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Abstract. The object of this work is to study the existence of weak solutions for (p1(x), p2(x))-
Laplacian parabolic Kirchhoff equation. We apply degree theory to operators of the type

T + S + C, where T is maximal monotone, S is bounded pseudomonotone, and C is compact

with D(T ) ⊆ D(C) and satisfies a sublinearity condition, to get our result within the context
of Sobolev spaces with variable exponents.
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1. Introduction

In this research, we focus on the following nonlocal parabolic problem

ut −M1(L1(u))(div(|∇u|p1(x)−2∇u)− |u|p1(x)−2u)

−M2(L2(u))(div(|∇u|p2(x)−2∇u)− |u|p2(x)−2u) + f(x, t, u,∇u) = h(x, t),

in Q = Ω× (0, T ),(
M1(L1(u))|∇u|p1(x)−2 +M2(L2(u))|∇u|p2(x)−2

) ∂u
∂ν

+ g(x, u) = 0, (1)

on Σ = ∂Ω× (0, T ),

u(x, 0) = 0, x ∈ Ω,

where Ω ⊂ RN is a bounded domain, N ≥ 2, with a smooth boundary ∂Ω, T is a
fixed positive number, pi(x) ∈ C(Ω) with pi(x) > 1 for any x ∈ Ω i=1,2 , Li(u) =∫

Ω
1

pi(x) (|∇u|pi(x) + |u|pi(x)) dx , and Mi, f are functions that satisfy conditions which

will be stated later.
It was in 1883 that Kirchhoff proposed the famous model

ρ
∂2u

∂t2
−
(ρ0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)∂2u

∂x2
= 0, (2)

which extends the classical D’Alembert’s wave equation by considering the effects of
the changes in the length of the strings during the vibrations. When M1 = M2 ≡
M,p1 = p2 = p(constante) and f(x, t, u,∇u) ≡ f(x, t, u) , the problem (1) can be
used to describe the motion of a nonstationary fluid or gas in a nonhomogeneous and
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anisotropic medium, and the nonlocal term M can describe a possible change in the
global state of the fluid or gas caused by its motion in the considered medium, see
[24]. The flux through the boundary, that depends nonlinearly on the function u, is
described by the nonlinear boundary condition. In mathematical biology, one way to
conceptualize problem (1) is as a model of bacterial spreading, where u represents the
population density at the point (x, t) and the external source f represents the pro-
cesses of birth and death, whose rates depend on the population. Owing to their nu-
merous physical applications, PDEs with variable exponents have garnered increased
attention in recent years due to their various physical applications. Indeed, they are
capable of modeling a wide range of phenomena that come up in the study of thermo-
rheological fluids [32, 33, 34], image restoration [14, 27], and electro-rheological fluids
[32, 33, 34]. Numerous researchers have dedicated a significant amount of time to
studying parabolic problems involving variable exponent growth condition, we refer
the readers to [16, 21, 25, 35].

The nonlocal (p1(x), p2(x))-Laplace operator

L(u) = −
2∑
i=1

Mi(Li(u))(div(|∇u|pi(x)−2∇u)− |u|pi(x)−2u).

is linked to so-called double-phase problems. In 1986, Zhikov [40] introduced for the
first time in the literature a energy functional related to the double phase operator.
For elliptic problems, with double phase operators along with a nonlinear boundary
condition see [3, 28, 29]. As far as the (p1(x), p2(x))-Laplacian parabolic equations are
concerned, few articles have appeared, we refer the reader to [4, 8, 13]. To solve quasi-
linear parabolic equations, most authors use techniques such as the theory of nonlinear
semigroups, the discretization method, De Giorgi iteration technique, subdifferential
calculus, theory of monotone operators, fixed point theorems and the classic Galerkin
method. Differently from the above mentioned methods, in the present paper, to es-
tablish our main result we use the degree theory developed by Asfaw [6] for operators
of type T + S + C, where T is a maximal monotone, S is bounded pseudomonotone
and C is is compact con D(T ) ⊆ D(C) and satisfies a sublinearity condition. This is,
as far as we are aware, the first attempt to solve a nonlocal (p1(x), p2(x))-Laplace par-
abolic problem with a nonlinear boundary condition and convection term, especially
with degree theory.

