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ABSTRACT. This article investigates the existence of solutions for certain types of semi-linear
differential equations. Three specific problems are addressed: a problem involving semi-linear
differential equations with finite delay, a neutral problem, and a semi-linear neutral type
integro-differential problem with a nonlocal initial condition. The study utilizes a new fixed-
point theorem based on the concept of nondensifiability degree, which is broader than the
traditional measure of noncompactness and encompasses cases that were previously inaccessi-
ble. Additionally, an illustrative example is provided to support and clarify the findings.
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1. Introduction

Delay differential equations appear in models where the current state depends on its
past. These equations are prevalent in various fields, including economics, physics,
medicine, biology, and ecology. In some cases, knowing the solution at a single point
is insufficient to describe the evolution over a time interval. For a thorough overview
of the theory related to delay differential equations, refer to sources such as [3, 15, 5,

) ]'

The role of delay in various models can vary: it might represent the incubation
period of a contagious disease, the time required for accumulation, the time needed
for cell maturation, or the transformation of one type of cell into another. Delay
differential equations were introduced to model phenomena with a time lag between an
action on the system and the system’s response. For instance, in the birth processes of
biological populations (such as cells or bacteria), a certain threshold must be reached
before the system activates. V. Volterra initially introduced a general class of delay
differential equations in [28] while studying the predator-prey model. The theory of
delay differential equations saw significant development in the latter half of the last
century, with notable contributions from Bellman and Cooke [22], as well as Lunel
and Walther [5]. For further details, refer to [4].

In reference [27], the authors have investigated the existence of mild solutions
to a second-order semilinear integrodifferential equation under compact conditions.
Similarly, in [10], the authors have explored the existence, complete controllability,
and approximate controllability of mild solutions for the same problem, incorporating
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measures of noncompactness. In both works, the authors utilized Grimmer’s resolvent
operators. For further insights into resolvent operators and integro-differential sys-
tems, interested readers are referred to [0, 7, 21, 22, 27, 9, 8] and the related references
therein.

The authors introduced the concept of a-dense curves [12] in the 1980s . Cherru-
ault [13] and Mora [241] were primarily responsible for its creation. Mora and Mira
citeMoMi established the notion of the degree of nondensifiability (DND), which is
based on a-dense curves. Garcia [20, 18] demonstrated a novel fixed-point result
using the DND that is more applicable than the Darbo fixed point theorem and its
generalizations.

Evolution equations involving non-local initial conditions represent a generaliza-
tion of evolution equations with classical initial conditions. Since they incorporate a
broader scope of information, this concept offers a more comprehensive framework for
describing natural phenomena compared to the classical approach. Nonlocal condi-
tions, for instance, have the potential to be employed in the formulation of mathemat-
ical models for describing the progression of various phenomena. These encompass
nonlocal neutral networks, nonlocal pharmacokinetics, nonlocal pollution, and non-
local combustion. For additional insights into the importance of nonlocal conditions
across various applied sciences, refer to [11, 29], and the related references therein.

In particular, Diop et al. [14] studied the existence of mild solutions for a class of
nonlinear impulsive integro-differential equations with a nonlocal initial condition:

X' (p) = 3x(p) +R(p, x(p) + [; T (1)dp, i 0 < p <T,p#p,,

x(0) +9(x) = xo,

X)) = x(p;) = Lx(py)9=1,2,...,p,0 < p1 < p2 < -+ < pp < T,
where 3 generates a Cp-semigroup on a Banach space 20, T(p) is a closed linear
operator on 20 with time independent domain D(3) C D(Y). N : [0,T] x 0 — 2
and g : PC([0,T7],20) — 20 are continuous functions where the set PC([0,T],20) is
a Banach space.

