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On the Properties of Strongly hd Convex Functions

Geanina Maria Lăchescu and Vasile Florin Uţă

Abstract. We study some optimization properties of hd strongly convex functions. More

precisely, we discuss the characterization properties/inequalities (existence and uniqueness) of
minima of hd strongly convex functions. Moreover, connections with polynomial norms are

also presented.
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1. Introduction

In this paper we focus on the family of strongly convex functions, which is related
with the positivity property of complete homogeneous symmetric polynomials with
even degree. The study of these polynomial functions starts with the paper of Hunter
[8] and was continued in [29], where was considered a new idea to establish this
positiveness property. Moreover, two different techniques can be found in [26], one of
them using a Schur-convexity argument and the other one based on a method with
divided differences.

The family of complete homogeneous symmetric polynomials with n variables
x1, . . . , xn and degree d ∈ N is given by

h0(x1, ..., xn) = 1,

hd(x1, ..., xn) :=
∑

1≤i1≤···≤id≤n

xi1 · · ·xid (d ≥ 1).

On the other hand, it was proved that the properties of complete homogeneous
symmetric polynomials with even degree can induce norm properties on complex ma-
trices. See [4] and [7]. The simplest way to prove the positivity of hd polynomial
functions, for all even degrees d ≥ 2, consists of using Schur-convexity and majoriza-
tion techniques.

The concept of majorization is a powerful topic of research in last decades (see
[13]): it was used to find a necessary and sufficient condition for a linear map to
preserve group majorizations in [21]; new majorization results are studied in [9, 22];
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new results on superquadratic functions related to Jensen–Steffensen’s inequality are
given in [1]. See also [24, 25].

Our paper is related to the theory of uniformly convex functions, which allows the
possibility to define the concept of majorization into the spaces of curved geometry
in [17]. See also [14, 15, 16, 18, 19, 20].

In order to present the current settings let us introduce the main concepts we
address in this paper: stronger and weaker hd convexity for functions defined on
Rn. We define the class of convex functions by considering a perturbation of convex
functions with complete homogeneous symmetric polynomials.

Definition 1.1. Let C > 0 and let d ≥ 2 be an even natural number. A function f :
Rn → R is said to be hd strongly convex with modulus C if the function f(·)−C hd(·)
is convex. Similarly, a function f : Rn → R is called hd weakly convex with modulus
C if the function f(·) + C hd(·) is convex.

The relevance of this versions of uniformly convexity concepts is based on a pos-
itivity result given in [26], which asserts that: if d ≥ 2 is an even natural index,
then

hd(x1, x2, ..., xn) ≥ 0 (x1, ..., xn ∈ R). (1)

Notice that, the above definition is inspired from the notion ω-m-star convex func-
tion (see, for instance, [12]). The motivation of the concept of h2 strongly/weakly
convex function is related with the one of uniformly convex function.

Definition 1.2. Let C > 0. A function f : Rn → R is said to be uniformly convex
with modulus C if f(·)− C ‖·‖2 is convex. Equivalently, the function f is uniformly
convex with modulus C if and only if the following inequality holds

f((1− λ)x + λy)) ≤ (1− λ)f(x) + λf(y)− Cλ(1− λ) ‖x− y‖2 , (2)

for all x,y ∈ Rn and λ ∈ [0, 1].

We simply remark that, based on the following estimate

1

2
‖x‖2 ≤ h2(x) ≤ n+ 1

2
‖x‖2 (x ∈ Rn, n ∈ N∗),

we have, in general, the equivalence between the concepts of uniformly convexity and
h2 strongly convexity. But, we cannot prove the existence of two positive constants
C1 and C2 such that: a function is h2 strongly convex with modulus C1 if and only if
it is uniformly convex with modulus C2. We also recall other interesting consequences
which confirm the relevance of hd strongly convexity: for example, (2) holds similarly,
even in the context of h2 strongly convexity. See [11].

Proposition 1.1. Let C > 0. Then, the function f : Rn → R is h2 strongly convex
with modulus C if and only if

f((1− λ)x + λy)) ≤ (1− λ)f(x) + λf(y)− Cλ(1− λ)h2(x− y), (3)

for all x,y ∈ Rn and λ ∈ [0, 1].

