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ABSTRACT. In this paper we investigate some new examples of WC—Banach algebras and we
use them as a framework to prove the existence of solutions of an infinite system of nonlinear
integral quadratic equations. The analysis is based on a Krasnoselskii fixed point theorem
type under weak topology setting. An illustrative example is provided to clarify the obtained
result.
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1. Introduction

Over the past few decades, fixed-point theory has emerged as an active area of research
with a broad range of applications in various fields. The theory itself represents
a beautiful fusion of pure and applied analysis, topology, and geometry. On the
one hand, fixed-point theory has significant applications in diverse domains such as
physics, engineering, and game theory. On the other hand, it provides powerful tools
for solving infinite systems of nonlinear integral equations, including quadratic ones

(see [2, 3, 10, 11, 12]).

In this paper, we investigate an infinite system of nonlinear integral equations of the
Volterra-Hammerstein type. In [2], Banas, Krichen, and Mefteh demonstrated that
such a system has a solution in the WC-Banach algebra C([0, 1], ¢p), which consists of
all functions mapping the interval [0, 1] into the sequence space ¢y and are continuous
on [0, 1]. Building on their work, we extend this investigation by applying a fixed-point
theorem in the context of the weak topology. Our main contribution is to establish
a stronger result, proving that an infinite system of Volterra-Hammerstein integral
equations has at least one solution in the WC-Banach algebra C([0,1],1;), which
consists of all functions defined and continuous on the interval [0,1] with values in
the sequence space l;. Notably, each such solution also belongs to the WC-Banach
algebra C([0, 1], ¢co), as discussed in [2]).

It is worth mentioning that [2] was the first study to explore the solvability of infi-
nite systems in the weak topology. This paper continues and extends the research
presented in [2], as well as related works such as [10] and [12]. Finally, we provide
an example to illustrate how our results can be applied to the theory of nonlinear
integral equations.
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2. Preliminaries and main results

A mnon-associative Banach algebra over a field K, (K denotes R or C) is a Banach
space X with the norm || - || endowed with an inner operation of multiplication z - y
of elements z,y € X which is bilinear, and such that

[l -yl < llz(lllyll,

for x,y € X. Here, the binary multiplication operation is not assumed to be asso-
ciative. Examples include Lie algebras, Jordan algebras, the octonions, and three-
dimensional Euclidean space equipped with the cross product operation.

Now, assume that X is a non-associative Banach algebra with the zero element 6. If
(z,,) is a sequence in X, then we write z,, — = to denote that (x,,) converges strongly
to x € X (with respect to the norm topology), and we write 2, — x to denote that
(z,,) converges weakly to z € X (with respect to the weak topology).

For two arbitrary subsets U, V' of X, we define the product U -V in the following way:
U-V=A{u-v :uel veV}

Recall from [1] that the product of compacts sets U and V in X is compact. Moreover,
it was shown that the product of a compact set and a weakly compact set is weakly
compact. However, the product of two weakly compact sets does not need to be
weakly compact. For more details, the reader may refer to (see [1, 4, 8]).

Definition 2.1. [1] A non-associative Banach algebra X is said weakly compact (in
short, WC), if the product U -V of two arbitrary weakly compact sets U and V in X
is weakly compact.

An natural interesting question is to give some characterizations of these Banach
algebras, with the WC property. A few results in this direction were established in
[1], [5], and [8]. In 2010, Ben Amar, Chouayekh, and Jeribi [5] introduced a class of
Banach algebra satisfying the following sequential condition:

) { For any sequences (z,) and (y,) of X such that z, — x

and y, — vy, then z, - y, — x - y; where X is a Banach algebra,

and they proved some fixed point theorems for the sum and the product of nonlinear
weakly sequentially continuous operators. In 2015, Jeribi and Krichen [3] asked the
question of whether there exists a WC-Banach algebra in which the property (P) fails
and this question remained unanswered until 2019. Banas and Olszowy [4] provided
a positive answer and proved that a Banach algebra X satisfies condition (P) if and
only if, X is a WC-Banach algebra.

Theorem 2.1. [1] A Banach algebra X satisfies condition (P) if and only if X is a
WC-Banach algebra.

In previous years, several researchers in functional analysis did not find other WC—
Banach algebras that were sufficiently well-known, in this paper, we will provide
several new examples of WC-Banach algebras.

