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The Generalized Power Fractional Derivative Operators with
Respect to Another Function in the Kernel
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ABSTRACT. In this work, a new notion of the fractional derivatives with non-singular kernels
the so-called power Caputo and Power Riemann-Liouville (R-L) operators associated with
another function in the kernel are presented. The new defined operators are the generalization
of different operators found in the literature. Some basic properties and formulas of the new
operators are discussed. Additionally, novel formulas and properties of fractional derivatives
and integrals in the Power Caputo and Power R-L senses are presented in this study.
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1. Introduction

The fractional derivative is a generalization of integer order classical derivative. De-
spite fractional calculus’s impressive 325-year history, many questions remain unan-
swered from both a theoretical and practical standpoint. Abel solves the tautochrone
problem using fractional calculus [1]. Researchers’ attention is drawn to the use of
fractional calculus in differential and integral equations by this work [2]. Many mathe-
matical models have been created in recent years using the topic of fractional calculus
with boundary conditions to address a variety of real-world problems. The fractional
order derivatives correspond to physical representations of diverse phenomena found
in a range of disciplines, including as dynamic systems, physics, biology, and mechan-
ics [3]. One of the main topics of study for fractional order differential equations is the
existence theory of results, which is something that analysts are closely monitoring.
It is quite difficult to get a precise solution for a differential equation of fractional
order.

On other side, the modeling of memory effects has changed recently, as evidenced
by a thorough review of the fractional calculus literature. These modifications include
taking into account the exponential outcome when using the Caputo—Fabrizio deriv-
ative [1], Atangana-Baleanu and Al-Refai operators [5, 6], the modified Atangana-
Baleanu operators [7], and the new generalized fractional operator of Hattaf [8, 9].

2. Preliminaries

Let’s review the key terminologies.
The definitions of beta and gamma functions from [10] are as follows.
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Definition 2.1. The widely recognized Gamma function, which is defined by

r(6) = 0°~te=%dn, R(6) > 0.
0

Definition 2.2. The well-known Beta function is described as follows:

1
B(u,v) = / 61 (1 —0) " 1a,
0
where R(u) >0, R(v) >0

And also, its relation with Gamma function is given by

I'(w)l(v)
B = ——.
(1) = B

Definition 2.3. Lotfi et al. [11] have recently presented the power M-L function in
the following manner:

= |

-3 rores g

I'(oj 4+ w)

where § € C, p > 1,R (o) > 0 and R (w) >

Remark 2.1. Special cases of power M-L function are:
(1) If we take 0 = w = land p = e, we get

c RS
E1,1(9)—;m—e9

(2) If we take w = land p = e,we get

(3) If we take p = e,we get
= F (o] + w)

Definition 2.4. [5] If ¢’ € H' (0,T), then the A-B fractional operator in Caputo
sense of order 0 < § < 1 is defined as:

K () [°
asc Dy (0) = 1_((3 / Es (_55 (9—19)“) Y (9)d9, 9 > 0.
And its associated integral operator is provided by
1-94 K(5) [° 5
= —_— _ J— > .
ascliy (0) K0) (9)+1_5/0 0 — )1 (9)dd, 9 >0 (2)

Definition 2.5. [5] Definition of A-B fractional operator of order 0 < ¢ < 1 associated
with weighted function, for a given ¢’ € L (0,T):

K (9)

1_5/09155 (~e5(0-9)") @ (@) ¢ (9) a0, 0> 0,

aBc DY (0) =
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and its associated integral operator is given by

1-6 K() 1 v 5
Lv(0)=—<v(O)+——=—— [ (0-9)=®)¢@)dd, J>0.
Al 0) = g7t O + T [ 0= =@ v @)av. 0>

The normalized function K (A), has property where K (0) = K (1) = 1.

Definition 2.6. [3] With regard to the weight function w(6), the new generalized
fractional derivative of order § in the Caputo sense is defined as

v K d
Dl ) = 1= [ Bl -0 ) 0w, )
where @ € C! (r,s), @ > 0 on [r S] K (19) 1s normalization function follow K (0) =
K(1)=1 ¢ = L{g and E, (0) = ZJOO o W is the M-L function of parameter o.

It is important to keep in consideration that the definition given above refers to certain
cases that can be found in the literature.