The difference between the notions of uniformly convexity and strongly hd convex-
ity can be also presented in the case of a particular family of polynomial functions.
See [11].
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Proposition 1.2. Let f : R3 → R be a function defined as

f(x, y, z) =
a

2
x2 + ay2 +

a

2
z2 + (a− α)xz + b (a, b, α ∈ R).

Then, for any a ∈ (0,∞) and b ∈ R there exists C > 0 and α > 0 such that f is h2

strongly convex with modulus C. Futhermore, for any ε > 0 there exist a, b, α such
that f is not uniformly convex with modulus ε.

In the general case, for any even natural number d ≥ 2, we get a natural but
powerful extension of Proposition 1.1. See [11].

Theorem 1.3. Let C > 0 and let d ≥ 2 be an even natural number. Then, the
function f : Rn → R is hd strongly convex with modulus C > 0 if and only if

f((1− λ)x + λy)) ≤ (1− λ)f(x) + λf(y)− Cλ d
2 (1− λ)

d
2 hd(x− y), (4)

for all x,y ∈ Rn and λ ∈ [0, 1].
Moreover, for each x,y ∈ Rn and λ ∈ [0, 1] we have

hd((1− λ)x + λy)− (1− λ)hd(x)− λhd(y) ≤ −λ d
2 (1− λ)

d
2 hd(x− y). (5)

We also recall an inequality of Jensen’s type in the case of hd strongly convex
functions, for any even natural number d ≥ 2. See [11].

Proposition 1.4. (Jensen’s type inequality for hd strongly convexity) Let C > 0 and
let d ≥ 2 be an even natural number. If f : I → R, I ⊂ R is a given function such
that F (x1, ..., xn) = f(x1) + ... + f(xn) is hd strongly convex with modulus C on In

then, for all x1, ..., xn ∈ I, the following inequality holds

f

(
x1 + ...+ xn

n

)
≤ f(x1) + ...+ f(xn)

n

− C 1

n

(
n+ d− 1

d

)((
x1 + ...+ xn

n

)d

− xd1 + · · ·+ xdn
n

)
.

(6)

The concept of hd strongly convexity can be seen in connection with other results
existing in literature and we are confident that our paper gives the possibility to
develop other interesting results on this topic, such as in other relevant papers (see,
for instance [2, 3, 10, 12, 30]). More precisely, our research is also related to the class
of ω-m-star convex functions, for which modulus function ω can be replaced with
the polynomial function hd. This is motivated by [12], where some similar properties
are presented and for which we are able to express ω-m-star convex property, for
some particular function ω, in terms of convexity of a suitable perturbed function.
These ideas can also be extended on spaces related to other weaker notions (relative
convexity, spaces with global nonpositive curvature, see [17, 18]).

On the other hand, new Ingham’s type weighted inequalities are recently proved
in [27, 28] by using the positivity of quadratic polynomials. Further research is to use
these properties of hd strongly/weakly convex functions theory developed in this paper
to prove the positivity of a very general class of weighted symmetric polynomials.

Hence, the idea to consider positive symmetric polynomials instead of functions
depending on the norm and the possibility to obtain similar results offer a new and
fresh perspective within the topic of convexity. The aim of this paper is to study such
properties in order to study more general class of optimization problems.
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The rest of the paper is organised as follows: In Section 2 we present our main
results, in the case of h2 strongly convex functions, where we deduce similar results
as the ones for uniformly convex functions. Section 3 is devoted to some connections
of our hd strongly convex functions with polynomial norms.

2. The main results

In this section we present some basic theoretical results on strongly convex functions
with modulus C > 0. We recover some well-known classical results within uniform
convex functions theory, which also holds in the case of strongly hd convex functions.

Theorem 2.1. Let C > 0, d ≥ 2 an even natural number and let f : Ω→ R be a hd
strongly convex with modulus C defined on a convex set Ω ⊆ Rn. Then the following
statements hold true:
(i) If Ω is an open set, then f is a continuous function on Ω.

(ii) Any local minimizer of f is a global minimum for f .
(iii) Moreover, the global minimizer of f is unique.

Proof. (i) The continuity property follows from the fact that f is a convex function
defined on a open and convex domain in Rn. See, for instance, [19, 20].