Example 2.1. (i) Clearly, every finite dimensional Banach algebra is a WC-Banach
algebra.
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(74) Let X be a commutative Banach algebra with Dunford-Pettis Property [8]. Then,
X is a WC-Banach algebra (see [1]).

(#41) If X is a WC—Banach algebra then the set C(K, X) (here, K is a compact Haus-
dorff space) of all continuous functions from K to X is also a WC-Banach algebra.
The proof is based on Dobrakov’s Theorem [(].

(iv) Let X be a Banach algebra with the Schur property (see [13]). Then, X is a
WC-Banach algebra.

In the following example, we will present a new example of a non-associative WC—
Banach algebra.

Example 2.2. Let X = ¢! the classical Banach sequence space, consists of all real
sequences whose series is absolutely convergent,

+o00
ll = {1‘: (ZEn) S R : Z |1'n| < OO},

n=1

with the standard norm,

+oo
||mHll = Z |.13n|,
n=1

for x = (x,,) € l1, and with the multiplication law defined by

Tr-y= (xn) : (yn> = (anymoﬂ,of : ) >
n=1

forall x = (x,) and y = (y,) in l;. One can easily show that this law is non-associative
and X with this inner operation of multiplication forms a Banach algebra.

+oo
Z TnlYn
n=1
+oo
<D lzayal
n=1

+oo
<l Y lyal
n=1

< [l Nyl -

Conversely, if C(KC, X) is WC-Banach algebra, then this property can be lifted to X.
Indeed, the following proposition provides the converse of property (iéi) in Example
2.1.

-yl =

Proposition 2.1. Assume that K is a Hausdorff compact space and X is a Banach
algebra such that C(KC, X) is WC-Banach algebra. Then, X is a WC-Banach algebra.

Proof. We reason by contradiction. We suppose that X is not a WC—Banach algebra.
Then, by Theorem 2.1 there exist a two sequences (z,,) and (y,,) of X with z,, = z €
X and y, — y € X such that
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Now, take the sequences (f,) and (g,) in C(K, X) defined by f,(t) = x,, and g, (t) =
yn, for all t € K, then we have f,(t) — x and g, (t) — y, for all t € K.
Put f(t) =z and g(t) =y for all t € K. By Dobrakov’s Theorem [6] we have

Jn— fand g, — g in C(K, X).
Since C(K, X) is a WC-Banach algebra, then
So, we have
fn(t) 'gn(t) - f(t) . g(t) =T Y.
Thus,
Tp Yn — T Y,

which contradicts our supposition.
We conclude that:

C(K,X) is a WC-Banach algebra if and only if X is a WC-Banach algebra. O
Now, we will present a new example of an associative WC-Banach algebra.

Example 2.3. Let the classical Banach sequence space 1, and let us consider the
multiplication of elements in [y, defined in the following way :

z-y=(on) - (yn) = <Z%Zyn70,0,0,--->7 (2.1)

for all x = (x,) and y = (y,) in ;.
It is easy to verify that this law is associative and
+oo —+oo

§ T Yn
n=1 n=1

+oo “+oo
E T E Yn
n=1 n=1

”lel”th'

Thus, I; with the above-defined inner operation of multiplication forms an associative
Banach algebra.

-yl

Example 2.4. Assume that I is a Hausdorff compact space and [; is the Banach
sequence algebra with the above-defined inner operation (2.1), then the set of all
continuous functions from IC to [; is also a WC-Banach algebra.

Proof. According to Example 2.1, it suffices to show that /; is the WC-Banach alge-
bra. Let (zj) and (yx) two sequences of [; such that xpy — x € Iy and yp — y € I3,
since [ is a Banach algebra with Schur property, then ), — x and y; — y. On the
other hand, by continuity of the application (z,y) = ((xn), (yn)) — -y on 1 x Iy,
which implies xx - y» — = -y, then we have xz - yp — x -y. Thus, the proof is
complete. O

We conclude this section by recalling the following fixed point theorem and the well-
known conditions (H7) and (Ha) (see [9]).
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Definition 2.2. We will say that the operator A satisfies the condition (Hy) if for
any sequence (z,) C D(A) which is weakly convergent in X, the sequence (Az,) has
a strongly convergent subsequence in X.

We say that the operator A satisfies the condition (Hs) if for each weakly convergent
sequence (x,) C D(A) the sequence (Ax,) contains a weakly convergent subsequence
in X.

