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Solving some special functional equations by a general
geometrical method

Alina Olteanu and Octav Olteanu

Abstract. In Section 1 we recall improved versions of some results of [19] concerning the
equation

g(x) = g(f(x)) ∀x ∈ A

where f is the unknown strictly decreasing function (or operator), while g is a given function
(respectively operator), which satisfies some conditions. Such type results are proved in [19]
and used in [16], [17], [8]. The existence of f is proved by constructing it effectively. In Section
2 we apply the general results of Section 1 to some concrete functions and operators g. The
corresponding special solutions f have some additional nice properties, some of them being
related to integers.
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1. General results

We recall the following improved versions of some results of [19]. These results are
used in [16]-[17] to solve concrete operatorial equations (see also [7] and especially
[8]).

1.1. Theorem. Let α, β ∈ R̄, α < β, a ∈]α, β[, g :]α, β[→ R a continuous
function. Assume that

(a) lim
x↘α

g(x) = lim
x↗β

g(x) = λ ∈ R̄,

(b) g is strictly decreasing on ]α, a] and strictly increasing on [a, β[.
Then there exists f :]α, β[→]α, β[ such that

(1) g(x) = g(f(x)), ∀x ∈]α, β[

and f has the following properties:
(i) f is strictly decreasing on ]α, β[,

lim
x↘α

f(x) = β, lim
x↗β

f(x) = α;

(ii) a is the only fixed point of f ;
(iii) we have f−1 = f on ]α, β[;
(iv) f is continuous;
(v) if we assume in addition that g ∈ Cn(]α, β[\{a}), n ∈ N ∪ {∞}, n ≥ 1, then

g ∈ Cn(]α, β[\{a});
(vi) if g is derivable on ]α, β[\{a}, so is f ;
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(vii) if g ∈ C2(]α, β[), g′′(a) 6= 0 and there exists

ρ1 := lim
x→a

f ′(x) ∈ R̄,

then f ∈ C1(]α, β[) ∩ C2(]α, β[\{a}) and f ′(a) = −1;
(viii) if g ∈ C3(]α, β[), g′′(a) 6= 0 and there exist

ρ1 := lim
x→a

f ′(x) ∈ R̄

and
ρ2 := lim

x→a
f ′′(x) ∈ R,

then f ∈ C2(]α, β[) ∩ C3(]α, β[\{a}) and

(2) f ′′(a) = ρ2 = −2
3
· g(3)(a)

g′′(a)
;

(ix) put gl := g|]α,a], gr := g|[a,β[; then for any x0 ∈]α, a], we have

f(x0) = (g−1
r ◦ gl)(x0) = sup{x ∈ [a, β[ ; gr(x) ≤ gl(x0)};

for any x0 ∈ [a, β[, we have

f(x0) = (g−1
l ◦ gr)(x0) = inf{x ∈]α, a] ; gl(x) ≤ gr(x0)}.

For the proof of this theorem see [19].
Next we state the operatorial version of Theorem 1.1. Denote by Izom+(X) the

set of all vector space izomorphisms T : X → X which apply X+ onto itself.
1.2. Theorem. Let X be an order-complete vector lattice, a ∈ X, Al a convex

subset such that
a ∈ Al ⊂ {x ∈ X; x ≤ a}.

Ar a convex subset such that

a ∈ Ar ⊂ {x ∈ X; x ≥ a}.
Let gl : Al → X be a convex operator such that ∀x ∈ Al \ {a}, we have

∂gl(x) ∩ (−Izom+(X)) 6= Φ

(for notations see [19] or [9]).
Let gr : Ar → X be a convex operator such that ∀x ∈ Ar \ {a}, we have

∂gr(x) ∩ (Izom+(X)) 6= Φ.

Assume also that
gl(a) = gr(a) and R(gl) = R(gr),

where R(g) is the range of g.
Let g : A := Al ∪Ar → X be defined by

g(x) :=

{
gl(x), x ∈ Al,

gr(x), x ∈ Ar.

Then there exists F : A → A such that

g(x) = g(F (x)), ∀x ∈ A,

F is strictly decreasing on A and has the properties:
(a) a is the only fixed point of F ;
(b) there exists F−1 and F−1 = F on A;
(c)

F (x0) = g−1
r (gl(x0)) = sup{x ∈ Ar; gr(x) ≤ gl(x0)} ∀x0 ∈ Al,
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F (x0) = g−1
l (gr(x0)) = inf{x ∈ Al; gl(x) ≤ gr(x0)} ∀x0 ∈ Ar.

The proof of this theorem is similar to the proof of Theorem 1.10 [19], p.72-74. For
the proof of (c) see also [9].

