function with
certain condition. Some existence results of weighted pseudo almost automorphic
solutions to problem (3) when g is Stepanov-like weighted pseudo almost auto-
morphic are established in [13], and the existence and uniqueness of weighted
pseudo antiperiodic solutions to problem (3)) when g is Stepanov-like weighted
pseudo antiperiodic is accomplished in[3]. Oueama-Guengai and N’Guérékata
[41] studied the existence and uniqueness of S-asymptotically w-periodic and
(w, k)-Bloch periodic solutions to problem (3) when g is a bounded continuous
function satisfying additional conditions.
Let us mention that some special forms of problems (1) and (3) have also been in-
vestigated but to the best of our knowledge, no work has been published on the exis-
tence and uniqueness of p*"-mean (v, u)-pseudo S-asymptotically Bloch-type periodic
mild solutions of the above problems and we propose extending the recent results on
Bloch-type periodic (or (w, k)—periodic) stochastic process developed in [21, 22, 39].
Additionally, the present work can be considered as a continuation of [11, 44, 31] in
the stochastic setting when it comes to Bloch- periodic process. Note that, problems
of types (1) and (3) usually arises in the models of viscoelastic materials or mem-
ory materials where stochastic effects need to be considered (see for instance [37]).
The obtained outcomes show that for each p**-mean (v, u)-pseudo S-asymptotically
Bloch-type periodic input, the output is still a bounded and continuous mild solu-
tions to the reference equation, which is also p*"-mean (v, u)-pseudo S-asymptotically
Bloch-type periodic.

This paper is organized as follows: Section 1 is concerned with some basic defini-
tions, lemmas, notations, and mainly focused on properties of pt"-mean (v, u)-pseudo
S-asymptotically Bloch-type periodicity. Section 2 is concerned to applications to
some stochastic evolution equations in Hilbert spaces. To end this work, we give
some illustrations in Section 3.
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1. Preliminaries

Suppose that (U, F,P) represents a probability space, (V,||-||) is a complex separable
Hilbert space and (LP(U,V),[| - [[r) (p > 2) is the complex Banach space of all
strongly-measurable, p-integrable V-valued random variables, equipped with the norm

[%llLe = (Ell9[|P)P, ¥ € LP(U, V),

where E(-) is the expectation defined by (E|v[|)’ = / l¥||PdP. For each T € R, F;

§]
is the o-field generated by the random variables {VV(u)7 u < T} and the P-null sets.
Definition 1.1. A stochastic process ¢ : R — LP(U, V) is referred to as stochastically

bounded and continuous process if there exist ( > 0 such that

Ell(r)|? = /U | PP < ¢, ¥reR

and

liin Ell¢(u) —¢(v)||[FP =0 forall veR.

We will use the notation (BC (R,L?(U,V)),| - |les) (for p > 2) represents the

complex Banach space of all stochastically bounded and continuous processes 1 :
1/p

R — LP(0, V) such that ||¢]|s = (sup E||¢(s)||p> < 0.

seR

The following particular Burkholder-Davis-Gundy type.

Lemma 1.1. [?] Let ¢ > 0 and ¢ : [0,¢] XU — LP(5, V) be an F,-adapted measurable
stochastic process such that

q
/0 El(o)|de < oo a.s.

ThenVp > 1, 3C, > 0 such that

E sup
7€[0,q]

4 q P/2
<cpE(/0 ||w<g>||2dg> |

/0 " p(e)dw (o)

1.1. p*"-mean (v, u)-pseudo S-asymptotically Bloch-type periodic process.
We use the symbol B to represent the Lebesgue o-field of R, and the set of all positive
measures p on B such that pu(R) = +oo and p([g1,q2]) < +oo for all ¢1,¢2,€ R
(@1 < g2) will be denoted by M.

Definition 1.2. Let u € M and p > 2. A stochastic process ¢ € BC (R,LP(U,V)) is
referred as p!?-mean (v, u)—speudo-S-asymptotically Bloch-type periodic (or (w, k)
periodic) if for given w € R, k € R,

tim [ s+ ) — ) () = 0.

m=Foo v([=m,m]) J_p,
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The set of all the p'"-mean (v, u)-pseudo-S-asymptotically (w, k)-periodic stochas-
tic processes is denoted by SABP. (R,LP(U, V)) and

SABP L (R x LP(U, V), LP(G,V)) = {h(-, z) € SABP L (R, LP(U,V))

| for any z € LP(U,V)}.

Now, we can show the following basic properties.

Lemma 1.2. Let p > 2 and z1,22,2 € SAB?DZ’)‘ZC (R,LP(G,V)). The subsequent
results hold:
(a): 21 + 22 € SABPY (R, LP(U,V)), and az € SABP. (R, LP(G,V)) for each
a€C.
(b): Assume that lim sup vll=m, ml)
m—+o0 p([—=m, m])

then (S.ABPZ:% (R, LP(0, V), || - ||Oo) is a Banach space.