It is worth noting that the conditions (H;) and (Hs) have been studied in references |1,
, 9]. For properties of operators that satisfy these conditions, we refer to monograph
[8] and review article [9].

Theorem 2.2. Let X be a WC-Banach algebra and let S be a nonempty, bounded,
closed and convex subset of X. Further, let be given three operators A, B, C such
that A,C: X — X and B: S — X, which satisfy the following conditions:

(7) The operators A, C satisfy the condition (Hz) and are Lipschitzian with Lipschitz
constants « and S respectively.

(#4) A is a regular operator.

(791) The operator B is continuous on S, satisfies the condition (H;) and the set BS
is relatively weakly compact.

(iv) For each y € S the following implication holds
x=AzBy+ Cx =z € S.
(v) La+ 8 < 1, where L = || BS]].

Under the above assumptions the operator equation x = Ax Bz + Cz has at least one
solution in the set S.

Subsequently, we will apply the fixed point theorem in the next section.

3. Applications to infinite systems of integral equations in C([0,1],1)

In this section we consider the following infinite system of nonlinear quadratic integral
equations of the Volterra-Hammerstein type

Tn(t) = cn(t, (1)) + an(x, (1)) /0 kn(t,8) fu (s, 2n(8), Xne1(s), .. .)ds, (3.1)

where n =1,2,... and t € I = [0, 1].

In [2], Banas, Krichen, and Mefteh proved that system (3.1) has at least one solution
in the space C(I,¢p), consisting of all functions acting from the interval I into the
Banach sequence space c¢g, which are continuous on I, where ¢g is the space consisting
of all sequences converging to zero. Our aim is to show that the infinite system of
integral equations (3.1) has a solution ¢t — x(t) = (x,(t)) in the space C; = C(I,11),
consisting of all continuous functions acting from the interval I into the Banach real
sequence space .

In fact, every function of C; can be regarded as a function sequence

2(t) = (zn(t)) = (21(t), 22(1), .. .),
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for t € I, where for any fixed ¢ € I the sequence (x,(t)) is a real sequence being an
element of the space ;.
Obviously, the norm in the space C; has the following norm :

+oo
x =sup ||z, (t =su Tn(t)].
z]le, tel;ll n(®)lln telj)Z\ ()]

n=1

Let us mention that C; forms a WC-Banach algebra (cf. Example 2.4).

Now, we formulate assumptions under which we will investigate infinite system (3.1).

(7) The function a,: R — (0,400) is equibounded on R, i.e., there exists a constant
M7 such that

|an(z)| < My,
forallz € R, and n =1,2,.... Moreover, there exists a bounded function y: I — R
with bound I' such that

|an (2 (t)) = an(yn(®))| < v()|zn () — ya(t)];

for all x = (x,) and y = (y,) in Cy, t € I, and n =1,2,....
(74) The function ¢, : I Xx R — R is equibounded on I X R, i.e., there exists a constant
M> such that

len(t, 8)] < M,
forallt € I, s € R, and n = 1,2,.... Moreover, there exists a bounded function
A: I — Ry with bound A such that for all r,s € Rand t € I,

[en(t,7) = cn(t, s)] < A()]r — s,

forall ,sinR,tel,andn=1,2,....
(791) The sequences (an(zn(t))) and (¢, (¢, x,(t))) are in Iy for all x = (z,,) € C; and
t € I. Moreover for every x = (x,) € C; the functions sequence (a,(z,(-))) and
(cn(-, 2, (+))) are continuous on I.

(iv) The functions k, (-, -) := k, are continuous on I? for all n = 1,2,.... Moreover,
the functions t — ky,(t, s) are equicontinuous on I uniformly with respect to s € I,
i.e., the following condition is satisfied

Ve > 0,36 > 0,Vn € N* Vs € I,Vty,t5 €1,
we have
[ta — t1] < & = |kp(te, s) — kn(t1,s)] <e.
(v) There exists a constant K3 > 0 such that

+oo L1
Z/ kn(t, s)|ds < K1,
n=1"0

forall t € I.