2. Applications

2.1. Theorem. Let p, q ∈ N \ {0}. Then there exists a function f : R → R such
that

(1′) x2p+1(x− 1)2q+1 = [f(x)]2p+1[f(x)− 1]2q+1, ∀x ∈ R

and f has the following properties:
(a) f is strictly decreasing on R, lim

x↘−∞
f(x) = +∞, lim

x↗+∞
f(x) = −∞;

(b) a :=
2p + 1

2(p + q + 1)
is the only fixed point of f ;

(c) f−1 = f on R;
(d) f is continuous on R;
(e) f ∈ C∞(R \ {a});
(f) if there exists

ρ1 := lim
x→a

f ′(x) ∈ R̄,

then f ∈ C1(R) and f ′(a) = ρ1 = −1;
(g) if there exists ρ1 and

ρ2 : lim
x→a

f ′′(x) ∈ R,

then f ∈ C2(R) and

(2′) f ′′(a) =
16
3
· (p + q + 1)(q − p)

(2p + 1)(2q + 1)
;

(h) if q < p, then there exists δ > 0 sufficiently small such that

f(x) + x ≤ 2a ∀x ∈]a− δ, a + δ[,

and the inequality is strict for x 6= a; if q > p, then the opposite inequality holds;
(i) we have the following formulae for the construction of f :

f(x0) = sup{x; x ≥ a, x2p+1(x− 1)2q+1 ≤ x2p+1
0 (x0 − 1)2q+1}, ∀x0 ≤ a;

f(x0) = inf{x; x ≤ a, x2p+1(x− 1)2q+1 ≤ x2p+1
0 (x0 − 1)2q+1}, ∀x0 ≥ a;

(j) the straight line

y = −x +
2q + 1

p + q + 1
is an asymptote for the graph of f at −∞ and at +∞;

(k) if
2q + 1

p + q + 1
/∈ Z (in particular if q < p), then there exists M > 0 sufficiently

large such that
m ∈ Z, |m| > M ⇒ f(m) /∈ Z;

(l) we have f(0) = 1, f(1) = 0, and

f(2) ∈ Z

if and only if p = q; in this case,

f(x) = 1− x, ∀x ∈ R.

(hence f(Z) = Z).
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Proof. One applies Theorem 1.1 to α = −∞, β = +∞, g(x) := x2p+1(x − 1)2q+1,
x ∈ R, λ = +∞. We obviously have g ∈ C∞(R) and

g′(x) = x2p(x− 1)2q[2(p + q + 1)x− (2p + 1)], x ∈ R.

This implies g′(x) < 0 for x <
2p + 1

2(p + q + 1)
=: a, x 6= 0, g′(x) = 0 for x = a and

g′(x) > 0 for x > a, x 6= 1.
Thus g satisfies the hypothesis of Theorem 1.1 and, by this Theorem, there exists

f : R → R such that (1′) and (i) - (ix) of Theorem 1.1 hold. The conclusions (a) - (f)
and (i) of Theorem 2.1 follow from the corresponding conclusions of Theorem 1.1. To
prove (g), we have to compute g′′(a) and g(3)(a), where a = 2p+1

2(p+q+1) is the minimum
point of g. A direct computation leads to:

g′′(x) = {x2p(x− 1)2q[2(p + q + 1)x− (2p + 1)]}′ =

= [2px2p−1(x− 1)2q + 2qx2p(x− 1)2q−1][2(p + q + 1)x− (2p + 1)]+

+ 2(p + q + 1)x2p(x− 1)2q.

In particular, for x = a =
2p + 1

2(p + q + 1)
, we have

g′′(a) = 2(p + q + 1)
(

2p + 1
2(p + q + 1)

)2p (
2p + 1

2(p + q + 1)
− 1

)2q

=

=
(2p + 1)2p(2q + 1)2q

22p+2q−1(p + q + 1)2p+2q−1
.

Derivating once again, one obtains

g(3)(a) = (g′′(x))′|x=a =

= {[2px2p−1(x− 1)2q + 2qx2p(x− 1)2q−1][2(p + q + 1)x− (2p + 1)]+

+2(p + q + 1)x2p(x− 1)2q}′|x=a =

= [2pa2p−1(a− 1)2q + 2qa2p(a− 1)2q−1] · 2(p + q + 1)+

+2(p + q + 1)[2pa2p−1(a− 1)2q + 2qa2p(a− 1)2q−1] =

= 2(p + q + 1)[4pa2p−1(a− 1)2q + 4qa2p(a− 1)2q−1] =

= 8(p + q + 1)a2p−1(a− 1)2q−1 · [(p + q)a− p] =

= 8(p + q + 1)
[
(p + q)

2p + 1
2(p + q + 1)