(ii) Let us use the following identity

h2(x1, ..., xn) = x2
1 + ...+ x2

n +
∑

1≤i<j≤n

xixj . (7)

Let x ∈ Ω be a local minimizer for f and V neighborhood of x such that

f(x) ≤ f(v) (v ∈ V ∩ Ω).

Let us suppose that there exists y ∈ Ω such that f(y) < f(x). Then for all
λ ∈ (0, 1), using Proposition 1.1 we have that

f ((1− λ)x + λy) = (1− λ)f(x) + λf(y)− Cλ(1− λ)h2(x− y) < f(x),

where we have used that h2(x− y) > 0, for all x, y ∈ Rn.
Now, taking λ sufficiently small we get that (1− λ)x + λy ∈ V, which leads us to

a contradiction.
(iii) Let x,y ∈ Ω two global minimizers of f . If we consider x 6= y, taking λ ∈ (0, 1)

we have that:

f((1− λ)x + (λy) < (1− λ)f(x) + λf(y)− Cλ(1− λ)h2(x− y)

< min
t∈Ω

f(t),

which leads us to a contradiction. 2

Since for some optimization algorithms is is very useful to have nice estimates for
such kind of functions we extend the notion of elliptic differentiable functions.

Definition 2.1. We say that a function J : Ω ⊂ Rn → R is elliptic (α-elliptic) if it is
differentiable on Ω and there exists an α > 0 such that

〈∇J(x)−∇J(y),x− y〉 ≥ α‖x− y‖2 (x,y ∈ Ω). (8)
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Definition 2.2. We say that a function J : Ω ⊂ Rn → R is h2-elliptic if it is
differentiable on Ω with modulus C if

〈∇J(x)−∇J(y),x− y〉 ≥ Ch2(x− y) (x,y ∈ Ω). (9)

By considering the convex function g : Ω → R, where g(x) = J(x)− Ch2(x), and
using in addition the well-known convex inequality

g(y) ≥ g(x) + 〈∇g(x),y − x〉 (x,y ∈ Ω),

we can get easily the following result.

Theorem 2.2. Let J : Ω → R be a differentiable function defined on the convex set
Ω ⊆ Rn. Then the following affirmations are equivalent:
(i) J is h2 strongly convex with modulus C.

(ii) The following inequality holds true

J(x)− J(y) ≥ 〈∇J(y),x− y〉+ Ch2(x− y) (x,y ∈ Ω). (10)

(iii) J is h2-elliptic on Ω with modulus 2C, i.e.

〈∇J(x)−∇J(y),x− y〉 ≥ 2Ch2(x− y) (x,y ∈ Ω).

Proof. (i)⇒ (ii). Let us consider a function g : Ω→ R defined as it follows:

g(x) = J(x)− Ch2(x).

As g is convex we have that

g(y) ≥ g(x) + 〈∇g(x),y − x〉,

for all x,y ∈ Ω.
Therefore, we have that

J(y)− Ch2(y) ≥ J(x)− Ch2(x) + 〈∇J(x),y − x〉 − C〈∇h2(x),y − x〉. (11)

Notice that

∇h2(x) = (x1 + S, ..., xn + S),

where S =
∑n

i=1 xi.
Hence by relation (11) we obtain that

J(y)− J(x) ≥ 〈∇J(x),y − x〉+ C (h2(y)− h2(x))

−C(α)〈(x1 + S, ..., xn + S),y − x〉
≥ 〈∇J(x),y − x〉 − CA(x,y),

where A(x,y) = 〈(x1 + S, ..., xn + S),y − x〉 − (h2(y)− h2(x)). Hence, we get

A(x,y) =

n∑
i=1

xiyi + (x1 + ...+ xn)(y1 + ...+ yn)

−
n∑

i=1

x2
i −

∑
1≤i<j≤n

xixj −
n∑

i=1

y2
i −

∑
1≤i<j≤n

yiyj .
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On the other hand, we have

h2(y − x) =

n∑
i=1

y2
i − 2

n∑
i=1

yixi +

n∑
i=1

x2
i +

+
∑

1≤i<j≤n

yiyj −
∑

1≤i<j≤n

yixj −
∑

1≤i<j≤n

yjxi +
∑

1≤i<j≤n

xixj .

In order to prove inequality (10), we establish a certain connection between A(x,y)
and h2(y − x). Indeed, we remark that

A(x,y) + h2(y − x) = 0.