(vi) The function sequence (k, (-, ")) is equibounded on I?, i.e., there exists a constant
K5 such that

|kn(t, s)| < Ko,
forallt,sel,andn=1,2,....
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(vit) The function f,, acts from the set I x R* into R for any n = 1,2, .... Moreover,
we assume that there exist two functions sequence (p,) and (g,) with positive terms
defined and continuous on I and the following inequality is satisfied

n+j
Fnlts Ty sty ) < pult) + 4a(®) 3 Ji(s)],
i=n
foralltel, x = (x,) €ly,n=1,2,..., and a fixed j € N.
Assume that the functions series Z ppn and Z Gr are uniformly convergent on I.
n>1 n>1

Remark 3.1. From the above formulated assumption we deduce that P < co and
@ < oo where the constants P and @ are defined by the equalities :

+oo 1 +oo 1
P= Z/ pr(s)ds, and Q = Z/ qn(s)ds.
n=170 n=170

Our further assumptions are as follows.

(viti) The family of function {f, },en+ is uniformly equicontinuous on the set I x [j.
This means that for every € > 0 there exists § > 0, such that for any n € N*, t € I,
and for all x = (x,,), y = (yn) € 1 with ||z — y|l;, < J we have that

|fn(ts Tns Tngrs o) = fultsYns Yngr .- )| < e
(iz) The following inequality holds
MEK>Q < 1,
where M = max{M;, Ms}. For further purposes we define the number ry by putting
KoP+1

Y i
"o 1= MEK5Q

(3.2)

(z) The following inequality is satisfied
P+ MQ

TKy—— %
1 - MEK»Q

+A<1.

Theorem 3.1. Under assumptions () — (z) the infinite system of integral equations
(3.1) has at least one solution z(t) = (x,(¢)) in the space C; = C(I,1;).

Proof. In order to prove our theorem we will apply the result contained in Theorem
2.2. To this end let us define on the space C; three operators A, B, C' by putting:

(Az)(t) = (an(zn(t))) = (a1(21(2)), az(22(1)), ),
(Bx)(t) = / kn(t, ) fn(s, n(8), Zni1(8),...)ds,

0
(Cz)(t) = (calt,zn(t)) = (cr(t, 21(1), c2(t, 22(1)), ),

for an arbitrary element = (x,) € C; and for ¢t € I = [0,1]. We show that these
operators satisfy the assumptions of Theorem 2.2.

It can be easily seen that the infinite system of integral equations (3.1) is equivalent
to the equation x = Az - Bx + Cz. To prove our statement, it is sufficient to show
that the operators A, B, and C satisfy the hypothesis of Theorem 2.2.
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We start with investigations concerning the operator A. Initially, let us observe that
assumption (i) ensures that A is regular. According to assumption (4i4), it is easy to
check that Az(t) € l; for all t € I, and we have that Az € C; for all x = (x,) € Cy,
indeed, let (t,,) be a sequence of I such that ¢,, — ¢ in I. Then,

[Az(tm) = Ax() |, = llan(zn(tm)) = an(zn(t))]1, = 0,

as m — +oo. Hence, the operator A is well defined.
Next, we check that A is Lipschitzian. Let z,y € C; and t € I,

[Az(t) — Ay(D)1, = Z |an (20 (1)) — an(yn(t))]

Z |xn yn |

<9t )Iliv( ) =@,
< Tllz(@) —y(@) i, -

Taking the supremum over ¢t € I, we obtain that A is I' Lipschitzian.
In order to verify that the operator A meets the condition (Hz). So, let (z,) C Cy
which is weakly convergent to a function z € C'1. So, we denote

:En(t) = (I?(t),l‘g(t),l‘g(t), s )7

forn =1,2,... and for an arbitrary ¢ € I and if we denote x(t) = (z1(t), z2(t), z3(t),
..), then, by the Dobrakov theorem [6] we infer that z7(t) — x1(¢), 25 (t) — x2(t), ...,

2R (t) = xx(t),... for any t € I, if n — oo. Since [; is a Banach algebra with the

Schur property, we deduce that: xi(t) — 1(t), 25 (t) = xa(t), ..., 22 (t) = xk(t),...

for any t € I, if n — oc.