=1 < ooy

Proof. (a) Using Definition 1.2, we have

; m . ) r w_eisz 25)(7)|IP -
mFmﬂmyﬁmHKl+zx +w) (21 + 22)(T)|[Pdpa(7)

2p—1

— " 21(T 4 w) — e* 2 (1) |[Pdpu(r
< s [l ) — e () Pdu(r)

2p—1 m "
—&—7/ E|lzo(T + w) — " 29(7)||Pdu(T
o | Elea(r+0) ()P du(r)
—0asm —

and

1 /’" Ellaz(r +w) — e™“az(7)|[Pdp(r)

A ),
77|a|p " 2T 4+ w) — e (D) ||Pdu(r
s [ Elltr ) — () P

— 0 as m — oo.

Thus 21 + 22, az € SABP (R, LP(U, V)).

(b) Let {zn}n € SABP. (R,LP(3,V)) such that nh_}rrgo |2, — 2]loc = 0 as n — co.
We have

m /:;EHz(T +w) — e z()|[Pdu(r)
:m/::éHZ(T W) — 20 (T 4 W)+ 20 (T + w) — €F 20 (1) + €20 (1) — €% 2(7)|Pdp(r)
<o [Eletr 4 0) — aa(r+)lPautr) + o [ Bl ) = ) P
+ o (Bl () = P du(r)
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<3"" 1“& B Sup(EH (T )_ZH(T)HP)+%[mE‘|Z7L(T+W)_eiszn(T)dell(T)
mj)

+3°° MS m]) 5B (Ellzn(7) = 2()I)

It follows that,

imsu B 2(T +w) — ™2 (1) ||Pdu(r
timsup s [ EJa(r ) = () ()

m—+oo V —m
1 m ,
<3Pl z—zngo—i—Sp*llimsupi/ Ellzn (T 4+ w) — €2, (7)||Pdp(r
| | limsup 7 [[2n( ) (T)|[Pdp(7)

+37 1z — 2ll%.

Since lim ||z, — z||P = 0 and
n—oo

. 3p—1 " ikw p
Jim e [ Bl ) — ()P () =

we deduce that

1 m .

it [ (o) - Rl () = 0
This implies that the space SABP.% (R,LP(U,V)) is a closed sub-space of

BC (R,LP(U,V)), so it is a Banach space equipped with the sup-norm. O

The following lemma offers a characterization of processes belonging to the class
of pt"-mean (v, ) —speudo-S-asymptotically Bloch-type periodic.

Lemma 1.3. Let v, € M such that lim sup M
m—stoo V([—m,m])

interval (possibly Y = 0) and z € BC (R,LP(U,V)), then the following assertions are

equivalent:

(1) z € S.ABPZ’,‘,‘C (R, (U, V));

1 )
@) Jin o [ s w) - s Pdutr) = 0
m=o0 V([=m, m\Y) J|_p m)\y

(3) For each € > 0,

=1l <00, Y be a bounded

where Qp, (2) = {1 € [=m,m]\Y : E||2(T +w) — e?*¥z(7)||P > €}.
Proof. Claim 1 : Let prove that (1) <= (2).
Denote by A =v(Y) and B = / E||z(T4w)—e* 2(7)||Pdu(r) and C = p(Y). Thanks

Y
to the boundedness of the interval Y and z € BC (R,L?(0,V)), we deduce that A,
B and C are finite. Let m > 0 be such that Y C [-m,m] and v([—m,m]\Y) > 0.
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Then, we have
v
v([=m, m]\Y)

= = (/[_m,m} Ello(7 +w) = ™ 2(r)|"du(r) - B>

_ _v(=m,m]) ( 1 /[7m’m] Ell2(m +w) — e™2(7)|[Pdu(r) — i)

v([=m,m]) = A\v([-m,m]) v([=m,m])

(6)

/ Ell2(r +w) — e 2(r)|["du(7)
[=m,m]\Y

Since v(R) = +o00, we derive that

1 .
/ Ell2(r + w) — ¢ 5(7)|Pdu(r) = 0.
[_mam]

v([=m,m])

Claim 2 : We prove that (2) = (3).
Suppose that (2) holds. For given € > 0, we have

IS e
T TS gy ST+ = 2P
R e
> T o Bl ) = Pt
M(Qm7e(z))

>e—————— > 0.

v([=m,m]\Y)
Consequently, for m large enough, we get (3).
Claim 3 : We prove that (3) = (2)
Suppose that (3) hold. Let z € BC (R,LP(U,V)). There exists a positive number
¢ > 0 such that E||z(7)||” < ¢ for 7 € R. Since lim _pOm.c(z)

m—+oo v([—m, m]\Y)

that for any € > 0, there exists ¢ > 0 such that for m > (,

N(Qme(z)) < €
v([-=m,m]\Y) — 2p¢ +1°

= 0, we derive

We have
m /: Ell2(r +w) = e 2(n)|1” diu()
) Jo, o ) = 5O )
' m /ﬂ—m,m}\m\gm,e(z) Ellz(r +w) = *2(n) [P dpu()
gm /Q() 91 (Ell2(r 1 )P + Ell2(r)|?) dyu(r)

sivall
v([=m,m\Y) J(—mmP\Y )\ Qe (2)

p (Qm.e(2)) € .
2 Cmm\Y) ¥ oY) /[m]\y dp7)