Remark 2.2. In (3),
(1) When w () =1 and o = § = 1, then we get definition defined by [5]

[’
DYy (0) = i{_(ég/ exp [—&5 (0 — V)] ¢’ (9) dY.

(2) When w () =1 and 0 = v = ¢, then we get definition defined by [5]

DYGY (0) = i(a; / "B [~es (=0)°] & (@) dv.

(3) When o = v = 4, we get definition defined in [(]

K@©®) 1 [° d
0300 = T [ B [-2 0~ 0] (@) 0) 0.

We develop a family of power fractional operators (PFOs) that extend the existing
generalized fractional operators, based on a generalized power M-L function and their
numerous implications, our novel mathematical idea enables us to expand and unify
the fractional literature. The power parameter p is use in our paper. Many of the
cited results can now be generalized and unified thanks to the power fractional calculus
that is currently being introduced. This makes it possible for scientists, engineers,
and researchers to choose the right fractional derivative in relation to the phenomenon
they are studying in a natural way because our new definitions include the parameter
p. In the numerical simulation phase, the effect of the parameter p on a system is
demonstrated. Here choosing the appropriate value for p is essential for describing
actual data using the selected model and for describing the existing trajectories,
and to accurately forecast the asymptotic behavior in subsequent times. For more
information, refer to our section on resolving power fractional differential equations
(PFDEs). Additionally, the inverse power fractional integral operator (PFIO) of the
defined power fractional derivative is constructed by the application of the convolution
theorem and the Laplace transform. In conclusion, we assert that our PFOs have
great possibility of progress of computational modeling across a number of domains
and within the area of mathematics itself.

The structure of the paper is as follow: with the power M-L Function serving as it
kernels, the new generalized power fractional derivative operator (Caputo’s definition)
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is the focus of Section 3. The definition of R-L and the properties of the new power
fractional derivative in the Caputo sense are given in Section 4. The Laplace transform
of the new power fractional Derivative is shown in Section 5. The new Generalized
power fractional integral allied to the new Derivative is shown in section 6. Section
7 presents some novel Calculus and Characteristics. The conclusion is presented in
Section 8.

3. The New Generalized Power Fractional Derivative Operator

Inside this part, we defined a new power fractional derivative operator by using the
power M-L function as it kernel.

Definition 3.1. Suppose that the Sobolev spaces K! (7, s) of order one is defined as:
K' (r,s) = {ue L?(r,s),u”(r,s)}

and consider § € [0,1),0,v > Oand ¢ € K'(r,s). The new generalized fractional
derivative of order ¢ of power Caputo sense of the function 1 (6) with respect to the
weight function

K(5) 1 d

DY) = T3 = [ B s () = XO) ) g (=) ()0 ()

where @ € C! (a,b),@ > 0 on [a,b], K (§) is a normalization function obeying

and PE, 1 (6 91111/)

(0) =1 ¢e=1—5 ~ T (ou+1)

where p > 1 is the power M-L function of parameter o.

The special cases of (4) are:

(1) If we take x(f) = 0 in (4), then we get the special case of [12].

(2) If we take x(0) = 0, w(#) =1, c = v =1 and p = e, we get the power
Caputo—Fabrizio fractional derivative [1].

(3) When x(¢) = 0, w(f) = 1, o=v=0 and p = e, we get the A-B fractional
derivative [5].

(4) When x(0) = 0 and p = e, we obtain fractional derivative that recently defined
in [8].

Similarly, one can get many existing operators by applying certain conditions on

x(6) = 6.

4. Properties of new power fractional derivative of Caputo sense

For all scalars cq, ¢, the power fractional derivative in the Caputo meaning is a linear
operator and functions v, ¢ € K (r,s).

(1) 2EDYTY (19 (0) + 20 (8)) = exZO DL (0) + et DT 20 (0)

a,0,w a,0,w

(2) pcD‘S‘;lfw( ) =0, for all constant function 1 (§) = m.
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(8) 4°DL5 v ()= 59 2y S Bt [=20 (x(0) = x(¥))"] 25 (w¢)) (9) di, where
K(0)=1,¢e5 = %5,

PEDYS Y (0) = —— (@ (0) ¥ (0) — w (a) ¥ (a)) .