We point out that the degree theory is one of the main tools for checking the
solution existence of nonlinear elliptic PDEs, even in spaces of variable exponents,
without resorting to usual variational methods. However, recently several scholars
have implemented this methodology to solve evolution equations, see [22, 23, 31, 36,
37].

We provide the following organizational structure for this article. Section 2 includes
some preliminary information on functional spaces of evolution and variable exponent
Sobolev spaces, as well as the Asfaw topological degree needed for the proof of our
main result. Section 3 contains the technical Lemmas and fundamental assumptions.
The final section focuses on stating and demonstrating our main result about existence
of weak solutions for problem (1).
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2. Preliminaries

We need some theory on W 1,p(x)(Ω) also known as variable exponent Sobolev space,
in order to study problem (1.1). (for more information, see [18]). S(Ω) represents the
set of all real functions that are measurable and defined on Ω. When two functions
in S(Ω) are equal almost everywhere, they are regarded as the same element of S(Ω).

Let

C+(Ω) = {w : w ∈ C(Ω), w(x) > 1 for any x ∈ Ω},
w− := min

Ω
w(x), w+ := max

Ω
w(x) for every w ∈ C+(Ω).

Define

Lp(x)(Ω) = {v ∈ S(Ω) :

∫
Ω

|v(x)|p(x) dx < +∞ for p ∈ C+(Ω)}

with the norm

|v|Lp(x)(Ω) = |v|p(x) = inf{λ > 0 :

∫
Ω

|v(x)

λ
|p(x) dx ≤ 1},

and
W 1,p(x)(Ω) = {v ∈ Lp(x)(Ω) : |∇v| ∈ Lp(x)(Ω)}

with the norm

‖v‖1,p(x),Ω := ‖v‖W 1,p(x)(Ω) = |v|Lp(x)(Ω) + |∇v|Lp(x)(Ω).

Proposition 2.1 ([18]). The spaces Lp(x)(Ω) and W 1,p(x)(Ω) are separable and re-
flexive Banach spaces.

Proposition 2.2 ([18]). Set ρ(v) =
∫

Ω
|v(x)|p(x) dx. For any v ∈ Lp(x)(Ω), then

(1) for v 6= 0, |v|p(x) = λ if and only if ρ( vλ ) = 1;
(2) |v|p(x) < 1 (= 1;> 1) if and only if ρ(v) < 1 (= 1;> 1);

(3) if |v|p(x) > 1, then |v|p
−

p(x) ≤ ρ(v) ≤ |v|p
+

p(x);

(4) if |v|p(x) < 1, then |v|p
+

p(x) ≤ ρ(v) ≤ |v|p
−

p(x);

(5) limk→+∞ |vk|p(x) = 0 if and only if limk→+∞ ρ(vk) = 0;
(6) limk→+∞ |vk|p(x) = +∞ if and only if limk→+∞ ρ(vk) = +∞.

Proposition 2.3 ([19, 18]). If q ∈ C+(Ω) and q(x) ≤ p∗(x) (q(x) < p∗(x)) for x ∈ Ω,
then there is a continuous (compact) embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω), where

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

Proposition 2.4 ([38]). If q ∈ C+(∂Ω) and q(x) ≤ p∂(x) (q(x) < p∂(x)) for x ∈ ∂Ω,
then there is a continuous (compact) embedding W 1,p(x)(∂Ω) ↪→ Lq(x)(Ω), where

p∂(x) =

{
(N−1)p(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

Proposition 2.5 ([15]). For any u ∈W 1,p(x)(Ω), let

‖u‖∂ := |u|Lp(x)(∂Ω) + |∇u|Lp(x)(Ω).

Then ‖u‖∂ is a norm in W 1,p(x)(Ω), which is equivalent to ‖u‖1,p(x),Ω.
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Proposition 2.6 ([20, 18]). The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where 1
q(x) +

1
p(x) = 1 holds a.e. in Ω. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have the

following Hölder-type inequality∣∣ ∫
Ω

uv dx
∣∣ ≤ (

1

p−
+

1

q−
)|u|p(x)|v|q(x).