Now, let us consider the sequence (Ax,,) i.e.,

(Al'n) = (A(ZC?, .Tg, l‘g, s )) = (al(‘r?)’ a2(x;l)7 a;;(.l‘g), s )
= (ar(z)),

fork=1,2,....
Then, for an arbitrarily fixed ¢t € I we obtain:

((Azn)(t)) = (a1 (21 (1)), az(25 (1)), as(z3 (1)), .. .)
= (ar(zg (1)),

fork=1,2,....
Given our assumptions, we have that x}(t) — zx(t) as n — oo (k = 1,2,...), this
implies that a (2} (t)) = ar(zk(t)) (k = 1,2,...), which is a simple consequence of
the continuity of each function ai(k = 1,2,...) on the set R. But this means that the
sequence (Ax,,) is strongly convergent in the space C;. Thus the operator A satisfies
the condition (Hy), in particular, it satisfies the condition (Hs).
Similarly, we can establish that the operator C' is A-Lipschitzian. Furthermore, C
maps the space C; to itself and fulfills condition (Hz).
Hereafter, we will consider the operator B. To accomplish this, let us define the set
S = B(0,1p), where rg is a number described by equality (3.2). Initially, we start
by showing that B maps the set S into the space C;. Thus, let us take an arbitrary
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function z = (z,) € S. Fix arbitrarily a number ¢ € I. Next, considering the
assumptions (vi) and (vii) and Remark 3.1, we obtain:

+o00 400
S B =Y
n=1 n=1
+oo .1
S Z/O |kn(t7S)fn(svxn(s);mn+1(8>7...)|d8
:L‘_oo 1 n4+j
< Z/o |kn(t, s)| {pn(s) + qn(9) Z |:z:1(5)} ds
n= o ) s =n
< Ko Z/o {pn(s) + qn(s) Z |xl(s)|} ds

n=1
< Ko (P +Qllzle,)
< +o0.

}E (£, 8) fo (5, 2 (5), 2msn (5), - )ds

Thus, (Bx)(t) € l; for all ¢t € I.
We have also the following inequality,

| Bzlle, < K2(P+ Qro) (3.3)
Next, we show that Bz is continuous for all z € S. To this end, fix € > 0 and choose

a number 0 according to assumption (iv). Next, take t2,t; € I such that |[ta —t1] < d
and using assumptions (iv) and (vii), we obtain

1
[ bt = bt 80} 5 1 5. s

400 a1 n+j
<>/ {pn<s>+qn<s>zxi<s>|}ds
n=1"0

e(P+Qllz|le,)
e(P 4+ Qro).

+oo
I(Bx)(t2) — (Bx)(t) |, = >

<
<

We deduce that Bz is continuous for all z € S. Furthermore, we prove that the
operator B is continuous on the set S.

In order to prove this fact, we fix arbitrarily an € > 0 and we choose a number § > 0
according to assumption (viii). Next we take z,y € S such that ||z — yllc, < 4. So,
for any t € I we have:

sup [l (t) — y ()], < 0.
tel

Equivalently, we can express this as:

“+oo
sup Y [la(t) — y(t)lli, < 0.
tel n—1
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Therefore, by synthesizing the aforementioned estimates, we derive the following in-
equalities:

|Bz — Bylle, = sup 1(Bz)(t) = (By) ()i,

+oo
<sup Y [(Ba)(t) — (By)(1)|

tel n—1
+oo

<sup)

tel =

/0 kn(t, s) {fn(svxn(s)axn-&-l(s)v--~)_fn(sayn(s)ayn+1(3)7---)} ds

+oo 1
< Stg?;/o |kn(t’ S)||fn(8,l‘n(8),$n+1(s), e ) - fn(87 yn(s)a ynJrl(S)’ s )|d8

Therefore, considering assumptions (v) and (viii), we derive

oo 1
B2~ Bylle, <=sup > [ [kt 9)las
tel n=1"0
SEKl.

This establishes that the operator B is continuous (and even uniformly continuous)
on the set S.

Next, we will prove that the operator B fulfills the condition (H;) on the set S.
Note that estimate (3.3) shows that functions in the set B.S are equibounded on the
interval I. Based on the above analysis, we can further establish that the set BS is
equicontinuous on I. Now, we can apply Arzela-Ascoli’s theorem (see [7]) to get that
BS is relatively compact. In particular, The operator B satisfies the condition (H).
In our next step we show that assumption (iv) of Theorem 2.2 is satisfied . To this
end let us fix arbitrarily y € S = B(0,79). Next, assume that an element x € C;
satisfies the equality

x = AxBy + Cz.
This yields
[zlle, < [ Az(le, [ Bylle, + ICx]le,-
Then,

[zlle, < Mil|Bylle, + Mo

< My Ko (P + Qro) + Mz = M(K2(P + Qro) + 1)