Our findings fundamentally rely on the notable contributions made by Garcia [20,
] in investigating the existence of mild solutions for semi-linear differential equations
with finite delay in Banach spaces:

X' (p) = 3(p)x(p) =R(p: xp), if p €O, )

x(p) = ¢(p), if p € [=r,0],
where © = [0,T],R : © x C([-r,0],20) — 20 is a continuous function and the set
C([—r,0],20) is a Banach space of all continuous functions from [—r, 0] into 25. (27, ||-
lay) is a Banach space, and 3(p) : (3(p)) C W — 2, is closed linear operator on
2, with dense domain &(3(p)), which is independent of p, and ¢ : [—r,0] — 27 is
a continuous function. For any function x defined on [—r,T| and any p € [0,7T] we
denote by x, the element of C([—r,0],20) defined by:

Xp(0) = x(p+6), 6€l-r0.

The next step is to explore the existence of mild solutions for the following semi-
linear neutral type differential equations with finite delay:

{ ax(p) = 9(p. xp)] = 3(p)x(p) =R (p,x,) , if p €O,

x(p) = ¢(p), if p € [-r,0], (2)
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where g : © x C([—r,0],20) — 20 is a continuous function.

Finally, we investigate the existence of mild solutions for the following semi-linear
neutral type integro-differential equations with a nonlocal initial condition:

£ Ix(p) = a(p, x,)] = 3(P)x(p) = R (p, xp) + Jo @(ps p)x(p)dp, if p € O,

x(0) + f(x) = xo € 25, (3)

X(p) = @(p)z lfp € [_T7 O]a

where w(p, u) is a closed linear operator on 20 and f : C([—r,T],20) — 20 is contin-
uous function.

The article is structured as follows: Section 2 introduces basic notations, prelim-
inaries, and lemmas. In Section 3, we demonstrate the existence of mild solutions
for the semi-linear differential problem (1). Sections 4 and 5 focus on the analysis of
problems (2) and (3), respectively. Our research utilizes a novel fixed-point theorem
based on the concept of DND. Finally, an example is provided in the last section to
illustrate the results obtained.

2. Preliminaries

Let 20 be a real Banach space with the norm || - ||y and Mayy is the class of non-empty
and bounded subsets of 20, let B(20) be the space of all bounded linear operators
from 20U into 20, with the norm

1T = sup [IT(x)]law-
Ixlep=1

We denote by (L'(©,20), | - ||1) the Banach space of measurable functions that are
Bochner integrable from O := [0, 7] into 20, with the norm

T
Ixlls = / 1x(0) landp.

L>(0,20), is the Banach space of measurable functions which are essentially bounded,
with the norm

I lloo = f{C > 0: [[x(p)llaw < C, ae. p € O},
By C(0,20) we denote the Banach space of all continuous functions from © into 20
with
x|l = sup [[x(p)l20-
pEO

Let C([—r, 0],20) be the Banach space of all continuous functions from [—r, 0] into 20
with
Ixll=r0y = sup_[Ix(p)llaw-
pe[=r,0]
By C([—r,T],20) we denote the Banach space of all continuous functions from [—r, T']
into 20 with

Ixlli=r,ry = sup [Ix(p)llav-
pE[—r,T)
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Definition 2.1. ([24, 26]) Suppose that o > 0 and k € My, a continuous mapping
(:p:=1[0,1] - 2 is an a—dense curve in k if:
* ((p)Ck

e For any x1 € k, there is x2 € {(p) such that ||x1 — x2||w < a.
If for a > 0, there is an a—dense curve in k, then k is densifiable.

Definition 2.2. ([25, 16]) Let o > 0, and denote by I', i the class of all a—dense
curves in k € Myy. The DND is a mapping » : Myy — R, defined as:

»(k) =inf{a >0:T,x # @},
for each k € Myy.

Remark 2.1. It is important to highlight that a thorough examination of the degree
of nondensifiability (DND) was conducted in [16]. Specifically, the study established
that the DND does not function as a measure of noncompactness [16]. Nonetheless,
it exhibits characteristics remarkably akin to those of MNC (see Proposition 2.6 in

[16]).

Lemma 2.1 ([17, 16]). Let ki, ko € Myy. Then, we have:

(a) (k1) = 0 < ky is a precompact set, for each nonempty, bounded and arc-

connected subset ki of 2J.