As in [9], we extend a variable exponent p : Ω→ [1,+∞[ to Q→ [1,+∞[ by setting
p(x, t) = p(x) for all (x, t) ∈ Q. Now, we may consider the generalized Lebesgue space

Lp(x)(Q) = {u : Q→ R measurable such that

∫
Q

|u(x, t)|p(x) dxdt <∞}

which has similar properties to those of space Lp(x)(Ω).
Consider X a real reflexive Banach space, and X ′ its dual space; for each x ∈ X

and x′ ∈ X ′, the value x′(x) is denoted by 〈x′, x〉. We shall use the standard notation
for Bochner spaces i.e. Lr(0, T ;X) is the space of strongly measurable function u :
]0, T [→ X for which t→ ‖u‖X ∈ Lr(0, T ), r ≥ 1.
We denote

wM (x) = max{w1(x), w2(x)} , wm(x) = min{w1(x), w2(x)}

It is easy to prove that wM , wm ∈ C+(Ω).
Next, we consider the space X := W 1,p1(x)(Ω)

⋂
W 1,p2(x)(Ω), equipped with the

norm

‖u‖X = ‖u‖1,p1(x),Ω + ‖u‖1,p2(x),Ω for all u ∈ X
The space W (Q) is defined as follows

W (Q) =
{
u : [0, T ]→ ∩2

i=1W
1,pi(x)(Ω);u ∈ Lpi(x)(Q) : |∇u| ∈ Lpi(x)(Q), i = 1, 2

}
,

where ∇u stands for the gradient of u with respect to the space variable x. It is is a
Banach equipped with the norm

‖u‖ := ‖u‖W (Q) :=

2∑
i=1

(
‖u‖Lpi(x)(Q) + ‖∇u‖Lpi(x)(Q)

)
, for all u ∈W (Q).

Suppose that

1 +
N

N + 1
< pi(x) < p∗M (x), i = 1, 2. (3)

Since 1 + N
N+1 −

2N
N+2 > 0, then pi(x) > 2N

N+2 which implies

W 1,pi(x)(Ω) ↪→ L2(Ω) ↪→
(
W 1,pi(x)(Ω)

)′
i = 1, 2,

where these embeddings are dense.

Remark 2.1. i)(X, ‖ · ‖) is a reflexive and separable Banach space.
ii) For q(x) ∈ C+(Ω) such that q(x) < p∗M (x) for any x ∈ Ω, we have X :=

W 1,p1(x)(Ω)
⋂
W 1,p2(x)(Ω) = W 1,pM (x)(Ω) ↪→ Lq(x)(Ω), the embedding is continu-

ous and compact.
iii) By (3) and Theorem 1.5 in [5] W (Q) ↪→ Lp̂(x)(Q) is compact, where p̂(x) :=
max{2, pM (x)}.
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We need the following concepts to state a fundamental theorem for our work.
For an operator T : X → 2X

′
the graph of T , denoted G(T ), is defined by

G(T ) = {(x, y) : x ∈ D(T ), y ∈ Tx}

where D(T ) denotes the domain of T , given by D(T ) = {x ∈ X : Tx /∈ ∅} . We shall
use ”⇀” (”→” ) for the weak (strong) convergence.

An operator T : X ⊃ D(T )→ 2X
′

is said to be : a) monotone if for every x, y ∈ D(T )
and every u ∈ Tx and v ∈ Ty we have 〈u − v, x − y〉 ≥ 0, b) maximal monotone if
T is monotone and G(T ) is maximal in X × X ′ when X × X ′ is partially ordered
by the set inclusion, c) coercive if either D(T ) is bounded or there exists a function
ψ : [0,∞[→ R such that ψ(t)→∞ as t→∞ and

〈u, x〉 ≥ ψ(‖x‖)‖x‖, ∀x ∈ D(T ), u ∈ Tx.

We observe that , in this setting, T is maximal monotone if and only if R(T+λI) = X ′

for all λ ∈ [0,+∞[.
We recall that T : X ⊃ D(T ) → Y , where Y is a Banach space, is said to be: a)

bounded if it maps bounded subsets of D(T ) onto bounded subsets of Y , b) compact
if it maps bounded subsets of D(T ) onto relatively compact subsets in Y , and c) of
type (S+) if for any (uν) ⊂ D(T ) with uν ⇀ u and lim sup〈Tuν , uν −u〉 ≤ 0, we have
uν → u.