Hence, we obtain that

J(y)− J(x) ≥ 〈∇J(x),y − x〉+ Ch2(x− y),

so (10) holds true.
(ii)⇒ (iii) Taking account of affirmation (ii), for any x, y ∈ Rn we have that

J(y) ≥ J(x) + 〈∇J(x),y − x〉+ Ch2(x− y),

J(x) ≥ J(y) + 〈∇J(y),x− y〉+ Ch2(y − x).

Adding the above inequalities we obtain that

〈∇J(y)−∇J(x),y − x〉 ≥ 2Ch2(y − x),

and (iii) is fulfilled.
(iii)⇒ (i) Similar estimates as the previous ones give the conclusion we need. 2

We recall some classical well-known results in literature.

Theorem 2.3. Let U ⊆ Rn a closed and nonempty set and J : U → R a continuous
and coercive functional if U is unbounded. Then there exists an x ∈ U such that

J(x) = min
y∈U

J(y). (12)

Theorem 2.4. Let U ⊂ Rn a nonempty and convex set. If f is differentiable at
x ∈ U and

min
y∈U

f(y) = f(x), (13)

then one have that

〈∇f(y), (x− y)〉 ≥ 0, (y ∈ U) . (14)

Conversely, if x ∈ U verifies relation (14) and f is convex then x is a global minimizer
for f in U .

We are now in position to prove the following theoretical result.

Theorem 2.5. If U ⊆ Rn is a nonempty, closed and convex set, and J is h2 strongly
convex with modulus C > 0, then there exists an unique x ∈ U such that

J(x) = min
y∈U

J(y). (15)
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Proof. Taking y = 0 in (10) we get

J(x) ≥ J(0) + 〈∇J(0),x〉+ C(α)h2(x)

≥ J(0)− ‖∇J(0)‖ ‖x‖+ C(α)h2(x)

≥ J(0)− ‖∇J(0)‖‖x‖+
C(α)

2
‖x‖2, (16)

using 1
2 ‖x‖

2 ≤ h2(x). By (16) it yields that

lim
‖x‖→∞

J(x) = +∞,

so J is coercive.
We proceed now to prove that J is strictly convex. Let us consider x1,x2 ∈ Ω and

λ ∈ (0, 1). Taking x = x1 and y = x1 + λ
(
x2 − x1

)
in (10) we obtain that

J(x1) > J
(
x1 + λ(x2 − x1)

)
+ 〈∇J

(
x1 + λ(x2 − x1)

)
, λ(x2 − x1)〉. (17)

Now, using (10) with x = x2 and y = x1 + λ(x2 − x1) we get that

J(x2) > J
(
x1 + λ(x2 − x1)

)
+ 〈∇J

(
x1 + λ(x2 − x1), (1− λ)(x2 − x1)

)
〉. (18)

Adding (17) and (18) we obtain that

λJ(x2) + (1− λ)J(x1) > J
(
(1− λ)x1 + λx2

)
,

therefore J is strictly convex.
In conclusion, by the coercivity of J we obtain the existence of a minimizer on U

(using Theorem 2.3). The uniqueness of the minimizer is obtained by the fact that J
is strictly convex, and the characterization is easily to observe using Theorem 2.4. 2

3. Further connections with polynomial norms

In this section we discuss some connections between hd polynomials, hd strongly
convex functions and polynomial norms.

We start this section by presenting some remarks concerning the possibility of
defining a scalar product in terms of hd symmetric polynomials. Thus, we define the
map 〈·, ·〉h : Rn × Rn → R as follows

〈x,y〉h =
h2(x + y)− h2(x− y)

4
(x,y ∈ Rn). (19)

Let us compute

h2(x + y)− h2(x− y) =

n∑
i=1

(xi + yi)
2 +

∑
1≤i<j≤n

(xi + xj)(xj + yj)

−

 n∑
i=1

(xi − yi)2 +
∑

1≤i<j≤n

(xi − yi)(xj − yj)

 =
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=

n∑
i=1

x2
i + 2

n∑
i=1

xiyi +

n∑
i=1

y2
i +

∑
1≤i<j≤n

xixj +
∑

1≤i<j≤n

xiyj

+
∑

1≤i<j≤n

yixj +
∑

1≤i<j≤n

yiyj −
n∑

i=1

x2
i + 2

n∑
i=1

xiyi −
n∑

i=1

y2
i

−
∑

1≤i<j≤n

xixj +
∑

1≤i<j≤n

xiyj +
∑

1≤i<j≤n

yixj −
∑

1≤i<j≤n

yiyj

= 2
n∑

i=1

xiyi +
∑

1≤i<j≤n

yixj + 2
n∑

i=1

xiyi +
∑

1≤i<j≤n

xiyj +
∑

1≤i<j≤n

yixj

= 4

n∑
i=1

xiyi + 2
∑

1≤i<j≤n

xiyj + 2
∑

1≤i<j≤n

yixj .

