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Particle-based Magnetohydrodynamics Modeling and
Visualization: Part I - Theoretical Model

Mihai Dupac

Abstract. In this paper a theoretical particle-base model for modeling of the magnetohy-
drodynamics (MHD) phenomena is presented. The fluid is modeled as a three dimensional
particles system. The Navier-Stokes equation, containing the surface tension term formula-
tion, are discretized using moving particles and their interaction models. Each particle moves
accordingly with its own mass and the external/internal forces applied on it. The forces are
evaluated on each particle. The purpose of this approach is to emphasize that this method
allows a good way for the study and design of the MHD process.
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1. Introduction

Modeling techniques are indispensable tools for the analysis of dynamical systems
such as computational fluid dynamics (CFD) or MHD. The modeling of the inside
phenomena in dynamical systems is a challenging subject not only from an analytical
or numerical point of view, but how to get insight to their dynamical behavior and
have a better understanding of the complex flow phenomena.

The importance of fluid flow phenomena in CFD or MHD (magnetic stirring or
electromagnetic levitation) has long been recognized. An analytically study for the
fluid dynamical aspects of the MHD process for a levitated cylinder has been con-
sidered in [22]. The fluid flow computation and visualization using a finite difference
scheme coupled with the electromagnetic forces derived analytically have been stud-
ied in [16]. Other theoretical approaches for flow modeling in MHD can be found in
[1, 2, 3, 5, 6, 7].

For the modeling of the fluid flow phenomena two main categories of methods are
used: Lagrangian formulation, a method that discretize the fluid using particles and
Eulerian formulation, a method that discretize the problem using a subdivision of the
spatial domain and control fluid flow in each cell.

A Smoothed particle hydrodynamics (SPH) formulation, with the space non-uniformly
sampled using particles, was developed in [11, 15] using a Lagrangian formulation. A
molecular dynamics technique was used in [17] to describe particle interactions, for
simulations of melting materials and viscous fluids.

In [8] the SPH concepts were applied for the simulation of highly deformable bodies.
Using a SPH particle-based method [18, 19], a 3D simulation for material properties
ranging from highly plastic to stiff elastic was implemented.
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A spring-particles model for melting solids with various forces applied to their
neighbors was developed in [23]. A similar model using springs was developed in [9].

The work in the present paper is dedicated to describe a theoretical model for
modeling of MHD phenomena using particles with the specific goal of analyzing the
fluid interface and flow visualization.

The fluid is modeled as a three dimensional particles system using the Moving-
Particle Semi-implicit (MPS) method [12, 21]. In this mesh-free method the interac-
tion between particles is specified by a weight function which relates a particle with
others in its vicinity. MPS method has been proved suitable in dealing with large
deformations interface [20, 24].

To describe the fluid motion the Navier-Stokes equation containing the surface
tension term formulation has been used. The Navier-Stokes equation has been solved
using a Lagrangian formulation, the moving particles and their interaction models
(representing gradient, laplacian and divergence) of the MPS method. Comparing
with other application based on the Eulerian formulation, the Lagrangian modeling
allow an easy perception of flow data. The boundary conditions has been imposed
and a surface tension model [4] (continuum surface force (CSF) model) of the particles
that lie on the surface has been presented.

The external/internal force [9] (gravitational force, electromagnetic force, forces
between particles) formulation in Navier-Stokes equation, evaluated on each particle,
and the associated boundary conditions, for the case of electromagnetic levitation
(levitated droplet) and electromagnetic stirring (rotating cylindrical sample) are pre-
sented.

2. Governing Equations

Governing equations to describe fluid flows in the CFD or MHD process are the
continuity equation, written in a general form as

Dρ

Dt
= −ρ (∇ · u) = 0, (1)

and the momentum equation containing the surface tension term

Du
Dt

= −∇p + η∇2u + ρg + F + σkδn, (2)

where
Du
Dt

=
∂

∂t
+ (u · ∇), t is the time, F is the force density exerted on the fluid,

k is the mean curvature of the interface, δ is the Dirac delta function that is zero
everywhere except at the interface, n is the unit normal vector to the interface, σ is
the surface tension coefficient and σkδn represent the surface force per unit interfacial
area.

Instead of a surface tensile force or surface pressure boundary condition applied at
a discontinuity, surface tension is calculated by applying at extra body force in the
momentum equation (Eq.(2)). Using the continuum surface force (CSF) model [4],
surface tension is modeled as a volume force acting on the fluid interfaces (particles
that are regarded as the interface). Surface tension modeled with the continuum
method eliminates the need for interface reconstruction and simplifies the calculation
of the interface [13], enables accurate modeling of three dimensional flows and does
not impose any modeling restrictions on the dynamic evolution of fluid interfaces
having surface tension.