Definition 4.1. Let § € [0,1),0,v > 0 and ¢ € K' (r,5). The new power fractional
derivative of order ¢ of R-L sense of the function 1 (0) with regard to weight function
w (0)is provided by

11 d[°
pRL 5,0,0 _ P _ _ K
DG 0) = 5 < ag . B (20 (10) = X)X (0) (9) (9 di.a <.
If 6 =0 and p = e, then we have

0
VDL (0) = —g g ) ol ((0) = X)X (0w (0) a0

1 1 d [°
QRLDSZZJZ;w (0) = mm@/ “Eo1 (0) X' (9)wwy (9) d

Moreover, for all scalars ¢y, s, the new power fractional derivative is a linear operator
in the sense of R-L and functions v, ¢ € K* (r, s), then we have

nREDYGY <c1w (0) + 20 (6))

= 1d/9PE [— ) — y(IN1 ¥ (¥ ) 6 0))d9
—I_W @ ). B (25 (0) = XO)IX @) (9) (ex) (6) + a0 (0))
_ClpRLDMU 0.0,

K (4)
Ce)+ LD o (6).

Theorem 4.1. Assume that wi is an analytical function. Then we have

BO L1 g, e (x(6) - x(@)] w0 (a).

DRLDOY 4 (0) = 2O D250 4 (0)+

a0, a0, 175@(9))(’(9)
()
Proof. As w1 is an analytic function then
@) @) =3 F0O (i) vio)y
i=0 :
and
PREDYG 4 (6)

K () 1 1 d 900(—65((9) ) Inp)" <= ( ww i
- 15@(0)X’(9)cﬂ9/auz;) p(gw Z:; (9) = x(0))" d
E@) 1 1 d () (—eslnp)” (@) (0) (7, i+ok

=5 = (0) \'(0) &b ;; T (o'u 1) i / X (9) ((0) = X)) i

esInp)® (wep) T (0 [ itvutl
K((S) 1 1 { Zz OZu 0 F(au—?—l)p) ( w)z' L ()(14)-(1()71)—3-1) }

—1 eslnp)™ w1 2] 9 a vu+i
4T T, S i) (@) (@) () —xla))
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K@) 11
T 10w (0) x’(9)
§ { Pt Zu ) ooy = 7 ((6) — x ()" di }
+ 3020 S (@) (0) x (x(0) — x(0))’ oz SF22E (x(0) — x(a)™
§,0,0 K (6) 1 1 v
KDL O+ T ey B e 0= )10 (@),
This brings the proof to the conclusion. O

5. Transformation of New Power Fractional Derivative via Laplace
This part involves the calculation of the Laplace transform of the power fractional
derivative of the R-L and Caputo types.

Proposition 5.1. Let § € (0,1] o,v > 0 and ¥ € K'(r,s), then the generalized
fractional derivative in Caputo and R-L sense can be represented in series form as:

Cpoow ’U’LL + 1 v [ RL you+1 (ww)
x Poo=v F (cu+1) —esInp) (x T e -~ (9)
and
5 Uu + 1 B
PRLD5UU I u (RLIU'U, ) ) ;
w0 =775 F (Gut1) " ° np)" (X 3o ) (0),

where (RLI;”; w%/;) (0) is the generalized weighted R-L fractional integral defined by
[13].

Proof. Since

v > (_ 0) — vl u
PEyq (—e5 (x(8) — x(a))’) = Z( £ (X(anuﬁ—(?)) np) ’
u=0
the above series is uniformly convergent.
Therefore,
PODy G (0)
K@) 1 [° ) /
— 10— | B (s (106 < X0 (i (0)a0

0 > (- - “Inp)* [ (=)’
KO L[ g $ Ce 00 (1)

11— w( s I'(ou+1)

K (6) x= (—esInp)" T (vu + 1)
B 1—62 I'(ou+1)

u=0

1

X .
w(OT (vu+1

_K@) L) (RLIw+1 ((ww')) @,

a0,
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Similarly, one can get

o K@) =T (vu+1 ou
uotizow = KOS LD i)

With the aid of Proposition 5.1, we prove the following:
Theorem 5.2. The Laplace transform oprDgg; s given by
1= {2°Dh b (0)} (5)

K (0) [sLE ¥ (0)} (s) —w (@) (a)] X [(—esnp\" T (vu +1)
N (1-6)s 7;( sY )I‘(Ju+1)’ (6)

where LY {1 (0)} (s) is the generalized weighted Laplace defined by Jarad et al. [13].