The following theorem is a generalization of the existence result due to Asfaw and
Kartsatos [7] for the sum of two operators T and S, and yields the surjectivity of
operators of type T + S + C.

Theorem 2.7 (Asfaw T. [6]). Let X be real Banach space. Let T : X ⊇ D(T )→ X ′

be maximal monotone with 0 ∈ T (0), S : X → X ′ be bounded and of type (S+), and
C : D(C) → X ′ be compact with D(T ) ⊆ D(C) and belonging to the class Γτσ (i.e
there exist σ ≥ 0 and τ ≥ 0 such that ‖Cx‖ ≤ τ‖x‖+ σ for all x ∈ D(C)). Assume,
further that T + S + C is coercive. Then T + S + C is surjective.

3. Hypotheses and technical Lemmas

First, we impose the conditions that allow us to achieve the solutions of problem (1).
Concerning the functions M1,M2, we suppose that

(M0) Mi : [0,+∞[→]m0,m1[ (i = 1, 2) are continuous and nondecreasing functions
with m0,m1 > 0.

Now, we can give the properties of the nonlocal (p1(x), p2(x))-Laplace operator

L(u) = −
2∑
i=1

Mi(Li(u))(div(|∇u|pi(x)−2∇u)− |u|pi(x)−2u).

Consider the following functional Si : W (Q)→W ′(Q), i = 1, 2 (W ′(Q) is the dual of
W (Q)) given by

〈Si(u), v〉 =

∫
Q

Mi(Li(u))
(
|∇u|pi(x)−2∇u · ∇v + |u|pi(x)−2uv

)
dxdt,
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then L : W (Q)→W ′(Q) and

〈L(u), v〉 :=

2∑
i=1

〈Si(u), v〉, ∀u, v ∈W (Q). (4)

Consider the following functional

Φ(u) =

∫ T

0

M̂1 (L1(u)) dt+

∫ T

0

M̂2 (L2(u)) dt := Φ1(u) + Φ2(u), ∀u ∈W (Q)

where M̂i(s) =
∫ s

0
Mi(t) dt for all s ∈ [0,+∞[. Thus, it is simple to prove that Φi, i =

1, 2 are well defined and continuously Gâteaux differentiable, and their Gâteaux
derivatives at point u ∈W (Q) are given by

〈Φ′i(u), v〉 = 〈Si(u), v〉

Thus

〈Φ′(u), v〉 =

2∑
i=1

〈Si(u), v〉, for all u, v ∈W (Q).

Hence, the nonlocal (p1(x), p2(x))-Laplace operator is the derivative operator of Φ in
the weak sense. Also it is obvious that Φ′ is continuous.

Remark 3.1. By Theorem 2.1 in [17] we know that, for every t ∈]0, T [ fixed, the
operator Si : X → X ′ is a homeomorphism strictly monotone and of type (S+).
Moreover, proceeding as in the proof of Theorem 2.2 in [28], we get that the operator∑2
i=1 Si : X → X ′ is continuous, bounded, strictly monotone and of type (S+).

Lemma 3.1. If M satisfies (M0), then
(i) L : W (Q)→W ′(Q) is a continuous, bounded and strictly monotone operator;

(ii) L is of type (S+), i.e. if uν ⇀ u in W (Q) and

lim sup
ν→+∞

〈L(un)− L(u), uν − u〉 = 0, then uν → u in W (Q);

Proof. i) We see that L is continuous because L = Φ′. Now, we prove that L is
bounded. Let B be a bounded subset in W (Q). It is obvious that {Mi(Li(u)) : u ∈ B},
i = 1, 2 is bounded, since Mi is continuous. Also if u, v ∈ B, we have

|〈Lu, v〉| = |
2∑
i=1

∫
Q

Mi(Li(u))
(
|∇u|pi(x)−2∇u · ∇v + |u|pi(x)−2uv

)
dxdt|

≤ m1

2∑
i=1

∫
Q

(
|∇u|pi(x)−1|∇v|+ |u|pi(x)−1|v|

)
dxdt

≤ 2m1

2∑
i=1

(∥∥∥|∇u|pi(x)−1
∥∥∥
p′i(x),Q

‖∇v‖pi(x),Q +
∥∥∥|u|pi(x)−1

∥∥∥
p′i(x),Q

‖v‖pi(x),Q

)
≤ C

(
‖u‖p

+
M + 1

)
‖v‖
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So, L is a bounded operator. Next, we will prove that L is a strictly monotone
operator. Let t ∈]0, T [, then from Remark 3.1 it follows that∫

