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On Integral Extension of Ankeny and Rivlin-Type Inequality

Nirmal Kumar Singha and Barchand Chanam

Abstract. A well-known theorem due to Ankeny and Rivlin states that if p(z) is a polynomial

of degree n having no zero in |z| < 1, then

max
|z|=R≥1

|p(z)| ≤
(
Rn + 1

2

)
max
|z|=1

|p(z)|.

In this paper, we obtain an extension as well as an improvement of this inequality to the
integral setting.
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1. Introduction

Let p(z) be a polynomial of degree n over the set C of complex numbers, and for each
real q > 0, we define the integral mean of p(z) on the unit circle |z| = 1 by

‖p‖q =

{
1

2π

∫ 2π

0

|p(eiθ)|qdθ
} 1
q

.

If we let q → ∞ in the above equality and make use of the well-known fact from
the analysis [15] that

lim
q→∞

{
1

2π

∫ 2π

0

|p(eiθ)|qdθ
} 1
q

= max
|z|=1

|p(z)|,

we can suitably denote

‖p‖∞ = max
|z|=1

|p(z)|.

Also, we denote M(p,R) = max
|z|=R

|p(z)|.

Serge Bernstein [4] established a relation that relates an estimate of the size of the
derivative of a polynomial to that of the polynomial itself in the uniform norm on the
unit circle in the complex plane which states that if p(z) is a polynomial of degree n,
then

‖p′‖∞ ≤ n‖p‖∞. (1)

Inequality (1) is best possible and equality holds only for polynomials of the form
p(z) = αzn, α 6= 0 being a complex number.
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In 1945, S. Bernstein observed the following result, which in fact is a simple con-
sequence of the maximum modulus principle (see [13]) also known as the Bernstein’s
inequality. It states that if p(z) is a polynomial of degree n, then for R ≥ 1,

M(p,R) ≤ Rn‖p‖∞, (2)

Equality in (2) holds for p(z) = αzn, α 6= 0 being a complex number.
It was proved by Bernstein himself that inequality (1) can be obtained from in-

equality (2). However, it was not known if inequality (2) can also be obtained from
inequality (1), and this has been shown by Govil et al. [7]. Thus both the inequalities
(1) and (2) are equivalent in the sense that anyone can be obtained from the other.

Inequalities (1) and (2) can be obtained by letting q →∞ in the inequalities

‖p′‖q ≤ n‖p‖q, q > 0, (3)

and

‖p(Rz)‖q ≤ Rn‖p‖q, q > 0, (4)

respectively. Inequality (3) was proved by Zygmund [22] for q ≥ 1, and by Arestov
[2] for 0 < q < 1, while inequality (4) was proved by Hardy [8].

Ankeny and Rivlin [1] considered a class of polynomials p(z) of degree n having no
zero in |z| < 1, and obtained a refinement of inequality (2) that for R ≥ 1,

M(p,R) ≤ Rn + 1

2
‖p‖∞. (5)

The result is best possible with equality only for polynomials p(z) = λ+µzn, |λ| = |µ|.
As an improvement of inequality (5), Aziz and Dawood [3] proved under the same

hypothesis that

M(p,R) ≤ Rn + 1

2
‖p‖∞ −

Rn − 1

2
m, (6)

where m = min
|z|=1

|p(z)|.

Boas and Rahman [5] proved the integral extension of inequality (5) for q ≥ 1,
while Rahman and Schmeisser [14] extended it for q > 0. They established that if
p(z) is a polynomial of degree n having no zero in |z| < 1, then for R ≥ 1,

‖p(Rz)‖q ≤
‖1 +Rnzn‖q
‖1 + zn‖q

‖p‖q. (7)

The literature has witnessed significant attention towards extending Zygmund-
type inequalities to their integral counterparts (see [17], [21], [18], [9], [16], [19], [11],
[12], [10]), while extending Ankeny and Rivlin-type inequalities to their integral coun-
terparts has a unique trajectory. Boas and Rahman pioneered the introduction of
integral analog of inequality (5) way back in 1962, and it took about 26 years for
Rahman and Schmeisser to provide an extension of the same. Since then, there has
been a noticeable absence of generalizations into integral means for this particular
type of inequalities.

This gap in the research landscape sparks curiosity and emphasizes the need to
delve into potential extensions in integral mean versions of the Ankeny and Rivlin-
type inequalities. In this context, we have successfully extended inequality (6) due
to Aziz and Dawood [3] to an integral setting which also gives an improved form of
inequality (7).
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2. Lemmas

Definition 2.1. For γ = (γ0, ..., γn) ∈ Cn+1 and p(z) =

n∑
ν=0

aνz
ν , we define

Λγp(z) =

n∑
ν=0

γνaνz
ν .

The operator Λγ is said to be admissible if it preserves one of the following prop-
erties:
(i) p(z) has all its zeros in {z ∈ C : |z| ≤ 1},
(ii) p(z) has all its zeros in {z ∈ C : |z| ≥ 1}.