Proof. By utilizing Proposition 5.1, we have

1z {2D5ne )} )
S s (2 () o)

wX

K@)~ T(vu+1) P
= 1_ O]_" UU+1 Svu+1( E51np) LX {D}ﬂ,xw(e)} (5)7

where (DL x) (0) =

w pC 5:71)
LX {X 0,0,

(9) see [13]. Thus, we get

<>}<s
K (6) [SLE {6 (0)} (5) = w (@) ¥ ()] & [ —e5lp) " T (vu + 1)
(1—-4)s Z( z” )I‘(ou—i—l)'

u=0

Lemma 5.3. If we take 0 = v and a = 0 in Theorem 5.2, then we have

L% {w N} (s) — s tw (0 0
L2 {2055 56 (0)} (s) = }1(555 =0y ia)ii;hlp 09O

Theorem 5.4. The Laplace transform of QRLD‘S Y s given by

a,0,w

1z iz @) 0= 15 3 (T0) fE R e e, ©

(7)

Proof. Similarly, by Proposition 5.1, we have

LY {;‘;RLDg:g;;w(o)} 5(; T mﬁ+ 1sm( esInp)" LT {(0)} (s)
u=0
K (%) « sglnp T (vu+1) -
-GS () e wen e,

This completes the proof. O
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Lemma 5.5. If we take 0 = v in Theorem 5./, then we have

s7LY 0)} (s
sz gz obo = TGN ®

Remark 5.1. When x(0) =0, w () =1, c = v = 0 and p = e, then the Laplace
transform of the A-B fractional derivatives is obtained in the manner described by
Caputo and R-L in [6].

Lemma 5.6. The Laplace transform of PE, 1 (—ex (x(0) — x(a))") is given by
LZ (@ (01 Eo (=25 (x(6) — x(@))} (s >
1 2 [ —e5 (x(0) = x(a)’Inp\"“ T (vu 4+ 1)
3 (o) .

Proof. As we know that

PEaa (a3 (x(6) = xla))") = 3 N MOT Pl

u=0
L7 {6 ()P Eat (—25 (x(8) — x(a)")} (5)

= (—¢ 0) — x(a))’Inp)"”
:L;ﬂ{z( 5<x<rzaux+<l>)> P) }(s)

u=0

=3 C R () X)) o)

I'(ou+1)
li ) lnp T (vu+1)
s '(ou+1)

O

Theorem 5.7. Let § € (0,1] o,v > 0 and ¢ € K'(r,s), then the relation between
the modified Caputo and R-L fractional derivatives is given by

iCDg,g,;qp (9) _ pRLDgg;w (9) _ .i(_((s(g pEg,l (651(;(((99)) — X(a)) ) (ww) (a)

Proof. With the aid of Proposition 5.1 and Lemma 5.6, we have
w 4,0,
Lz {2D55e e (0)} (s)

K (0) (—esInp)” lng {w(0)} (s)

0
S (meshnp) =D Gy @)

vu+1
o F(ou+1)s

= 15 (D350 (0} () - LT {0 @) Bt (e (4(8) = x(@))")} (9)

The required result is obtained by applying the inverse Laplace transform. O
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6. The New Generalized Power Fractional Integral Allied to the New De-
rivative

The definition of the new generalized power fractional integral allied with the new
generalized derivative is established in this part.
Theorem 6.1.
DG (0) = 4 (0)
has a unique solution given by
1-6 Alnp 1
0) = ——
S SO A SN G

Proof. We have

4
5 | O =x@) )= yar. )

REDGG TR (0) =0 (0).

0,0,

By using weighted Laplace transform and applying Lemma 5.6, we find

IEO}) = T 0O 6)+ i S LT 0O} o

1-9 1—9deslnp

_ T@Lf {(0)} (s) + K (5) T (o)

LT {x(0)" + 0 (6)} (5).