Ω

[
(Mi(Li(u))|∇u|pi(x)−2∇u−Mi(Li(v))|∇v|pi(x)−2∇v) · (∇u−∇v)

+ (|u|pi(x)−2u− |v|pi(x)−2v)(u− v)
]
dx ≥ 0 for i = 1, 2. ∀u(., t), v(., t) ∈ X.

From this inequality, integrating over [0, T ] we obtain

〈L(u)− L(v), u− v〉 =
2∑
i=1

〈Si(u)− Si(v), u− v〉

=

2∑
i=1

∫ T

0

∫
Ω

[
(Mi(Li(u))|∇u|pi(x)−2∇u−Mi(Li(v))|∇v|pi(x)−2∇v) · (∇u−∇v)

+ (|u|pi(x)−2u− |v|pi(x)−2v)(u− v)
]
dxdt ≥ 0, ∀u, v ∈W (Q).

Next, we show that the operator L is of type (S+). Let (uν)ν be a sequence in W (Q)
such that uν ⇀ u and lim sup

ν→∞
〈L(uν)− L(u), uν − u〉 ≤ 0. Then

lim
ν→∞

〈L(uν)− L(u), uν − u〉 = 0. (5)

Now, proceeding similarly as in [17], we get

〈L(u)− L(v), u− v〉

≥ m0

2∑
i=1

[ ∫
Q

1

2
(|∇u|pi(x)−2 − |∇v|pi(x)−2)(|∇u|2 − |∇v|2) dxdt (6)

+

∫
Q

1

2
(|u|pi(x)−2u− |v|pi(x)−2v)(u− v)

]
dxdt ≥ 0, ∀u, v ∈W (Q).

From (5) and (6), ∇uν converges in measure to ∇u and uν converges in measure
to u in Q, thus we may find a subsequence (which we still denote by uν) satisfying
∇uν → ∇u, uν → u, a.e on Q. Thanks to Fatou’s Lemma we obtain

lim inf
ν→∞

∫
Q

1

pi(x)
(|∇uν |pi(x) + |uν |pi(x)) dxdt ≥

∫
Q

1

pi(x)
(|∇u|pi(x) + |u|pi(x)) dxdt, (7)

for i=1,2.
Since uν ⇀ u we have

lim
ν→∞

〈L(uν), uν − u〉 = lim
ν→∞

〈L(uν)− L(u), uν − u〉 = 0. (8)

Moreover, after some calculations, according to (M0), we obtain

〈L(uν), uν − u〉 ≥
2∑
i=1

Mi(Li(uν))

[∫
Q

1

pi(x)
|∇uν |pi(x) dxdt−

∫
Q

1

pi(x)
|∇u|pi(x) dxdt

]

+

2∑
i=1

Mi(Li(uν))

[∫
Q

1

pi(x)
|uν |pi(x) dxdt−

∫
Q

1

pi(x)
|u|pi(x) dxdt

]
(9)

≥ m0

2∑
i=1

[∫
Q

1

pi(x)
(|∇uν |pi(x) + |uν |pi(x)) dxdt−

∫
Q

1

pi(x)
(|∇u|pi(x) + |∇u|pi(x)) dxdt

]
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In view of (7)-(9) we get

lim
ν→∞

∫
Q

1

pi(x)
(|∇uν |pi(x) + |uν |pi(x)) dxdt =

∫
Q

1

pi(x)
(|∇u|pi(x) + |u|pi(x)) dxdt

for i=1,2,

which implies that the functions
{

1
pi(x) (|∇uν |pi(x) + |uν |pi(x)

}
ν
, i = 1, 2 have equi-

absolutely continuous integrals. So, by Vitali’s theorem we have

lim
ν→∞

∫
Q

(|∇uν −∇u|pi(x) + |uν − u|pi(x)) dxdt = 0 for i = 1, 2.