+ edu(T)
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W ep(mom\Y) . p(l—mm]) — p(Y

=21 T W(mmm)\Y) S (Emom)) —v()
(—m,m]) 1= ar

R (B Rl o

By the fact that u(R) = v(R) = 400 and limsup wl=m, m))

= | < o0, it follows
m—+oo V([—m, m])

that
1 m .
limsup ———m———— Ellz(T + w) — e*2(D)IP du(r) < (1 + De.
lmsup e [ (7 ) = ) dulr) < (14 1)
This implies that (2) holds. O

Definition 1.3 ([5]). Let pq and pe € M. pq is referred to be equivalent to o
(1 ~ p2) If there exist constants o and 8 > 0 and a bounded interval Y (eventually
Y = () such that

apr (K) < pa(K) < Bui(K)
for K € B verifying KNY = 0.
Theorem 1.4. Let puy, pa, v1 and vo € M. If g ~ po and vy ~ vy, then
S.ABP:;:“ (R,LP(G,V)) = SABPZ":;:‘Z (R,LP(G, V).
Proof. Since pi1 ~ po, v1 ~ 19 and B the Lebesgue o-field R, there exist o, 3, &, 5 > 0,
such that B
ap <pr < Bur and  avy <o <P
We obtain for m sufficiently large
a Ml{T € [-m,m)\Y : E|z(T +w) — e*@z(7)||P > e}
,5 vi{r € [-m,m]\Y}
pa{7 € [Fmm\Y  Ell2(r +w) - e*z(n)|P > ¢}
vo{r € [-m,m]\Y}
8 ul{'r € [-m,m)\Y : E||z(T + w) — ez (r)||P > e}
< =
=~ a v{r € [-m,m]\Y}

IA

By using Lemma 1.3, we deduce that

SABPw,k(Ra LP(U, V)a ,U/l) = SABPw,k(R7 LP(U7 V)a /Jg)

For € M and y € R, we let p,, the positive measure on (R, B) defined by
py(X) =p({zr+y:zeX}) for X € B.
Now, from pu € M, we come up with the subsequent assumption:

(H?) For all y € R, there exists a bounded interval Y and ¢ > 0 satisfying
ty(X) < gqu(X) when X € B satisfies X NY = O.

And, we recall the following useful result:
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Lemma 1.5 ([5]). Let p € M.
(i): p fulfills (H®) if and only if p ~ py for ally € R.
(ii): If condition (H) hold, then for all o > 0,
lim sup (Em=gym +0])
m—r4o00 pu([=m,m])

Lemma 1.6. Letv,n € M and f € SABP:’fZ. (R,LP(G,V)). If u,v fulfills (H®) then
fy € SABP (R,LP(U,V)) for each y € R, where fy(1) := (7 +y) for each T € R.

< +00.

Proof. Let f € SABP.Y (R, LP(U,V)) and y € R. It gives that

D e By ) = s )Pt

o V([_m7 m])
_ V([_m_ |y|7m+ ‘y”) . ( 1 E _ ikw Pd )
A=, m) T T o M0 = R+ 1P
— V([_m_ |y|vm+ ‘y”) A < 1 E + _ ikw Pq )
(e el b = AL L Rk (T
< v=m—lylm+yl) ( q Ell£(r + o) — €% F(2)[|Pd )
= T T Sy E ) =P,
where ¢ > 0 is a constant, ensuring the equivalence between p and p,. Thanks to
Lemma 1.5-(ii), we derive that f, € SABP." (R,LP(5,V)) for all y € R. O

Now, present some compositions results and convolutions theorems for p**-mean
(v, u)-pseudo S-asymptotically (w, k)-periodic stochastic processes. Let v,u € M,
h € BC(R x LP(6,V),LP(U,V)) and consider the following assumptions:

(HO): For all (s,v) € R x L?(U,V),

tn " Ellh(s + w,) — €5 h(s, =R Pdu(s) =0 (7)

meo v([mm]) -,

uniformly on any bounded set of LP(U, V).
(H1): There exists a number L > 0 such that for any z1, 22 € L?(U, V),

Ella(7, 21) = h(7, 22) || < L. E[|z1 — z|]",

uniformly for all 7 € R.
(H2): For any € > 0 and any bounded subset B C LP(U, V), there exist T, g € R

and ., g > 0 such that
Elln(7,21) — h(7, 22)[|” < €

for all z1, 29 € B with E||z1 — 22||P < de,p and 7 > T, p.
We now state the following composition results.

Theorem 1.7. Let p,v € M. If h € BC(R x LP(U,V),LP(U,V)) satisfies (HO) —
(H1), then h(:,2(-)) € SABP_ (R,LP(U,V)) for every z € SABP (R, LP(U,V)).