PARTICLE-BASED MAGNETOHYDRODYNAMICS MODELING AND VISUALIZATION 35

3. Particle Interaction and Surface Tension Model

3.1. Mathematical Model of MPS-method. Using the work of [12, 13, 21, 24],
all the terms expressed by differential operators in the momentum equation will be
replaced by particles interactions. For this, the continuous media is modeled as a
three dimensional particles system, a particle model normally distributed in its initial
configuration.

To discretize the continuous media, it is considered that a particle i interacts with
its neighboring particles j according to a weight function w (r), defined as

w (r) =

{ re

r
− 1 if 0 ≤ r < re

0 if re ≤ r
, (3)

where r =| rj − ri | is the distance between the particles i and j and re represents the
radius of the interaction (Fig. 1.a). An example of weight function is given in Fig.
1.b.

The particle number density at coordinate ri is defined as

〈n〉i =
∑

j 6=i

w (| rj − ri |) , (4)

where j 6= i means that the contribution from particle i to itself is not considered.
For simplicity, it is considered that the particles have the same mass m. The, the

fluid density is proportional to the particle number density 〈ρ〉i = m
〈n〉i∫

w (r) dv
.

A gradient vector is defined by (φj − φi) (rj − ri) /| rj − ri |2, where φi and φj are
scalar quantities and ri and rj represent particles co-ordinates. The gradient vector
at particle i can be expressed as

〈∇φ〉i =
d

n0

∑

j 6=i

[
(φj − φi)
| rj − ri |2 (rj − ri)w (| rj − ri |)

]
, (5)

where d is the number of space dimensions and n0 is the particle number density in
the initial configuration.

The divergence operator can be modeled in the same way as the gradient vector
(Fig. 1.a). The velocity divergence between two particles i and j is defined by
(uj − ui) · (rj − ri) / | rj − ri |2 and the velocity divergence at the particle i is given
by

〈∇ · u〉i =
d

n0

∑

j 6=i

[
(uj − ui)
| rj − ri |2 (rj − ri)w (| rj − ri |)

]
. (6)

The Laplacian operator can be interpreted as if a fraction of a scalar quantity at
particle i is dispersed to a particle j according to the weight function, and can be
written as

〈∇2φ
〉

i
=

2d

λn0

∑

j 6=i

[(φj − φi)w (| rj − ri |)] , (7)

where λ can be approximated as λ =

∑
j 6=i

[| rj − ri |2 ω (| rj − ri |)
]

∑
j 6=i [w (| rj − ri |)] .

Using Eqs.(1) and (2) a Poisson equation for the pressure is obtained
〈∇2pn+1

〉
i
=

ρ

∆t
〈∇ · u∗〉 . (8)
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Figure 1. (a) Radius of Interaction, and, (b) An Example of a
Weight Function

The left side of Eq.(8) is the Laplacian model and can be calculated using Eq.(7), the
right side of Eq.(8), is the velocity divergence, and can be calculated using Eq.(6).

The temporal velocity can be calculated using
u∗∗i − u∗i

∆t
= −∆t

ρ

〈∇Pn+1
〉
, (9)

where u∗i is the temporal velocity explicitly calculated, u∗∗i is the new time velocity
and ∆t is the time increment. The right side of Eq.(9) is the gradient model and can
be calculated using Eq.(5). After pressure calculation, the new time velocity u∗∗i can
be calculated using Eq.(9).

3.2. Surface Tension Model. Surface tension is computed on the fluid interface.
A surface tension model [20] is extended to a three dimensional computation. A new
particle number density of the particles that lie on interface is considered to be

nst
i =

∑

j 6=i

wst (| rj − ri |) ,

where the new weight function is

wst (r) =
{

1 if 0 ≤ r < rst
e

0 if rst
e ≤ r

.

Because the particle number density can increase near the interior of the droplet, and
this can lead to errors in the calculation of curvature, a new particle number density
for the particles that lies on the interface is calculated

nst new
i =

∑

j 6=i

wst new (| rj − ri |) ,

where another weight function

wst new (r) =
{

1 if 0 ≤ r ≤ rst
e and nst

j > nst
i

0 if otherwise ,
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is used.
The unit normal vector n vertical to the interface and the curvature k on the fluid

interface are calculated using the wst weight function and the particle number density.
The particle number density for six different positions around the particle i can be
expressed by nx

i (ri + dstnx), n−x
i (ri − dstnx) , ny

i (ri + dstny), ny
i (ri + dstny), and

nz
i (ri ± dstnz), nz

i (ri ± dstnz). The unit normal vector at particle i that lies on the
interface is computed as

ni =
si

|si| ,

where si =
nx

i − n−x
i

2l0
nx +

ny
i − n−y

i

2l0
ny +

nz
i − n−z

i

2l0
nz, and nx, ny, nz are the unit

normal vectors in the x, y and z directions.
The curvature of the interface is computed as

k =
1
R

=
2 cos θ

rst
e

,

where R =
rst
e

2 cos θ
represent the curvature radius, rst

e represents the radius of the

interaction for surface tension and θ =
π

2
nst new

i

nst
i

.