Therefore, by proposition 2.2, we conclude that uν → u in W (Q). �

Now we deal with the properties for the superposition operator induced by the
functions f and g in (1). We assume that
(F1) f : Ω× (0, T )× R× Rn −→ R is a Carathêodory function such that

i)|f(x, t, η, ξ)| ≤ c1(|η|+ |ξ|) + k(x, t), k ∈ L∞(0, T ;Lp(x)(Ω));
ii) f(x, t, η, ξ)η ≥ |η|r(x), for all (x, t) ∈ Ω× (0, T ), η ∈ R and ξ ∈ Rn,
1 ≤ r(x) ≤ 2.

(G1) g : Ω× (0, T )× R× Rn −→ R is a Carathêodory function such that
i)|g(x, t, u)| ≤ c2|u|+ k2(x, t) for a.e. (x, t) ∈ Γ× (0, T ),
k2 ∈ L∞(0, T ;Lp(x)(Σ));
ii) g(x, t, u)u ≥ |u|s(x), 1 ≤ s(x) ≤ 2.

Lemma 3.2. Under assumptions (F1) − (G1) the operator C : W (Q) ⊇ D(C) →
W ′(Q) given by

〈Cu, v〉 =

∫
Q

f(x, t, u,∇u)v dxdt+

∫
Σ

g(x, t, u)v dσdt (10)

where u ∈ D(C) = {z ∈W (Q) : zt ∈W ′(Q)}, is continuous and compact.

Proof. Let C1 : W (Q) → L2(Q) and C2 : W (Q) → L2(Σ) be two operators defined
by

C1(u) = f(x, t, u,∇u) and C2(u) = g(x, t, u).

For any u ∈W (Q), let uν → u in W (Q). So, up to a subsequence, we have
uν → u and ∇uν → ∇u a.e in Q,

|uν | ≤ l1(x, t) and |∇uν | ≤ l2(x, t) a.e inQ,

uν → u and |uν | ≤ l3(x, t) a.e inΣ,

(11)

for some l1, l2 ∈ L2(Q) and l3 ∈ L2(
∑

). Thus, since f and g are Carathéodory
functions, we get {

f(x, t, uν ,∇uν)→ f(x, t, u,∇u) a.e in Q

g(x, t, uν)→ g(x, t, u) a.e in Σ
(12)

From (F1) i) and (G1) i) it follows, respectively{
|f(x, t, uν ,∇uν)| ≤ c1 (|l1(x, t)|+ |l2(x, t)|) + |k(x, t)| a.e in Q

|g(x, t, uν)| ≤ c2|l3(x, t)| a.e in Σ
(13)



A PARABOLIC PROBLEM OF KIRCHHOFF TYPE 551

Since

c1 (|l1(x, t)|+ |l2(x, t)|) + |k(x, t)| ∈ L2(Q) and c2|l3(x, t)| ∈ L2(Σ),

we conclude with the dominated convergence theorem that

C1(uν)→ C1(u) in L2(Q) and C2(uν)→ C2(u) in L2(Σ).

Therefore, the entire sequences (C1(uν), C2(uν)) converges to (C1(u), C2(u)) in
L2(Q)× L2(Σ). Thus, G := (C1, C2) is contimuous on W (Q).

Recall that the embedding I : W (Q)→ L2(Q)×L2(Σ) is continuous and compact
(See Remark 2.1 iii)) and so the adjoint operator I∗ : L2(Q)×L2(Σ)→W ′(Q) given
by

〈I∗(f, g), ϕ〉 =

∫
Q

fϕ dxdt+

∫
Σ

gϕ dσdt

is also compact. Therefore C = I∗ ◦ G : W (Q) ⊇ D(C) → W ′(Q) is continuous and
compact. �

Lemma 3.3. Let T : W (Q) ⊇ D(T )→W ′(Q) be defined by

〈Tu, v〉 = −
∫
Q

uvt dxdt, for all u ∈ D(T ), v ∈W (Q), (14)

where D(T ) == {z ∈ W (Q) : zt ∈ W ′(Q), z(0) = 0}. The linear operator T is
generated by (.)t ≡ ∂/∂t via the relation

〈Tu, v〉 =

∫ T

0

〈ut(t), v(t)〉X for all u ∈ D(T ), v ∈W (Q).