Proof. Since z € SABP." (R,LP(U,V)), for each 7 € R, we have

m [ 2(1T + w) — ez (7)|Pdu(r) =
Jim e [ Bt ) — ) () =
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We have

0= ;]) /m EA(T +w, 2(7 +w)) — €™ h(r, 2(7)) |[Pdpu(T)

V([_m7 m —-m

A 74w, 2(T +w)) — e*h(r, e F (1 + w)) [Pdu(T
< mD/ EllA(r + w, 2(r + w)) h(r, (T + w)) [Pdu(r)

L m ethwp (o= hw (2 1 )Y — RO (1 s (1))||P .
s [ Bl e s+ w) = ) P

or—1 m w2+ w)) — eik:w T efisz T4 w P T
S])/ E[[R (T +w, 2(1 + w)) h(r, (7 +w)lPdu(r)

v([=m,ml) -

& m o= thw o 1)) — () |IP .
+v<[—mn1>/_mE” (7 +w)) = 2(7)Pdu(r)
— 0 as m — +oo.

Thus,
. 1 m Y ) B
mg@wm/_m Ellh(r +w, 2(r +w)) — % h(r, 2(r))|Pdu(r) = 0,
e,y B, 2()) € SABPYY (R, LV(B, V). 0

Theorem 1.8. Let v, u € M such that limsup M =l <oo. If h € BC(R x
m—too V([=m, m])

LP(5,V),LP(U,V)) satisfies (HO) and (H2), then h(-, z(-)) € SABP. " (R,LP(5,V))
for every z € SABP! (R, 1LP(U,V)).

Proof. By z € SABP.Y (R,LP(U,V)), Lemma 1.3 and assumption (HO), for any
€ > 0, there exists ¢, > 0 such that for each m > ¢,

__ 74w, 2(T 4 w)) — e h(s, e * (1 + W) |Pulr) < ——
o | BN (7 ) = (s, e () Pa(r) <

1(Qme(2)) ¢
wd Cmoml) = 210 4 1

where Q,, (2) = {7 € [-m,m] : E||2(T + w) — e 2(7)||P > €}. Thanks to condition
(H2), we have that for any € > 0, there exists d. g := € and T¢ p := ge such that

€

E||h(T,e” (1 + w)) — h(r, 2(7))||P < 2p1

whenever E|z(7 +w) — e*“2(7)||P < e and |7| > ¢,

—m

v " T4 w, 2(t+w)) — e*h(r, z(7)||P du(r
])/ EllR(T + w, 2(T + w)) h(r, z(T))||” dp(T)

v([-m,m

L " 7,6 (1 + w)) — e n(r, e 2 (1 4+ w))||Pdu(T
< ])/ ElA(r, =52 (7 +w)) — €5 h(r, e =592 (7 + w)) [Pdp(r)

“v([=m,ml) J_p

L m eikw se_ikaT w _eikw 7 2(T))||P -
() /_mE” h(s, ™2 (r +w)) — e*h(r, 2(7)) |[Pdp(T)



ON DOUBLY-MEASURE PSEUDO S-ASYMPTOTICALLY BLOCH TYPE PERIODICITY 495

€ L 7 e~ o (r + W) — h(r, 2()||Pdu(r
S D o BT ) b))

m,m

72}771 e R (1 + w)) = h(T, 2(7)||Pdu(r

b ) fo o W7 40) = b ) P
- 2r! Pl AP -
St T o™ T Ja 2 AT
o I = MR

<€+6/~L([ m m]) +22p 1”th M(Qm,e(z))
v[—m,m] v[—m,m]
2P [h]I5
< I+ 2+ 1
Setelt o5m TR +1¢ <(2+ D)e
for each m > g.. Thus
1 m -
i s [ (e . 5(r +0) = R )| i) = O
This completes the proof. O

Lemma 1.9. Let v,y € M satisfy (H®). If {K(7)}r>0 C B(V) is uniformly 1-integra-
ble and strongly continuous family of operators, and X € S.AlS"P:’f;C (R,LP(G,V)),
then

o(r) = [ " K(r - 8)X(s)ds € SABPY, (R,LP(U,V)).

Proof. Since the operator family {/C(7)},>¢ is uniformly 1l-integrable, there exists
o)

M > 0 such that / [K(7)lldt < M. Let X € SABP % (R,LP(5,V)), then for any
m > 0 we get 0

;}) / " E0(r 4 w) — R (n)|Pd(r)

V([_mvm -m

:m /ZE / K )X (s - e / " kG- 9)X(s)s| autr)
ZM/_ZE/ K7 = 8)X(s +w)ds - ”““/ (e — )X ()| autr)
:m /mE / K(r = )X (s +) — €™ X (s)ds| du(r)

- <[—1 (H / (7= $)[X (5 +w) — "X (s)]ds )pd,u(T)

uq—m,mn/_mE(/_ I = DG+ ) = X0 s ) )
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sW/E(/n/cr—s)n 1K= s)IF | X (s 4+ w) — *X (s ||ds) du(r)

SV([—;”LM])/_mEQ/_; ("C(T_S)H;j?“l);lds}v )
[ (et =o' a] )

s Lo ([ e -ona]

[ I = IE]X (s 5 w) - emx (o))" ds| ) du(r).
J )

From the Fubini theorem, it follows that

S [T IKOIEIX (= 54w - - olPds)| ducr)

v([=m,ml) J

0 [T s [ EIXG = s - X - )Pt | ds

—m

3 [T IR |y [ EIX-(r ) = Xt ds

m, m))

Since X € SABP " (R,LP(35,V)), thanks to Lemma 1.6, we know that for any s € R,

we have

1 m ;
fm / El[X_(r +w) — e X_,(r)||Pdu(r) = 0.