The passage to inverse weighted Laplace leads to

K0 = TP O+ o e (07 0 (0)

_ n 0 1y
0 = PO FETE S ), KO- X0 0= @) ) do
which completes the proof. O

Definition 6.1. When v = o, the generalized fractional integral that corresponds to
the new fractional derivative is defined as

1-96
PRLIB,H,J ¢ (0) _ 7 (5)

X a,l,w

dlnp 1 o o—1
VO i o 2 OO x0T ()0 (19()1;9.

This generalized fractional integral coincides with the A-B fractional integral when,
x(0) =0, w(@) =1, p=candv = ¢ = J, and with the weighted A-B fractional
integral defined by Al Refai [12] when x(0) = 60, d = ¢ = v and p = e. Also, we
recover the original function when § = 0 and the ordinary integral when 6 = 1.

Theorem 6.2. Let u be a continuously differentiable function and ¥ be a continuous
function. The new generalized fractional derivative of the function v, for any constant
¢, is defined as

w (0)u(0)
b (0) = %) / b (0) v (13)

@ (
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Satisfies the following property:
C 0,00
D,y (0)

a,f,w

_ K@) va)
1—6w ()

= (@ (0) u(0) 3Dy e u (0) PEoa [—es (x(0) — x(a))’]

a,0,w

v 0 1
_ K@) 1 |00 = xr) B s ()~ x(o) ol ()

(1—68)>%w(0)
where
@ (r)u(r)
V) = b @OuE) @OuE) - =)+ [ e@d. ()
w (0)u(0)
Furthermore, we have the following inequalities:
(1) If ¢ is increasing function, then
PEDYGL (0) < v (@ (8) u (0)) 1°DYg L u (6). (15)
(2) If ¢ is decreasing function, then
PODRG (6) = 0 (w (6)u () DYy u (6). (16)
Proof. By using equation (4), we have
K(§ o Y )
DL 0) = 12— [ PEr e ((0) = X)) 1 (w (D) u ) (w) (1)
(17)
Consider
h(0) =3°Dyge b (0) — v (w (0) u(0) X Doyt u (0). (18)
Then,
K (9 o .
hO) = 13— [ PEarless (00~ x4 (= () u(r)
— ¥ (@ (0) u(0)) (wu)' (7)dr. (19)

Obviously, v' (1) = (¢ (w (1) u (1) — w (0) u (0))) (wu)/ (1) and v (0) = 0. Integrating
by parts the last integral, we find
K@) 1 !

hO = T3 B 5 O x0T ()] (20)

v 0 1 v
- flK ;‘;)wl@ | O = xo) T PE? s (®) ~ (7)) 0 ()

Since ZTTZ PE;1[—es (x(0) — x(7))"]v (7)] = 0, we have

w0 = T rE, e () - X)) (1)

0
S [ O X TR s () -3 el ()

Now, we consider the following function:

bov () =0 (@ =)+ [ " (9) do. (22)
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Obviously ¢, ,, (1) =9 (1) — ¢ (c). If ¥ is an increasing function, then the function
¢c,yp (T) is decreasing on the interval (—oo, ¢] and increasing on [¢, +00) with ¢.y (¢) =
0. Hence, ¢.y (7) has the global minimum at 7 = ¢. So,

Gep (1) >0, for all (c,7) € IR? (23)

Since v (T) = ¢w(0)u(9),s (@ (T)u (7)), we have v (7) > 0 for all 7 € IR. This proves
1. Likewise, we can simply demonstrate 2. U

7. Novel Calculus and Characteristics

Let we denote pcDg Z 7 by pcD‘S 7 . Based on the above results, we can define gener-

alized fractional 1ntegra1 operator and some basic formulas as follows:

Definition 7.1. The generalized fractional integral operator corresponding to fCCDg:‘;
is defined by

1-9 dlnp
pRL 6 o 0 RLIU 0 24
20 (0) = g5 (0) + T R 0), (24)
where 17 is the generalized weighted power R-L fractional integral of order o
defined by

11 0 1
fLI;’@w(@):F(J)m/ (x(0) = x(¥)" X' (Nw () (9) d9.  (25)

Remark 7.1. As a unique instance of (24), the Atangana-Baleanu fractional integral
operator [6] can be considered as follows: w(f) =1, p=e and 0 = 4.