%(]]51) = sx(ky), where ki denotes the closure of ky.

x(Xky1) = |A|>¢(k1), for A € R.

#(x + k) = s(ky), for all x € 2.

#(Convky) < s(ky) and s(ConvkiUks) < max{»(Convk,), »(Convks)}, where
(
(

»(Convky) represent the convex hull of k.
kl +k2) < %(kl) + %(kg)

—
—

=
X

Let

h:R4y — Ry : his monotone increasing
= and lim h"(p) =0 for any p € R, ’
n—oo

where n € N and h™(p) denotes the n—th composition of h with itself.

The version of the Darbo fixed point theorem for the DND presented below plays
a significant role in this paper.

Theorem 2.2. [20] Let k be a nonempty, bounded, closed, and convex subset of a
Banach space 93, and let U : k — k be a continuous operator. Assume that there is

h € X such that:
#(0(k)) < h(x(k))
for any non-empty subset k of k. Then, U possesses at least one fized point in k.

Remark 2.2. It is important to observe that the fixed point theorem based on DND
in [20] takes a form closely resembling the renowned Darbo fixed-point theorem [2].
Nevertheless, as demonstrated in [20, 17] through various examples, both outcomes are
fundamentally distinct. The presented theorem in [20] operates under more inclusive
conditions than the Darbo fixed-point theorem or its well-known generalizations.

Lemma 2.3. ([20]) Let k C C(©,20) be non-empty and bounded. Then:

sup (k(p)) < (k).
peEO
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3. Existence of Mild Solutions for Semi-Linear Differential Equations

Definition 3.1. We say that a continuous function x : [—r,T] — 20 is a mild solution
of problem (1), if x satisfies the following integral equation

{ x(p) = S3(p,0)(0) + [5" S(p, )R (1, X )dps, if p € O,
x(p) = ¢(p), if p € [-7,0],

where (-, ) is an evolution system of linear bounded operators on 20 generated by
the closed linear operator 3.

In order to obtain our existence result, we also need the following assumptions:
(A1) The function X : © x C([—r,0],20) — 27 satisfies the Carathéodory conditions,
and there exist py € L*(©,R,) and ¢ : Ry — R, a nondecreasing continuous
function such that:

IR(p; X)llan < px(P)Y([IX |l [=r07), for x € C([—r,0],20), and for a.e. p€ ©.

(A3) The bounded linear operator & is uniformly continuous and there exists M > 1
such that
1S(p, W)l Bawy < M, for every p € ©.

(As) There exist K € L*°(0,R,) and h € X where for any non-empty, bounded and
convex subset k C 27,

#(R(p,k)) < K(p)h(>(k)),

holds for a.e. p € O.
(A4) There exists 7 > 0 such that

P2 Mlle0)llgg + ¢ () llpx 1] -
Theorem 3.1. Assume that the conditions (A1) — (A4) are satisfied and that
TM| K|l <1. (4)
Thus, (1) has at least one mild solution defined on ©.
Proof. Firstly, we consider the operator
G:C([-rT11,2) = C([-r,T],20)
defined by:

¢(p), if p € [-r,0]
We consider the set

~

k= {xec-nTlm) o <7}

We note that k is bounded, closed and convex subset.

Step 1 : We prove that Uk C k.

Indeed for any x € k and under (A;), (Ay) and (A4) we obtain
p

[0x ()|l = [1S(p, 0)(0) + ; (o, )R (1 Xpu)dpal|am
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< ||3(p,0)||3<m>\\<p(0)\\m+/ 1S (0s 1) || B0y IR x (1) llan dpe

< M{|p(0)||ay + M / ()8 (X (D) lera))di

< M[l@(0)llgg + MY () [Ipx 21
<7

Thus U(k) C k. By (A;) and the Lebesgue dominated convergence theorem, U is
continuous on k.