()
Then Lebesgue dominated convergence theorem yield that
| [ B - X)) ds 0
/0 v([=-m,m]) ),

as m — +o00o. Therefore

i 2077 e | [T+ ) - Xt | ds =

It proves that ® € SABP . (R,LP(U,V)). O

Lemma 1.10. Let v,u € M satisfy (H®). If {K(7)}r>0 C B(V) is uniformly
2—integrable and strongly continuous family of operators.
Suppose that g € SABP" (R,LP(U,V)), then

/ K(7 — 5)g(s)dWV (s) € SABPY™ (R,LP(5, V).
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Proof. We have

i | Z EJU(r +w) — ™0 (r)Pdu(r)
:m H/ K(r +w — 8)g(s)dW (s) — “W/ K(r — 8)g(s)aw ()| du(r)
! ,

s [ H [ K=t waws o) - [ K - s)aw(s)

v([-m,m])

du(T).

Let W (s) = W (s +w) — W(w). We know that W is a Brownian motion and has the
same distribution as W. Then we obtain

1 /m B[O (7 +w) — ™ W(r)|Pdu(r)

v([=m,m)) J_,
:m H/ K(7 — 8)g(s +w)dT (s) — “W/ K(r - 9)g(s)d (3| dum)
o || k= 9 lats ) - erato] aiv e Cdu().

Since g € SABP.Y. (R,LP(U,V)) and for all 7 € R, g(7) € LP(5, V) C L*(Q, V) then

/T E||K(r—s) [9(s +w) — eik“’g(s)] Hz ds

— 00

o0
<2supkE ||g(s)||2/ IK(s)]|°ds < 0o forall Te€R.
sER 0

Then by Lemma 1.1, there exists C, > 0 such that

; m - w _eikw 1P .
A mom]) / E¥(T+w) U (r)|Pdu(r)

; " ’ T—8 s+ w) — e*vo(s 2 < p/2 .
<O [ E([ K= 9ot +0) = go] | ds) - autr).

Therefore, using Holder’s inequality and the Fubini’s theorem, we obtain that

; m . w _eikw AP r
) /,mEH“J( +w) U(r)|Pdu(r)

2

<Cuigmy [ 8| ([ (ko))

r po\ 277
([ (It =9l lgts + ) = *g(e)1?) a )] dn()

— 00

p—2

<a ([ ke -sppas) ©

< [T | [ Elatr = s+ gt = ()| as.
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Since g € SABP," (R, ILP(5,V)) and {K(7)},>0 is uniformly 2—integrable, therefore
using Lemma 1.6 and Lebesgue dominated converge theorem, we obtain that

. 1 " ikw p _
Jim s [ B ) - ) Pdur) =0 (3)
which proves that ¥ € SABP., (R,LP(U,V)). O

2. Existence of p!"-mean (v, u)-speudo S-asymptotically Bloch-type peri-
odic mild solutions

Firstly, we discuss the existence and uniqueness of (v, u)-pseudo S-asymptotically

(w, k)-periodic mild solution for problem(1). We state the following conditions:

(A1) A generates an immediately norm continuous Cp-semigroup on a Hilbert space
V.

(A2) Re((fa)l/b) — a) < 0 and

wpﬁmuyxec:MA+@W@+aW+arleﬂm}<o

Let us consider the following linear Cauchy problem
™ _ o\b—1
2(1) = Az(t —|—a/ s

() =ax(r) o [ ik

Under conditions (A1)-(A2), from [18, Proposition 3.1], we know that there exists a
uniformly stable and strongly continuous family operators {R(7)},>0 C B(V), i.e.,
there exist constants dyi,ds > 0 such that for all 7 > 0,

e 2= Az(s)ds + g(1), TER. (9)

IR < dre (10
From [18, Theorem 3.2], the mild solution of problem (9) can be expressed by
z(1) = / R(r — s)g(s)ds.
Motivated by [18], we present the concept of mild solution for the stochastic integrod-

ifferential equation (1).

Definition 2.1. An G.-progressively measurable process {z(7)},¢cr is referred to as
a mild solution of problem (1) if for 7 € R, z(7) P-almost surely satisfies the following
integral equation

z(1) = /j R(T —s)g(s, z(s))ds + /j R(T —5)f(s,2(s))dW(s). (11)

Theorem 2.1. Let u,v € M satisfy (H®) and lim supw

m—+oo ([, m])
that (A1)-(A2) hold and g, f € BC(R x LP(U,V),LP(U,V)), such that for all (t,x) €

R x LP(0, V),

< 00. Suppose

lim 7/ E|lf(T +w,z) — ™ f(r,e " 2)||Pdu(t) = 0 and

1 m . .
lim 7/ Ellg(t + w, z) — e*g(r,e" " z)||Pdu(r) = 0.

m=oo v([=m,m]) J_p,
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uniformly on any bounded set of LP(U,V). In addition, assume that there exist con-
stants L, L’ > 0 such that for any vy,ve € LP(U,V),

Ellg(T,v1) — g(7,v2)||” < LE|jvy — va|?,
Ellf(7,v1) = f(r,02)[|P < L E[Jvr — va|?,

uniformly for all T € R. Then problem (1) admit a unique mild solution z €
S.ABP::‘,‘C (R,LP(G,V)) in p-th mean sense on R, if

p1 [ (@) Cp(dr)?
? [(@)p“ (2ds)77?