Therefore, taking into account assumption (iz), we derive that ||z|c, < 79. This
establishes € S and demonstrates the satisfaction of assumption (iv) of Theorem
2.2. Finally, let us notice that in view of equality (3.2) and estimate (3.3) we have:

L = ||BS|| < Ka(P + Qro)
P+ MQ

< Kyg— %

< Reg MK>Q

By linking the above inequality with assumption (z), we observe that assumption (v)
of Theorem 2.2 is satisfied. Thus, the proof is complete. O
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4. An example
This section is dedicated to provide an example that illustrates the applicability of

the result stated in Theorem 3.1.

Consider the following infinite system of integral equations of the form

g _tsin@a(®) [ 1T In(l+ad()
on(t) =——g {2712 T'1+In(l + :c%(t))]

ter 3 [sin(ns)s”  arctan(s) g 1 (5)
e 2 | sin(ns)s arctan(s Tnt+k—1(8
- d 4.1
X /0 n { sl on? ; ka2, . i(s)+k s (1)

where t € [0,1], T, 7" >0, S >1andn=1,....

1 1 T
Put M; = 5 My = -+ T and M = max{My, Ms}.

In the rest of this paper, we will assume that
48

M < s 5ome)

and ‘
TegtMmE
T1_ M%{:m@) S

Note that the infinite system (4.1) is a special case of the infinite system of quadratic
integral equations of Volterra-Hammerstein (3.1) when we set:

1 T In(1+22)

an(tn) =55+ 707 +In(1 + 22)’
tsin(x,)
cn(t, zn) = T Get
e*(ﬂ%*t)%
kn(tas) = —, and
n
. 3
sin(nt)t"™  arctan(t) 1 zpik-1(t)
bt Tny Tty .. ) = + —————>—fort€]0,1] and
U +ee) 3n! 2n? kz_;l ka? . (t)+Ek [0,1]
n > 1.

Now, we show that infinite system of integral equations (4.1) has a solution in the
Banach algebra C; = C([0,1],{1) by showing that all the conditions of Theorem 3.1
are satisfied.

Take the sequence of functions (a,,) defined on the set R by

1 T In(1+2?)

an(w) = 2n2 " T'1+1n(1 4 22)

1
Note that a,(x) > oz 0 for n = 1,2,... which implies that a,, acts from R into
n

(0, +00). Moreover, for arbitrary € R and for a fixed natural number n € N* we

have: )
1 T In(l+a?) 1 T
=4 —=— ‘- [ < — 4+ — = M.
@) = 5 T T 12y | S3 T T !



AN INFINITE SYSTEM IN A NEW WC-BANACH ALGEBRA 519

Further, for arbitrary =,y € R and for a fixed n € N* we obtain :
1 T In(1+2?) 1 T In(1+y?)

202 ' T'1+In(1+22) 202 T'1+In(1+¢2)
T |In(14+2*)(1 +In(1 +3*)) —In(1 +3*)(1 + In(1 4 2?)) ‘

< (1+In(1+22))(1 +In(1 + ¢?))

lan(2) —an(y)|l =

T

< (1 +a%) —In(1+¢?)|
T

< FW— yl-

T
Which shows that the function sequence (a,,) is Lipschitzian with constant T The

above inequality shows that assumption (¢) is satisfied with I' = —

Assume that @ = (z,) € C1, and ¢ € I, we have T/.
a1 = | g+ )| = B9 DTNy
< 271# +%ln(1+mi(t))
< 27112 + %xi(t),

since x = (z,,) € Cy, it follows that for all ¢ € [0, 1], # + %xfl(t) €l.
We also have the function ¢ — a,(z,(t)) is continuous on [0, 1]. Similarly, we define
the function sequence (¢,) on [0,1] X R by:
tsin(s)
Set
where S > 1. For arbitrary r, s € R and ¢ € [0, 1] we have

en(t, s) =

tsin(r)  tsin(s)

‘cn (ta T) —Cn (t7 8)| = Set Set

1. .
< §|sm(7‘)—sm(s)|

Loy
S’/' S|.

IN

1
So, the function sequence (cy,) is Lipschitzian with constant 5 and assumption (i)

1
is satisfied with A = —.