Then T is a closed, densely defined, maximal monotone operator.

Proof. The proof can be established by adopting the arguments of [39] with little
modifications. �

4. Main result

In this section, we give the notion of weak solution for the nonlinear parabolic problem
(1) and we state the main result of this work.

Definition 4.1. A function u ∈ W (Q) with ut ∈ W ′(Q) is called a weak solution of
problem (1) if:∫
Q

utϕ, dx, dt+

∫
Q

〈L(u), ϕ〉dx, dt+
∫
Q

f(x, t, u,∇u)ϕ, dx, dt+

∫
Σ

g(x, u)ϕ, dS, dt = h,

for all ϕ ∈W (Q).

For the existence of a weak solution, we will use Theorem 2.7 to achieve our goal.
Then, we only need to verify that all the conditions in this Theorem are fulfilled.

Theorem 4.1. Let h ∈ W ′(Q). Suppose (M0), (F1) and (G1) hold. Then problem
(1) admits at least one weak solution.
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Proof. In order to prove that problem (1) has a weak solution in W (Q) it is sufficient
to show that, for h ∈W ′(Q). the equation

T + L+ C = h in W ′(Q) (15)

is solvable, where T,L and C are given in (14), (4) and (10) respectively. To get this,
we apply Asfaw’s abstract theorem.

In view of Lemmas 3.1, 3.2 and 3.3, it remains to show that C lies in Γτσ and
T + L+ C is coercive. This is done in the following two claims.
Claim 1: C lies in Γτσ

By applying conditions (F1), (G1) and Holder’s inequality, we have

|〈Cu, v〉| = |
∫ T

0

∫
Ω

f(x, t, u,∇u)v dxdt+

∫ T

0

∫
∂Ω

g(x, t, u)v dxdt|

≤ c′1
∫
Q

(|u|+ |∇u|)|v| dxdt+ c′2

∫ T

0

(|k(t)|LpM (x)(Ω) + |k2(t)|LpM (x)(Σ))|v(t)|X dt

≤ c′3‖u‖‖v‖+ c′4

(
‖k‖L∞(0,T ;LpM (x)(Ω)) + ‖k2‖L∞(0,T ;LpM (x)(Σ))

)
‖v‖,

for all u, v ∈W (Q).

Therefore, taking supremum over all v ∈ W (Q) with ‖v‖ ≤ 1 we get ‖Cu‖W ′(Q) ≤
τ‖u‖+ σ. So, C ∈ Γτσ.
Claim 2: T + L+ C is coercive

Now, by using (M0), (F1), (G1) and monotonicity of T (〈Tu, u〉 ≥ 0, for all u, v ∈
D(T )), we have for ‖u‖ > 1

〈Tu+ Su+ Cu, u〉

≥
2∑
i=1

∫ T

0

∫
Ω

Mi(Li(u))
(
|∇u|pi(x) + |u|pi(x)

)
dxdt

+

∫ T

0

∫
Ω

f(x, t, u,∇u)u dxdt+

∫ T

0

∫
∂Ω

g(x, t, u)u dxdt

≥ m0‖u‖p
−
m + ‖u‖r

−
+ ‖u‖s

−
→ +∞, as ‖u‖ → +∞.

Noting that
∣∣∣∫Q hu dxdt∣∣∣ ≤ c′5‖h‖Lp′

M
(x)(Q)

‖u‖, for all u ∈ W (Q), we get R =

R(h) > 0 such that

〈Tu+ Su+ Cu− h, u〉 > 0

for u ∈ D(T ) ∩ {v ∈W (Q) : ‖v‖ = R}.
We conclude that the equation Tu + Su + Cu = h has a weak solution in D(T )

since the criteria of Theorem 2.7 are verified. This implies that the problem (1) admits
at least one weak solution. Consequently, the proof is complete. �

It is important to note that for the existence of weak solutions for (1), the mono-
tonicity assumption on f with respect to u is not required. See the works [11, 26, 30,
12] and their references, for existence of weak solutions in elliptic as well as parabolic
problems under monotone nonlinearities independent of ∇u.

It seems to be interesting to study problem (1) and the properties of its solutions
for 2N

N+1 < pm(x) < 2. We plan to address these questions in a future research.
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