L’} <1 forp>2

and

@2 " (@)

Proof. Define the operator S : SABP. (R, LP(U,V)) — SABP/ (R,L7(5,V)) by

{Z(dl)Q (dl)ZL,] <1 forp=2.

0= [ " R — $)g(s, 2(s))ds + / " R(r— 9 f(s.2()dW (), (12)

where {R(7)}.>0 satisfies the relation (10).

From Theorem 1.7, for each z € SABP." (R,LP(5,V)), the stochastic processes
7 f(7,2(1)), T — g(7,2(7)) belongs to SABP_ (R,LP(5,V)). Tt follows from
Lemmas 1.9, 1.10 and 1.2-(a) that Sz € SABP.% (R, LP(U,V)).

For all vy, vy € SABP (R, LP(U,V)), we have

E[[(Svi)(r) = (Sv2)(n)[|” <2°7'E|| /_T R(T = 9)lg(s,v1(s)) — g(s,va(s))]ds]|”

o1 / "R — )5 01(5)) — Fls,0a(s)]dW (5)]?
:21771({]1 + JQ),

where, for p > 2

=l [ R = 9)lglo,0(5) — glssvals) s

— 00 — 00

< ( | Ire- s>ds)p_1 | IRG = 9)Ellgts.1()) — gl wa(s) s

di)P "
S(c§2)121 L/ e™ =) Eluy () — vo(s)||Pds

di)P T da(res

< <C§> L /_of I E oy (s) = va(s)|Pds
d p

g( ) L sup E[jv1(7) — va(7) |7,

(dQ)p TER
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and

Jo =E|| /_T R(1 = 8)[f(s,v1(s)) — f(s,02(s))]dW (s)[|
T p/2
<Cp </ EIR(r — s) [f(s,v1(s)) — f(s,v2(s))]|” ds)

<Co ([ IR = s)1Pas) N | IRG =9I ELS s, 1(5) — FGss oDl

<Gyl ([[em2=0as) T (@n)? [ e (s, 01(6) - Flsva(o) P
C(dy)?
=Ry
Therefore,

L sup Ellvi(T) — va (7).

P P
(d)? ;. Cpldy)
(da)r  (2d)P/?
In the case p = 2, from Ito’s isometry identity and by similar calculations, we obtain
that

S0 — Sws . < 2?1[ L’} lon — val.

E[[(Sv1)(7) = (Sv2)()]]?
<2E| /_ R(7 = 5)lg(s,v1(s)) = g(s, va(s))]ds]|?

96 [ R = )70 (5) = Fss a5
<2(dy)? (/ "dw_s)ds) / e~ E|lg(s,v1(s)) — g(s,va(s))|*ds

+2(d1)2/j e 2= E|lg(s,01(s)) — g(s,va2(9)) [P ds

2
L2 LsupEfon(r) = va(r)[P + (d1) ' supEloa(r) — va(r) P

(d2)? (d2)
(d)?, | (d)?, 2
< |: (d2)2 L+ (d2) L:| ”vl 2”00

Then S is a contraction mapping in the Banach space SABP. (R,LP(U, V)) owing

to the condition (@) o (d)
_1 | (dr)P dy)?
P 1 L P
[(dm IO

L’] <lforp>2

and ) )
2(d1) (d1) /}
L+l < 1forp=2.
[ (@) " () g
Thus there exists a unique z € SABP. " (R,LP(U,V)) such that Sz = z via Banach
fixed point theorem. O

Now, we discuss the existence and uniqueness of (v, u)-pseudo S-asymptotically
(w, k)-periodic mild solution for Eq.(3). To prove the existence of mild solutions of
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Eq.(3), we need to recall some facts about Weyl fractional integral and derivative of
order a > 0, and a-resolvent operators that will be used to develop the main results
of this section. For more details on properties a-resolvent operators, one can take
reference to [44]. Now, suppose that X is a Banach space. For a given function
h: R — X, the Weyl fractional integral of order o > 0 is defined by

O7h(T) := ﬁ /T (1 — 5)* " h(s)ds, T €R,

when this integral is convergent. The Weyl fractional derivative 0% of order « is
defined by

—0o0

OFh(T) = (Z_—n@;(”_a)h(r), T ER,

where n = [a] + 1, and the notation [«] represents the integer part of a. Now, Let
A be a closed and linear operator with domain D(A) defined on a Banach space X,
and @ > 0. For a given kernel b(-) € L}, (R ), it is said that A is the generator of a
a-resolvent family if there exists £ > 0 and a strongly continuous family R, : Ry —
B(X) such that

AO&
{HB(}\) : Re(A) > 5} € p(4)

and for all y € X

~1
- 1 ¢ >
A —(1+bM\)A) "y = — — A y= / e MRy (T)ydT, ReX > €.
1+b(\) \1+b(N) 0
{Ra(T)}r>0 is called the a-resolvent family generated by the operator A.
Motivated by Ponce [44], we present the concept of mild solutions for Eq.(3).