Obviously, the sequence (¢, (t,z,(t))) belongs to I; for all z = (z,) € C; and t € I,

and ¢ — ¢, (t,z,(t))) is continuous on [0,1]. Moreover, for all ¢t € [0,1], s € R, and
n > 1, we have

t| sin(s)]
Set
= Mg.

len(t, 20 (1)) =

1
< =
- S
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Then, the function sequence (¢, (t,s)) is equibounded on I x R, for n > 1. Thus,
hypotheses (i¢) and (iii) of Theorem 3.1 are satisfied.

Further, let us observe that the functions k,, are continuous on I? for n > 1. Next,
fix a natural number n € N* and s € I. Then, for arbitrary t1,t5 € I we obtain

e—(n+t2)% e—(n-‘rtl)%

knty _knta
|kn (t2,5) (t1,s)| - -

IA

N

2|ty — ta]
>~ 22 1] -

Thus, the function sequence (k, (¢, s)) satisfies assumption (iv).
Next, for arbitrarily fixed n € N* and ¢,s € [0, 1] we get

ef(nJ’»t) %

|kn(t,s)| = <1:= K.

n

Hence, we infer that assumption (vi) is satisfied with the constant Ky = 1.

Furthermore, observe that
I 1 —(ntt)s
> [,

+oo 1
Z/ Ve (2, 5)|ds
n=1 0

n=170 n
+oo
= i ()
—n(n+t)
+oo 1
<2y —
n=1
72
< —.
- 3
2
Hence, we infer that assumption (v) is satisfied with the constant K7 = —.
Furthermore, we show that the function f,, = f,(¢,Zn, Tnt1,...), where n = 1,...

verifies assumption (viéi). Assume that ¢ € [0,1] and z = (z,,) € 1, we obtain

. 3
sin(nt)t"™  arctan(t) 1 zprr-1(t)
|fn(taxn7$n+17~")| = + n2 szlzx

3nl 2 rrno1 () K
1" arctan(t) |z, arctan(t) |Tp+1] arctan(t) |Tpaol
~ 3n! 2n? 22 +1 dn? 22 +2 6n%  x2.,+3
t"™  arctan(t)
Soa T T [lzn| + [Tnt1] + [En2]
t"™  arctan(t) faxs
=n

Hence, we see that the function f,, satisfies the inequality from assumption (vii) with
the functions sequences (p,,) and (g,) defined as follows:

" arctan(t)

pn(t) = @7 Qn(t) = 2 s
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for all t € [0,1] and n > 1.
It is easy to verify that the function series Z Ppn and Z qn are normally convergent,

and therefore uniformly convergent on [0, 1].
Further, let z = (z,),y = (y») € l1 and for ¢ € [0, 1], we obtain

arctan sy A
‘fn(tvxnaxn+17"'>_fn(taynayn+17"‘)| S () (Z |(E |_Z|yk|

arctan sy
< Z 2k — yil

< Zux—ynh.

Thus, the function f, = fn(¢t, n,Tny1,...) satisfies a Lipschitz condition with a
constant g on the set [0,1] x I;. Consequently, the family of functions {f,}, is

uniformly equicontinuous on the set [0,1] x ;.

Moreover, we have
+o00 1
arctan(s)

n=1 :1

: /
= — [ arctan(s)ds
7; 2n? J,

73 — 272 1n(2)
48 ’
and L1
M = max{M;, My} = maX{S 3 + — }

Based on the accepted assumptions stated above, we derive:
7% — 272 In(2)

MK,Q = M g

< 1
Thus, we observe that assumption (iz) is satisfied.

Finally, we are going to verify assumption (z). Indeed, considering all the constants
Fa A7 K17 K27 Ma Qa and

P = Z/pn dS—Z/%dS

(25w

n=1
e—1
3
Then, we see that the mentioned inequality has the form
T = 1M7r —272 In(2)
= + =<1

/ 73 —272 In(2)
T 1 =2 nd) S
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It is easy to verify that the above inequality has a positive solution for appropriate
values of the parameters T, T’, and S. For example, with T =4, 7" =3, and S =6
we obtain

g et um2min)
51 11 73 —2721n(2) + 6 ~0,8<1.
6 48

Thus, by applying Theorem 3.1, we conclude that the infinite system of integral
equations (4.1) has a solution in the Banach algebra C;.
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