4. Electromagnetic Forces and Boundary Conditions

4.1. Electromagnetic levitation. The levitation system shown in Fig. 2.a is com-
posed of N (N = 6) coaxial circular loops of current lying in parallel planes. The
radius of each loop is denoted by bk, k = 1, 2, ..., N . For the general case, each loop
carry an alternating electric current <[Ikejωt], where Ik is the peak value, ω is the
angular frequency of the imposed field (ω = 2πf , where f is the frequency), t is the
time, j =

√−1 and <(.) denotes the real part of the complex current. The body to
be levitated is a conductive droplet of radius R, mass M , electric conductivity σc,
and magnetic permeability µ.

The unit vector of the Cartesian reference frame (x, y, z) are denoted by ı,  and k
and the unit vectors of the spherical reference frame (r, θ, ϕ) by er, eθ and eϕ. The
kth loop is defined by rk and αk, where rk is the length from the origin to the kth

loop and αk is the solid angle subtended by the kth loop with respect to the spherical
reference frame as shown in Fig. 2.a.

The corresponding 3D particle system model of the levitated sample is shown in
Fig. 2.b.

The electrodynamic and hydrodynamic phenomena occurring in the magnetic lev-
itation process can be described by a set of the following coupled Maxwell equations

∇ ·D = u, ∇×E+
∂B
∂t

= 0, ∇ ·B = 0, ∇×H = J,

along with Eqs.(1) and (2) i.e., continuity equation and momentum equation, and with
the constitutive relationship linking the current density with other field variables, i.e.
Ohm’s law written for a moving medium

J =σc (E + u×B) .

In the above equations J is the induced eddy current density, H is the magnetic flux
density, D is the electric displacement, B is the magnetic field, E is the electric field,
F is the Lorentz force density, u is the velocity field, ρ is the density, p is the pressure,



38 M. DUPAC

Figure 2. (a) Levitation System - Coil and Levitated Droplet, and,
(b) Particle Model of the Levitated Droplet

η the viscosity of the fluid, g the gravity and t is the time. The local distribution
of the electromagnetic force fields serves as a starting point for both the fluid flow
calculation and the global levitability of the system. The time-averaged Lorentz force
density exerted on a levitated sphere is given by

F =
1
2
<(J×B∗), (10)

where <(.) and ∗ are the real part and the complex conjugate of a complex variable,
respectively.
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Using the work of [14], the values of r and θ components of the time averaged
Lorentz Force for a single current loop (k-loop) can be calculated using

Fr = −ωσcµ
2I2 sin2 αk

8r

∞∑
m=1

∞∑
n=1

2m + 1
m (m + 1)

2n + 1
n (n + 1)

(
R

rk

)m+n

×P 1
m(cos αk)P 1

m(cos θ)P 1
n(cos αk)P 1

n(cos θ)

×<
[

jIm+1/2 (kpr)
Im+1/2 (kpR) In−1/2

(
k∗pR

)
(

In−1/2

(
k∗pr

)

kpR
− nIm+1/2

(
k∗pr

)

rRωσµ

)]
,

Fθ =
µ (I sin αk)2

8r2R

∞∑
m=1

∞∑
n=1

(2m− 1) (2n− 1)
m (m + 1)

(
R

rk

)m+n

×<
[

jIm+1/2 (kpr) In−1/2

(
k∗pr

)

Im−1/2 (kpR) In−1/2

(
k∗pR

)
]

×P 1
m(cos αk)P 1

m(cos θ)P 1
n(cos αk)P 1

n(cos θ), (11)

where P 1
n(cos θ) are the associate Legendre polynomials or the Legendre function of

the first kind of order n, In+1/2 are the modified Bessel functions of the first kind of
order n + 1/2, kp is a system parameter, kp = jωµσ, k∗p is the conjugate of kp, ω is
the angular frequency of the imposed field (ω = 2πf , where f is the frequency), t is
the time, j =

√−1 and <(.) denotes the real part of the complex current. The body
to be levitated is a conductive droplet of radius R, mass M , electric conductivity σc,
and magnetic permeability µ.

In order to implement the boundary conditions on the fluid interface, the Laplacian
model defined as in Eq.(7) is used. The Neumann boundary condition applied to the
pressure calculation via Poisson equation is imposed. The Neumann condition states
that the pressure change along the normal must be zero. The Neumann boundary
conditions specify the normal component at the boundaries, and for this case, that
the pressure calculated at each particle on the boundary is equals with the outside
pressure. So, the Neumann boundary condition is satisfied if the pressure of a particle
i on the boundary is equal with the outside pressure. Supposing that the pressure
of a particle j outside the boundary is pj , the Neumann boundary condition may be
approximated using the next alternative expression of Eq.(7)

〈∇2p
〉

i
=

2d

λn0

∑

j 6=i and j 6=out

[(pj − pi) w (| rj − ri |)] .