Definition 2.2. An F,-progressively measurable process {z(7)},cr is referred to as
a mild solution of problem (1) if it satisfies the following stochastic integral equation

A0 = [ Ralr=slas,s6)ds + [ Ralr =355 2()aW (o)
for all 7 € R, where {Rq(7)}r>0 the resolvent family generated by the operator A.

Theorem 2.2. Let i, v € M satisfy (H®) and lim sup v([=m,m])
m—+o00 ,Uz([*m, m])
(A1)-(A2) hold. Suppose that {Ra(7)}r>0 C B(V) such that R, € L'(Ry) N L3(R4)

and g, f € BC(R x LP(U,V),LP(6,V)), such that for all (1,z) € R x LP(U,V),

< 00. Suppose that

1 ; " _ ikw —ikw P _
n}gnoo v([—m,m]) /—m Bl /(7 +w,2) =™ f(r,e x)||Pdu(t) =0
i ; " _ ikw —ikw p o
Jim s [ Ela(r w.0) — (e ) () =

uniformly on any bounded set of LP(G,V). In addition, assume that there exist con-
stants Cp, L, L' > 0 such that for any vi,vy € LP(U,V),

Ellg(r,v1) — g(7,v2)[|? < LE[Jvy — va|”,
E||f(T7 Ul) - f(Ta UQ)HP S L/ E”Ul - vQHPa



502 M. M. MBAYE, A. DIOP, AND B. HAZARIKA

uniformly for all 7 € R. Then equation (3) has a unique mild solution
z € SABP::’; (R,LP(55,V)) in pth-mean sense on R, if

22N L (IRall2r)” + CpL' (|Rall22)’] < 1 forp > 2,
and
2<||Ra||%1L+L/Ra”2L2) <1 forp=2.

Proof. Define the operator S : SABP. (R, LP(U,V)) — SABP (R,LP(5,V)) by

(S@ﬁ)Z/T'&AT—@“&A@MS+/T'RJT—@ﬂ&d@ﬁmdﬁ, (13)

where {R(7)},>0 satisfies the relation (10).
From Theorem 1.7, for each z € SABPZ’fZ (R,LP(0,V)), the stochastic processes

s > [(s,2(5)), s = g(s, 2(s)) belongs to SABP . (R, LP(U,V)). Tt follows from
Lemmas 1.9, 1.10 and 1.2-(a) that Sz € SABP (R, LP(U, V)). Let v1, vy € LP(5,V).
For p > 2, we have by Lemma 1.1 and Holder’s inequality

El[(Svi)(r) = (Sv2) ()"

L[;R“T—ﬂwam@n—m&w@mm

P
<2P71E

p

+2P7'E

' / " Ralr— $)[f(s,01()) — (5, v2(5))]dW (s)

< ([ IRatr - 5>|ds)p_1 | IRalr = 1 Elg(o,0a(5) — g(ssoa(e) s

2270, ([T Ratr =) T x [ IRar = )P EN 0 (9) < (s e P

—oo

<2t ([ Ratr = 91as) [ IRatr = o) Elgtosn(6) - ats, x(o) P

e ( / ; Ra(r - s>||2ds) = / ; IRa(r = )2 ELF(s,01(5)) — (s, va(s))[Pds

T p—1 4
< Lo -l ([ IR =s)las) [ Ratr =9l as
p—2

T T T
+2”_1CpL'Hv1—vzl\€o(/ umv—s)nzds) / [Ra(r — 5)|[2ds

— o0

T p T %
szp-anm—vanzo(/ HRa(r—s)uds) +2p—10pL/||m—v2||zo(/ I\Ra(r—s)ll2d5>

<27 Lo = w2l (1Ral£2)” + 277" CoL [[or = v2% (I Rallz2)”
<27 L (IRallp1)” + CoL (IRallz2)"] llor — v2 |-
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In the case p = 2, from Ito’s isometry identity and by similar calculations, we obtain
that

Ell(Sv1)(r) = (Sv2)(7)]|* <2E]| /_T R(1 = 5)lg(s,v1(s)) = g(s, va(s))]ds]|?

28] [ R =9l 1(9)  Fls,va(s)]aW (5) P

<2 [L|RallZ: + L'|RallZ2] [lv1 — vl
Since
2L ([Rall )" + CoL' (|Rallz2)?) <1, forp>2
and

2OWJ%L+MWa%><L for p = 2,

we deduce that S is a contraction mapping in the Banach space S ABP:’,‘; (R,LP(5, V)).
Consequently, there exists a unique z € SABP. " (R,LP(5,V)) such that Sz = 2 via
Banach fixed point theorem. O

3. Examples

To apply our theoretical results, we take the measures p and v, whose Radon-Nikodym
derivative are given respectively

(7) e” for T <0,
T) =
P 1 for7 >0

and

That is,

,u(Y):/Yp(T)dT and V(Y)z/yﬂT)dT for Y € B,

where d7 denotes the Lebesgue measure on R and B the Lebesgue o-field R. From
[6], we know that v and p satisfies (H®) and simple computation yield that

lim sup 7p([—m, m))

S =m, m)) =0<o0.