Step 2 : We prove that U satisfies the contractive condition.
Let F be any non-empty and convex subset of k, and for each p € ©, let a, = 2(F (p)).
Then K € L>*°(0,Ry) and h € X where for a.e p € O,

#(R(p, 1 (p)) < K(p)h(p).

Therefore, for e > 0, there is a continuous mapping ¢, : p — 20, with (,(p) C
N(p, F (p)), such that for all x € F, there is n € p with

[R(p, x(p)) = Go(M)llaw < K(p)h(ey,) + €, for ae pe®. (5)
Construct now the mapping ¢ : g — ((C([=r, T],20)), || - ||o) as follows:

. P
n€p—¢mn)=S(p,0)p(0) +/ S(p, ) Cu(n)dp, for a.e p € [—r, T].
0
So, ¢ is continuous and (p) C O(F). By (5), given x € F we have 1 € p where

15x(0) — & ()law < / " 19000 12) 520 IR0t X (1)) — Gl

< M/ ) +e)du.
Setting « := ([ ), we can deduce that h(c,) < h(a) for a.e p € [-r,T], and

15X (p) = G () law < TM||K [[och(a)
< h(a).
Thus, from the arbitrariness of p € [—r, T], that »(UF) < h(«). O

Thus, by the Darbo fixed point theorem for the DND, the operator U has a fixed
point, which is a mild solution of (1).

4. Semi-Linear Neutral type Differential Equations with Finite Delay

Definition 4.1. We say that a function x : [—r,T] — 20 is a mild solution of problem
(2), if x satisfies the following integral equation

{ x(p) = S(p, 0)[p(0) — )]+ f P 1 ,x(w)dp, if pe©
x(p) = w(p), if p € [-r, 0]

where (-, ) is an evolution system of linear bounded operators on 20 generated by
the closed linear operator 3.
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Now, we assume the following hypotheses:
(B1) The function g : © x C([—r,0],20) — 20 is Carathéodory, and there exist con-
stants Ly, Lo > 0 such that

l9(p, ) law < Lul[xll{-r,0) + L2, for p € ©, x € C([-r,0],20).
(B2) There exists 7 > 0 such that

N M[?‘“ + (Lai + L) + () [pwll 1 |-

Theorem 4.1. Assume that the conditions (A1) — (As), (B1) — (Bz2) and (4) are
satisfied. So, (2) has at least one solution defined on ©.

Proof. Let the operator M : C([— ] ) — C([— ] QIT) defined by:
_§ S(p,0)[(0) - )]+ Py R, x(1))dp, if p € ©
R A AT\ e

Step 1 : We prove Mk c k.
For any x € k we obtain

[Mx(p)llax = [IS(p, 0)[(0) — g(0,»(0))] + /Op S(p, )R (g, X (12))dp] [

P
< [IS(p, 0)[| Baw) ll(0) —9(0,s0(0)||w+/ 1(p, 1) || B2y IR (s X ) 2w

< M{[[¢(0)[lan + l19(0,(0))|aw] +M/ pr() (XN =r.01)dpe
< M+ (Lt + Lo)| + My (7)[[px] 1
<7

Thus M(ﬂ(j) C k. Furthermore, combining assumption (Ay) and the Lebesgue domi-
nated convergence theorem, M is continuous on k.

Step 2 : Let / C k, and for each p € O, let a, = x#(F(p)). Thus, K € L*(O,R)
and h € X where for a.e p € ©

#(R(p, F (p))) < K(p)h(>(ap)).
By the same technique of Step 2 in Theorem 3.1, we get:
¢ is continuous and ¢(p) € M(F). By (5), given x € [ we can find € § where

)
IMx(p) — C(n)]| < H%(p, I By [IR(i, x (1)) = Cu(m) [l dpe

<M/ K(p)h(oy,) + edp.

Setting « := s(F ), we can deduce that h(c,) < h(a) for a.e p € ©, and
|Mx(p) = S ()| < TM||K||och(r)
< h(a).