4.2. Electromagnetic stirring. Electromagnetic stirring is now a well technique in
continuous casting of round strands. The method is usually based on the phenomena
that when a sample of viscous liquid metal confined to a cylindrical crucible, rotates in
an applied magnetic field, and in the presence of gravity, circulating eddy currents are
induced and a Lorentz force is produced. For the present case, the transverse magnetic
field imposed upon the rotating melt is assumed to be stationary and uniform. In
addition to the applied magnetic field, there is an induced magnetic field produced by
an electric current in the conducting fluid. To simplify the computation of the flow
and force fields, the melt is considered to be electrically and thermally conducting
and incompressible. The rotating cylindrical sample is shown in Fig. 3.a, and the 3D
particles system model in Fig. 3.b.

The equations governing the time-dependent incompressible viscous flow in the
crucible, including electrodynamic effect, are the stationary Navier-Stokes equation
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Figure 3. (a) Magnetic Stirring System - Rotating Cylindrical Sam-
ple, and, (b) 3D Particle Model of the Sample

with Boussinesq approximation, along with the the continuity equation. Equations
(1) and (2) must be supplement with a boundary condition for the fluid velocity at
the wall, and equation (2) with the Boussinesq approximation.

According to Maxwell equations and Ohm’s law, the Lorentz force can be computed
using

F = J×B, (12)

where J is the current density and B is the magnetic field.
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The body force F at the right side of Eq.(2) (electromagnetic stirring case), will
include the gravity, buoyancy and the Lorentz forces. A Boussinesq approximation is
used to account for buoyancy forces due to temperature gradients, that is, that the
temperature T fluctuates in a narrow range about a reference temperature Tref , and
the density, in this temperature range, decreases linearly with T ,

ρ

ρref
= 1− β(T − Tref ) (13)

where ρ and β denote the density and thermal expansion coefficient of the fluid at
the reference temperature. The force of gravity is given by

ρg = ρrefg − βρref (T − Tref )g. (14)

where βρref (T − Tref )g represents the buoyancy force.
The Lorentz force term will be different for transverse or vertical, stationary or

alternating magnetic fields. For Lorentz force computation, a cylindrical coordinate
system (r, θ, z) with the attached unit vectors sr, sθ, sz, and with the z axis along
the cylinder vertical axis is used. In the case of transverse stationary and uniform
magnetic field B0 = B0(Ir cos θ − Iθ sin θ), the components for the Lorentz force (for
more details see [10]) can be written as,

Fr = −σB0[φz sin(θ) + B0u sin2(θ) +
1
2
B0v sin(2θ)],

Fθ = −σB0[φz cos(θ) +
1
2
B0u sin(2θ) + B0v cos2(θ)],

Fz = −σB0[φz sin(θ) +
1
r
φθ cos(θ)−B0w], (15)

where φ denotes the electric potential, φz denotes the z component of the electric
potential, u, v and w are the radial, tangential and vertical velocity components,
respectively. The tangential component of the Lorentz force is in a direction opposite
to the fluid rotation, and the radial component is in the direction related to the
position coordinates (r, θ). The tangential component of the Lorentz force can be

evaluated as Ft =
1
2
σωr0B

2
0 sin(2θ). For the cylinder, all variables except θ are

independent of z.
For the constant temperature boundary condition, the heat flux across the walls

is considered to be constant. It is determined by considering the temperature of the
computing point near the source and heat flux,

Tn+1
ref =

1
ni

∑

j

[
Tn+1

j − q′′

k
4 yj

]
w (| rj − ri |) , (16)

where k is the thermal conductivity and q′′ is the flux.

5. Conclusions

In this work, the modeling of the magnetohydrodynamic phenomena related to
electromagnetic levitation (EML) and magnetic stirring, has been considered. The
fluid was modeled as a three dimensional particles system. The MPS method which is
based on moving particles and their interaction has been described. Grids commonly
used in FEM-based and Eulerian approaches are not necessary. The partial differential
equations, i.e. Navier-Stokes equations, are discretized by particle interaction models
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according to a weight function. A surface tension term formulation in the Navier-
Stokes equation was used. A calculation model of surface tension was presented.

Two particular models have been taken into consideration: levitated droplet for the
EML case and a rotating cylindrical sample for the electromagnetic stirring. The ex-
ternal/internal force have been evaluated on each particle, and the associated bound-
ary conditions imposed.

Using this approach it will be show through numerical simulation that this method
allows a good way for the study of fluid flows time-dependent phenomena i.e. three-
dimensional unsteady flows, complex turbulent flows, and associated surface defor-
mation.
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