Liﬂ F(r,2)(s) = My (7, 2)(s) + Mi (7, 2)(s), and g(7, 2)(s) = Ma (7, 2)(s) + Ma(T, 2)(s),
Miy(7,2)(s) = 7(1)o1(2(s)),  Ma(T, 2)(s) = v(7)o2(2(s))
M (7,2)(s) = y(7) arctan(r) cos(z(s)) and My (7, z)(s) = v(7) arctan(r) sin(z(s)).

We suppose that () is continuous, bounded and w-periodic and for o; (i = 1,2)
verifies the conditions

oi(e*Vr) = ™oy (x), and  Eljoi(u) — 03(v)||3 < L E|ju — 0|2, i=1,2.
Since for (i = 1,2), we obtain

M;(r +w, 2)(s) = (7 + w)ai(x(s)) = y(r)e™ o3(e™ " x(s)) = e Mi(r, e 2)(s),
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then we get following estimation:

0% D /m EIf(r+w,2) = ™ f(r,e”™2)[Rdp(r)

—m

1 m .
:m/ El[v(T + w) M1 (T + w, 2) + M1(T + w, 2)
— e (5()Ma(r,e72) + Ma(r,e72) ) | du()

[ied /m IY3 ikw T —ik 2
<7OO E M ot wM ikw
<ol " B G w2) = T e ) )

biE " e
<— E|| arctan(T + w) cos(z) — arctan(7)e*™ cos(e™ " 2) |G du(T
o)) ). I (7 +w) cos(2) (1) ( )l dp(T)

25 ™ , ,
<,,([_m7m])/_m (|arctan(7—+w)| + |arctan(7)] )dﬂ(T)

2l [T, pemem))
Stz | 5 = I 0w oo

Similarly we have

1 " ; :
li E _ ikw —ikw 2 =0.
i e [ Ellglr ) - gt ) () = 0

—m

Let u,v € L2(£2,V) and 7 € R, then we have following estimation:
MAnm—ﬂﬂw%<mm&(Emmwwuw@+Ewwu—mw%)
gwﬂ&(mamm@+Emvm)

s%ﬂ&(m+&)au—w@

Similarly, we obtain
wanw—ngm%gwﬂé(m+w)au—v§

Example 3.1.
Consider the stochastic partial stochastic integro-differential equations as follows:
2 T 2
dy(t,x) = Ty(nz) _ 1/ T8 (9 OYs:2) y(s,2)
Ox? 2 J_o T'(2) Ox?
+9(7,y(7,2))dW (7)), (7,2) € R x (0,7),
y(0,7)  =y(m,7)=0,

where W (7) is a two-sided and standard one-dimensional Brownian motion defined
on the filtered probability space (2, F, P, F,) with F, = o{W(w) — W(v)|w,v < 7}.
2

Let V = L2[0, 7] and define A :=

ds + f(r,y(r,z))| dt
(14)

922 with domain
s

D(A) = {y € V: y,y are absolutely continuous, y” € V, y(0) = y(m) = 0}.
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The problem (14) can be written into the form (1) with y(7)(z) = y(7, x), a = 1/2,
a=1and v = 2. From [18, Example 4.6], there exists a uniformly exponentially stable
family of operators {R(7)},>0 such that |R(7)|| < Ce~°7. Therefore, by Theorem
2.1, the problem (14) has a unique square-mean (v, u)-pseudo S-asymptotically Bloch-
2L, C? ) -

type periodic mild solution on R if only ||v[|2, < <((5 + LQ)T

Example 3.2.
Let V= L?[0,7] , 1 < a <2, p>0 and consider the problem

ourn) = —pytra) -7 [ Ty
oW (1) (15)

+9(my(7,2)) + f(1,y(7, 7)) (1,2) € R x (0,7),

w(0,7) = u(m,7) = 0.

or ’

Putting y(7)(z) = y(r,z), « = aand A = pI, I is the identity operator on the Hilbert
space V, the problem (15) can be written into the form (3). It follows from [[44],
Example 4.17] that A generates a a-resolvent family {Rq(7)}r>0 with its Laplace
transform satisfying

5 A \>—P/2 \a—p/2
Ra()\) = 5 = .
(A +p/2)2 (A +p/2) (A +p/2)
and
Ra() = (r 7)(r) where r(r) = 7% Fp o2 ( _ /;Ta>
and FE, o/2(-) is the Mittag-Leffter function (see [1]). From [[43], Theorem 4.12],

Ra € L*(Ry) N L?(Ry). Therefore, by Theorem 2.2, the problem (15) has a unique
square-mean (v, u)—pseudo S-asymptotically Bloch-type periodic mild solution on R
if only |||l is small enough.
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