So, from the arbitrariness of p € ©, that s»(MF) < h(a).
Then Y is a fixed point of M, which is a mild solution of (2). O
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5. Integro-Differential Equations with Nonlocal Condition

Let us first consider the following linear Cauchy problem:

X'(p) = p)+ Jg @(p,m)x(w)dp, for p>0, (©)
x(0) = Xo 6 QII

Definition 5.1 ([22]). A resolvent operator for a Cauchy problem (6) is a bounded
linear operator-valued function & € B(20) for p > 0, verifying:

(1) 3(0) =1 and [|S(p)||paw) < Me"” for M > 0 and 7 € R.

(2) For each x € 9, p — J(p)x is strongly continuous for p > 0.

(3) & € B(2W) for p > 0. For x € 2, S(-)x € C* (R4, W) N C(R4,2) and

(o, )x = 3(p)S(p,0 x+/ @ (p, 1) S () xdp

— S(p0)3(0)x + / (o, 1w (W) xdp,

0
for p > 0.

From now on, we assume that:
(Q1) The operator 3 is the infinitesimal generator of a uniformly continuous semigroup

{T(p)} >0
(Q2) For p > 0, w(p, p) is closed linear operator from &(3) to 20 and w(p, p) € B().

For any x € 20, the map p — w(p,u)x is bounded, differentiable and the
derivative p — w@’(p, u)x is bounded uniformly continuous on R.

Theorem 5.1. ([21]) Assume that (Q1) — (Q2) hold, then there exists a unique re-
solvent operator for the Cauchy problem (6).

Definition 5.2. We say that a function x(-) € C([—r,T],20) is a mild solution of
problem (3), if x satisfies the following integral equation

x(p) = S(p,0)[xo — 9(0,2(0)) = F()] + g(p. xp) + [3 S(p, )R (1, x(1))dps, p € O,
x(p) = »(p), if p € [-7,0],

Now, we assume the following hypotheses:
(C1) The function f : C([—r,T],20) — 20 is continuous, and there exists a constant
¢ > 0 such that

”f(X)HQI] < CHXHC([*T,T],Qﬂ% X € C([_rv T},Qﬂ).
(C2) There exists o > 0 such that

o> M|o(l+Li+¢)+ L2 +(0)|pxllr | + Lio + Lo.

(C3) There exist K eL® (©,R;) such that for any non-empty, bounded and convex
subset k C 27,

s(g(p, k) < K (p)h(s(k)),
holds for a.e. p € ©.
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Theorem 5.2. Assume that the conditions (A1) —(As), (B1), (C1)—(C3) are satisfied
and that

TM||K oo + | Koo < 1. (7)

Then, problem (3) has at least one solution defined on ©.
Proof. Let the operator Q : C([—r,T],20) — C([-r, T, QU) defined by:

[—r
Ox(p) = S(p,0)[xo0 — 9(0,(0)) = fO)] + 9(p, Xp) + Jo S(p, )R, x (1)), p € O,
o(p), if p € [-r,0],

We consider the bounded, closed and convex set
K= {X € (1=, T),2) : Ixllorm < a}.

Step 1: Wel)rove that Ok C k.
For any x € k we obtain

1Qx(R)llaw = 136, 0)[(0) — 9(0, 2(0)) — FOV] + (s )
+ [ S i)l
< 190, 0)ll sam [0) — 90, £(0)) — FCO e
[ 1 IR 0 i+ L ) e

< M{lj¢(0)llaw + 19(0, () law + slixllc(—rr1.2m)]

+M/px SOl i—ro0)) st + LIl o) + L2
< Mo+ (Lo 4+ o + La)] + My (o)||prllzr + Lio + Lo
<o.

Thus Q(k) C k. As in previous theorems, by (A;) and the Lebesgue dominated
convergence theorem, we deduce that Q is continuous on k.

Step 2 : Let F C k, and for each p € O, let a, = »(F (p)). Thus, K € L=(0,R)
and h € X where for a.e p € © we have

#(N(p, £ (p))) < K(p)h(s(ay)),  and  5(g(p, F (p))) < K(p)h(3(cy).