Lemma 2.1. Let φ(x) = ψ(log x), where ψ is a convex non-decreasing function on R.

Then for all polynomials p(z) =

n∑
ν=0

aνz
ν of degree n, and each admissible operator

Λγ , ∫ 2π

0

φ
(
|Λγp(eiθ)|

)
dθ ≤

∫ 2π

0

φ
(
c(γ, n)|p(eiθ)|

)
dθ,

where c(γ, n) = max(|γ0|, |γn|).

In particular, the lemma applies with φ : x 7→ xq for every q > 0, and with
φ : x 7→ log x as well. Therefore, we have

‖Λγp‖q ≤ c(γ, n)‖p‖q for q > 0. (8)

The above lemma is due to Arestov [2].

Lemma 2.2. For some fixed a, b ∈ C, and some λ ∈ C, with appropriate choice of
the argument of λ, |a+ λb| can be made equals either |a|+ |λ||b| or ||a| − |λ||b||.

Proof. Suppose a = |a|eiθ1 , b = |b|eiθ2 , and λ = |λ|eiθ, then

|a+ λb| =
∣∣∣|a|eiθ1 + |λ||b|ei(θ+θ2)

∣∣∣
=

∣∣∣|a|+ |λ||b|ei(θ+θ2−θ1)
∣∣∣ .

On choosing θ as −(θ2 − θ1) or π − (θ2 − θ1), the result follows readily. �

3. Main result

In this paper, we obtain the following interesting result concerning integral mean
setting. In fact, we prove

Theorem 3.1. Let p(z) =
n∑
ν=0

aνz
ν be a polynomial of degree n having no zero in

|z| < 1, then for R ≥ 1, for every complex number λ with |λ| < 1, and for each q > 0,

‖p(Rz)− λm‖q ≤
‖1 +Rnzn‖q
‖1 + zn‖q

‖p− λm‖q, (9)

where m = min
|z|=1

|p(z)|.
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Proof. Since the polynomial p(z) has no zero in |z| < 1, by Rouche’s theorem, for
every complex number λ with |λ| < 1, the polynomial G(z) = p(z)− λm has no zero
in |z| < 1.

For R ≥ 1 and γ ∈ R, the polynomial
n∑
ν=0

(n
ν

) (
Rν + eiγRn−ν

)
zν

has all its zeros on the unit circle [13, (see problem 26, p.108)]. Since G(z) does not
vanish in |z| < 1, by Szegö’s convolution theorem [20] the same is true for

ΛG(z) : = (1 + eiγRn)(ao − λm) + (R+ eiγRn−1)a1z + ...+ (Rn + eiγ)anz
n

= G(Rz) + eiγRnG
( z
R

)
.

Therefore, Λ is an admissible operator. Applying (8) of Lemma 2.1, we obtain∫ 2π

0

∣∣∣∣G(Reiθ) + eiγRnG

(
eiθ

R

)∣∣∣∣q dθ ≤ |1 +Rneiγ |q
∫ 2π

0

|G(eiθ)|qdθ. (10)

Since

f(z) :=
znG( 1

z )

G(z)

is holomorphic for |z| ≤ 1 with |f(z)| = 1 on the unit circle, it follows from the
maximum modulus principle that |f(( 1

R )eiθ)| ≤ 1 for 1
R < 1, and so∣∣∣∣∣RnG( e

iθ

R )

G(Reiθ)

∣∣∣∣∣ ≥ 1 (R ≥ 1). (11)

Now, integrating (10) with respect to γ on [0, 2π], and using (11), we obtain∫ 2π

0

∫ 2π

0

|G(Reiθ)|q|1 + eiγR(θ)|qdθdγ ≤
∫ 2π

0

|1 +Rneiγ |qdγ
∫ 2π

0

|G(eiθ)|qdθ, (12)

where R(θ) =
RnG( e

iθ

R )

G(Reiθ)
.

It is known [6, Theorem 2] that if G(z) 6= 0 for |z| < 1, then |R(θ)| ≥ 1, and
therefore by a theorem of Hardy [8],∫ 2π

0

|1 + eiγR(θ)|qdγ ≥
∫ 2π

0

|1 + eiγ |qdγ

for all θ ∈ [0, 2π]. Using this in (12), we have∫ 2π

0

|G(Reiθ)|qdθ ≤
∫ 2π

0
|1 +Rneiγ |qdγ∫ 2π

0
|1 + eiγ |qdγ

∫ 2π

0

|G(eiθ)|qdθ,

i.e.{∫ 2π

0

|p(Reiθ)− λm|qdθ
} 1
q

≤

{∫ 2π

0
|1 +Rneiγ |qdγ

} 1
q

{∫ 2π

0
|1 + eiγ |qdγ

} 1
q

{∫ 2π

0

|p(eiθ)− λm|qdθ
} 1
q

.