A straightforward computation gives

〈x,y〉h = 〈x,y〉+
1

2

(
n∑

i=1

xi

n∑
i=1

yi −
n∑

i=1

xiyi

)
,

where 〈x,y〉 =

n∑
i=1

xiyi denotes the usual scalar product in Rn.

Notice that 〈x,y〉h satisfies the properties needed for a scalar product, i.e.

〈x,y〉h = 〈y,x〉h (x,y ∈ Rn),

〈αx,y〉h = α〈x,y〉h (x,y ∈ Rn, α ∈ R),

〈x + z,y〉h = 〈x,y〉h + 〈z,y〉h (x,y, z ∈ Rn),

〈x,x〉h = h2(x) ≥ 0 (x ∈ Rn).

Finally, if h2(x) = 0 we have

h2(x) =
1

2
(x1 + · · ·+ xn)2 +

1

2
(x2

1 + · · ·+ x2
n) = 0,

which gives x = 0n.
Hence, 〈·, ·〉h is a scalar product and a distance can be given by

d2(x,y) =
√
〈x− y,x− y〉h (x,y ∈ Rn). (20)

It is worth mentioning that even if hd polynomials cannot induce a norm (for
example, in majorization settings, we have that for any two vectors satisfying x ≺ y,
h2(y) ≥ h2(x) + h2(y − x), see [12]) similar results (as in the uniform convexity
settings) can be obtained. An interesting approach related to this idea was given in
[23], for the case of strongly convexity and hence, further research can be now done in
our settings. This is why we compare our results, all along the paper, with the ones
obtained for classical strongly convexity.

Note that the following sentences are inspired from [5]. We present some polynomial
norms, which means norms that are the dth root of a homogeneous polynomial with
degree d. An interesting connection between convexity and norm is given in the
following theorem. See [5].
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Theorem 3.1. Let f be a form of degree d in n variables. The following statements
are equivalent:
(1) The function f

1
d is a norm on Rn.

(2) The function f is convex and positive definite.
(3) The function f is strictly convex.

Taking into account that not all norms are polynomial norms we are asking if we
can generally approximate the norms by polynomial norms.

It was shown that, though not every norm is a polynomial norm, but any norm
can be approximated to arbitrary precision by a polynomial norm. A related result
is given by Barvinok in [6]. In [6] is was proved that any norm can be approximated
by the dth root of a nonnegative degree-d form, and quantifies the quality of the
approximation as a function of n and d. The form he obtains however is not shown to
be convex. In fact, in a later work it was pointed out that it would be an interesting
question to know whether any norm can be approximated by the dth root of a convex
form with the same quality of approximation as for dth roots of nonnegative forms.

The result below is a step in that direction, although the quality of approximation is
weaker than that by Barvinok’s [6]. We note that the form in Barvinok’s construction
is a sum of squares of other forms. Such forms are not necessarily convex. By contrast,
the form that we construct is a sum of powers of linear forms and hence always convex.

Theorem 3.2. Let ‖ · ‖ be any norm on Rn. Then, for any even integer d ≥ 2:
(i) There exists an n-variable convex positive definite form fd of degree d such that

d

n+ d

(
n

n+ d

)n/d

‖x‖ ≤ f1/d
d (x) ≤ ‖x‖, (x ∈ Rn). (21)

In particular, for any sequence {fd} (d = 2, 4, 6, ...) of such polynomials one has

lim
d→∞

f
1/d
d (x)

‖x‖
= 1 ∀x ∈ Rn.

(ii) One may assume without loss of generality that fd in (i) is a nonnegative sum of
dth powers of linear forms.

Taking into account all the above results we consider that the theoretical facts
presented in this paper will be of interest for further investigations in literature.
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