Therefore, for e > 0, there is a continuous mapping ¢, : p — 20, with (,(p) C
N(p, F (p)), such that for all x € F, there exist £1,e2 > 0 and 7 € p with

R(p; x(p)) = Gp(m)llaw < K(p)h(ery) +e1, (®)
and
lg(p, x(p)) = Go()llan < K(p)h(a,) + €2, for a.e p € ©. 9)
Construct now the mapping ¢ : p — C ([-r,T],20) as follows:

n€p—{mp)=S(p,0)e(0) = g(0,0(0)) = F(x)] + Col(n)

P
+/ S(p, 1) Cu(n)dp, for a.e p € [—r,T].
0
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So, C is continuous and ((p) € O(F). By (8) and (9), given x € F we have n € p
where

15x(p) = Co(mllas < llg(p: X (p)) = Co(0) |2 +/OT|%(P7,U)”B(QU)”N(% xX(1) = Cu(m)llandpe

N p
< K(p)h(ap) +e2+ M/ (K(p)h(ay,) +e1)dp.
0
Setting « := s(F ), we can deduce that h(a,) < h(a) for a.e p € [—r,T], and

15x(p) = Co()llan < (TM | Klloo + || K [|o)h(e)
< h(a).
Thus, from the arbitrariness of p € [—r, T, that »(U0F) < h(a). By the Darbo fixed
point theorem for the DND, the operator U has a fixed point, which is a mild solution
of (3).
O

6. An Example

Consider the following class of partial differential system:

22(p,X) = kP, X) 222(p, X)
—ﬁ(1+p2+ln(1+| (p-r.%)) ifpe®=[0,1] and € (0,1)
2(p,0) = 2(p,1) =0, for pe O,
2(0,%) = eX, for ¥ € (0,1),
X) = ¢(p;

(pv ): )7 for p € [—?",0],%6 (Ovl)a
(10)
where the function (-, ) is continuous for X € [0, 1] and x(p, -) is uniformly Holder
continuous in § € ©.

Let 3 be defined by
3(p)¢ = K(p,X)¢',

and

&(3) = {z € L*0,1) / z, a%z € L*(0,1) ; 2(0) = (1) = 0}.

The operator 3 is the infinitesimal generator of a Cpy-semigroup on L?(0,1) with
domain &(3), the problem (10) has a resolvent operator (3(p)),>0 on L?*(0,1) which
is norm continuous.

Now, define

x(P)(X) = 2(p, X);
R(p, x()(X) = R(p, 2(p))(X)
and N : © x L%(0,1) — L%(0,1) given by

1

R0 = 105 (1 10+l - D) Torp e,
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Now, for p € ©, we have

G261 = s (1 + 00+ oG- 0D ) Lo

< 15 (e 0lz2)

< px(p)d(ll2(p)llL2)-

Therefore, assumption (A;) is satisfied with

—_

r(p) , pE€O©and Y(X) =1+X, X € (0,1).

T lter
Now we shall check that condition of (A4) is satisfied. Indeed, we have

T>M+MA+7)+TMLy7.

Thus u
r > here 1 —2M —TML 0.
r_1_2M_TML1,were 1>
For F C C(©,L?(0,1)) and p € O fixed, let ¢ be an a,-dense curve in f (p) for some
ap > 0. Then, for z € [, there is n € p satisfying:

Ix(p) = C(n, )|l < vy

Therefore, we have:

IN(p, 2(p)) — R(p,¢(n, p))||2 <

(1 +[2(p =, 2)[) = In(1 +[C(n, p = 7)) 2

1+er
S In (1+ ‘Z(p_raX) _C(%P—Tﬂ)
L+er I+ \C(naP*TN L2
< o U (o= %) = GO p = ) 22)
1
= 1+er Inl +ap),

and h(p) = In(1 + p). This function is continuous, and h € X, so (A4) is verified by

K(p) = ﬁ Consequently, all the hypotheses of Theorem 3.1 are satisfied and we

conclude that the problem (10) has at least one solution x € C(©, L*(0,1)).
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