This completes the proof of the theorem. �
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Remark 3.1. Letting q → ∞ on both sides of inequality (9) of Theorem 3.1, we
obtain

max
|z|=1

|p(Rz)− λm| ≤ Rn + 1

2
max
|z|=1

|p(z)− λm|, (13)

from which we can further deduce inequality (6) as discussed below:
Let z0 on |z| = 1 be such that max

|z|=1
|p(Rz)| = |p(Rz0)|, then

max
|z|=1

|p(Rz)− λm| ≥ |p(Rz0)− λm|

≥ ||p(Rz0)| − |λ|m|. (14)

By the minimum modulus principle, we know |p(z)| ≥ m for all |z| ≥ 1.
Then, for R ≥ 1 and |z| = 1, since |Rz| = R ≥ 1, we have

|p(Rz)| ≥ m > |λ|m. (15)

Using (15) to (14), we get

max
|z|=1

|p(Rz)− λm| ≥ |p(Rz0)| − |λ|m. (16)

Combining (16) and (13), we have

max
|z|=1

|p(Rz)| − |λ|m ≤ Rn + 1

2
max
|z|=1

|p(z)− λm|. (17)

Again, let z1 on |z| = 1 be such that

max
|z|=1

|p(z)− λm| = |p(z1)− λm|. (18)

For |z| = 1, since |p(z)| ≥ m, we have for |λ| < 1,

|p(z)| − |λ|m > 0. (19)

Applying Lemma 2.2 on the right-hand side of (18), and in view of (19), we have

|p(z1)− λm| = |p(z1)| − |λ|m. (20)

Using (20) to (18), and further using the fact that |p(z1)| ≤ max
|z|=1

|p(z)|, we get

max
|z|=1

|p(z)− λm| ≤ max
|z|=1

|p(z)| − |λ|m. (21)

Combining (21) and (17), we get

max
|z|=1

|p(Rz)| − |λ|m ≤ Rn + 1

2

(
max
|z|=1

|p(z)| − |λ|m
)
,

i.e.

max
|z|=R

|p(z)| ≤ Rn + 1

2
max
|z|=1

|p(z)| − Rn − 1

2
|λ|m. (22)

For convenience, we denote the quantity on the right-hand side of the above inequality
as

A(|λ|) =
Rn + 1

2
max
|z|=1

|p(z)| − Rn − 1

2
|λ|m.

By derivative test, it follows that A(|λ|) is a non-increasing function of |λ| ∈ [0, 1),
and hence

A(1) ≤ A(|λ|) ≤ A(0).
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Also, we can see that A(|λ|) is continuous with |λ|, and so it is evident that letting
|λ| → 1, it gives the most improved bound of (22) matching the bound of inequality
(6) due to Aziz and Dawood [3]. While putting |λ| = 0, we get inequality (5) due to
Ankeny and Rivlin [1].

For a better understanding of the nature of variation of bound (22), for simulta-
neous changes of |λ| and R, we consider the example below.

Example 3.1. Consider the polynomial p(z) = z2 − 7z + 12 with no zero in |z| < 1.
For this polynomial, we have max

|z|=1
|p(z)| = 20 and min

|z|=1
|p(z)| = 6. Then it can be

easily seen that for R = 3, by inequality (5), we have max
|z|=3

|p(z)| ≤ 100, while by

inequality (6), max
|z|=3

|p(z)| ≤ 76, and an improvement of 24% over the bound obtained

from (5).
Furthermore, it is of interest to depict graphically as in Figure 1, the variation of

the bound of (22) which corresponds to the height of a point on the surface represented
by the bound (22) for simultaneous changes of |λ| and R, and it is clearly seen that for
given R, the value of the bound keeps on decreasing as |λ| increases, and the values of
the improved bound for various R correspond to the heights of the boundary points
of the surface intersected by the plane |λ| = 1.

Figure 1. Surface graph of the function (|λ|, R) 7→ A(|λ|, R) for
0 ≤ |λ| < 1 and 1.5 ≤ R ≤ 2.

Remark 3.2. Putting λ = 0 in (9) of Theorem 3.1, we obtain inequality (7) proved
by Rahman and Schmeisser [14].

Remark 3.3. Our Theorem 3.1 could have some interesting implication concerning
the integral bound of the reciprocal polynomial znp( 1

z ) or conjugate reciprocal poly-

nomial znp( 1
z̄ ) of a given class of polynomials p(z) having all their zeros in |z| ≤ 1.

More precisely, suppose p(z) is a polynomial of degree n having all its zeros in |z| ≤ 1,
then both the reciprocal polynomials have all their zeros in |z| ≥ 1, i.e. have no zero
in |z| < 1, and hence we can well apply our theorem for finding the upper bound
of the integral estimate of these reciprocal polynomials on the circle |z| = R ≥ 1 in
terms of the integral estimate on the unit circle |z| = 1.
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