Theorem 7.1. Assume that 6,v € [0,1), 0,& >0, andv € K' (r,s). Then
(1) )p;CDg:J (pCDv§ 1/}) ( ) 7pCDv§ (pCD5a ) (9)
(2) g)CRLIg:o (pRLI'U,f w) ( ) _ pRLIU,§ (pRLIzS R w) ( )

a, o
This indicates that derivatives and generalized fractional integrals are commutative

operators.

Proof. First, we demonstrate (1) in Theorem 7.1. Using Proposition 5.1, we obtain

wDY$ /
=D\

wX

K 5 > u ou
(D% (D) 0= T3 3 (et P10
0

u=

_ K (9) = uw RL joutt | K (V) = 2RL gz (wq/’)/
m;(*&slﬁp) x daw |12 > zz —eyInp)" g p— (0)

= K(U ZZ —eslnp)” (=&, lnp)ZRLTM"HSl'H ((ww/) ) @).

w
quO X

Due to the symmetry of the last equation in § and v and also in cand £. To prove
(2), we have
- v, 1-96 v, dlnp - v,
PRI (PRI S) (0) = K0 (FFISw) () + VLT (RIS Y) (6)
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1-6 (1-w vinp pp ¢
7 (ko) O+ Rt ev 0)

PR (T O+ a0 )
(1=6)(1—-v) 1}(1—(5)lnpRL5
“NoNE YO ( KO K ()~ o=’ (9)>
0(l—v)lnpg, . Su(lnp)? gL ¢
SRR e 0+ (R R e @)
This completes the proof. O

Theorem 7.2. Suppose § € [0,1), 0 >0, and ) € K* (r,s). Then,
(1) I R Dygw) (0) =¥ (0) — (w(a) ¥ (a) /w () -
(2) 29D, RRFIZZY) (0) = ¥ () — (@ (a) ¥ (a) /= (9)).

Proof. In alignment with equation 4 and Definition 6.1, we have

VI (RCDaTw) (0)

!
w
s X

- 7(6) li(_(é(; > (—eshnp)" FFIgeH <(ww) > (9)]
PR, [fji; 3 (mestup)" BEIZH (W) <9>]

!
w
=0 X

wx’ wx’

:i (—65 lnp)" 5/:]3’7:;1 ((ww ) (9)_ i (—55 lnp)qul )};‘:ng’(;-&-l)-&-l ((W¢) ) (9)
u=0

u=0

Hence

PRI (29D ) (6),
=Y (~eslnp)" FHIZ (%) (6)=>_ (~ealnp)" FrIZ <(ww) ) ()
u=0

u=1 wX/
Cnn (@)
- X Ia7w ( WX/ ) (9)
0 !
:% / (w) () o

1
- m(w(e)qp(e)—w(a)w(a))~

Now, we will prove 2. With the aid of equation 4, we have

1-0 &~ wx'

e ) R )’
D (1) (0) = O S (o) SLfgf;“(( Chzt) ) )
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K (9) wRLyout1 | L =0 (fm/’)/ dlnp (WQLIg,wz/’)/
11— uz:%( eslnp) 3 i K (§) wy + K (0) wx’ ©)

= (el BRI (W’? ) 0

w
u=0 X

(417 )

+€51npz EglnpuRLIgf;l w;;w (0)
_ - _ n u | RL you @ RL ou 1
=3 (et [P0 0) (@) @ 12 (5 ) )
estu 3 (eotnp)” (12800 0) ~ ) 0 P12 () )]
Thus,
1Dy, (BRI 0) 0)
o - - n u | RL you o RL Uu 1
=3 (st (1250 0) — @) @ P2 () )
= u ou Uu 1
-3 et [P0 0) () 0 P02 (5 ) )
__ RL70 ~ (o) (@) RE IO 1
IR 0) - @) @ P () )
_ (o~ =@
This completes the proof. O

8. Conclusion

Using the Caputo Fabrizo fractional derivative, A-B fractional derivative, and R-L
fractional derivative, we have presented a novel concept of power fractional derivative
associated with generalized function in the kernel in this study. We generate distinct
results using the power M-L function notion. We achieved the intended results by
applying new modified power fractional derivative formulas and attributes. One can
restore the known operators by applying certain conditions on x(6). If we take x(8) =
1 and p = e, then we get the work done by [3, 9].
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writing this paper. All authors read and approved the final manuscript.
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