− p

]
(2p + 1)2p−1

22p−1(p + q + 1)2p−1
·

·
[
2p + 1− 2p− 2q − 2

2(p + q + 1)

]2q−1

=

=
8(p + q + 1)
2(p + q + 1)

· (2p2 + 2pq + p + q − 2p2 − 2pq − 2p)·

· (2p + 1)2p−1(−1)(2q + 1)2q−1

22p+2q−2(p + q + 1)2p+2q−2
=

4(p− q)(2p + 1)2p−1(2q + 1)2q−1

22(p+q−1)(p + q + 1)2(p+q−1)
.
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Replacing these values of g′′(a), g(3)(a) into formula f ′′(a) = −2
3
· g(3)(a)

g′′(a)
, we find

f ′′(a) = −2
3
· 4(p− q)(2p + 1)2p−1(2q + 1)2q−1

22(p+q−1)(p + q + 1)2(p+q−1)
·

·2
2p+2q−1(p + q + 1)2p+2q−1

(2p + 1)2p(2q + 1)2q
=

16
3
· (q − p)(p + q + 1)

(2p + 1)(2q + 1)

Thus (g) is proved. In particular, if q < p, then f ′′(a) < 0 (and f ∈ C2(R)). These
lead to the existence of a δ > 0 sufficiently small such that f ′′(x) < 0 ∀x ∈]a−δ, a+δ[,
hence f is strictly concave on ]a− δ, a + δ[.

It follows that

f(x)− f(a) ≤ f ′(a)(x− a) = a− x, ∀x ∈]a− δ, a + δ[.

Since f(a) = a, the last relation may be rewritten as

f(x) + x ≤ 2a, ∀x ∈]a− δ, a + δ[ ,

and the inequality is strict for x 6= a. If q > p, then f is strictly convex on a
neighbourhood of a, and the inequality

f(x) + x ≥ 2a

holds on this neighbourhood. Thus (h) is proved. As (i) follows from Theorem 1.1,
now we have to prove (j), i.e.

(3) lim
x→±∞

f(x)
x

= −1

and

(4) lim
x→±∞

[f(x) + x] =
2q + 1

p + q + 1
.

We start by rewriting (1′) as

1 =
[
f(x)

x

]2p+1

·
[
f(x)− 1

x− 1

]2q+1

=
[
f(x)

x

]2p+1

·
[

f(x)
x − 1

x

1− 1
x

]2q+1

, x ∈ R \ {0, 1}.

If xn → −∞, then for any subsequence
(

f(xkn)
xkn

)

n

which converges in the compact

R̄ to λ, we have

1 =
[
f(xkn)

xkn

]2p+1

·



f(xkn )
xkn

− 1
xkn

1− 1
xkn




2q+1

→ λ2p+1 · λ2q+1 = λ2(p+q+1).

This leads to
λ ∈ {−1, 1}

and, since lim
xkn→−∞

f(xkn) = +∞, we have

λ = −1.

This proves that

lim
xn→−∞

f(xn)
xn

= −1
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for any sequence (xn)n with xn → −∞. Thus (3) is proved for x → −∞. Now we
compute

lim
x→−∞

[f(x) + x] = lim
x→−∞

f(x)
x

+ 1

x−1
=

0
0

=

= lim
x→−∞

[f ′(x)x− f(x)](−1) = lim
x→−∞

[f(x)− xf ′(x)] =

= lim
x→−∞

[
f(x)− x · f(x)[f(x)− 1]

x(x− 1)
· 2(p + q + 1)x− (2p + 1)
2(p + q + 1)f(x)− (2p + 1)

]
,

since from (1′), by derivation, we get

f ′(x) =
x2p(x− 1)2q[(2p + 1)(x− 1) + (2q + 1)x]

[f(x)]2p[f(x)− 1]2q[(2p + 1)(f(x)− 1) + (2q + 1)f(x)]
=

=
f(x)[f(x)− 1]x2p(x− 1)2q

[f(x)]2p+1[f(x)− 1]2q+1
· 2(p + q + 1)x− (2p + 1)
2(p + q + 1)f(x)− (2p + 1)

=

(1′)
=

f(x)[f(x)− 1]
x(x− 1)

· 2(p + q + 1)x− (2p + 1)
2(p + q + 1)f(x)− (2p + 1)

.

It follows that

lim
x→−∞

[f(x) + x] =

= lim
x→−∞

f(x)
{

1− [f(x)− 1][2(p + q + 1)x− (2p + 1)]
(x− 1)[2(p + q + 1)f(x)− (2p + 1)]

}
=

= lim
x→−∞

f(x) · 2(p + q + 1)[(x− 1)f(x)− x(f(x)− 1)] + (2p + 1)[f(x)− x]
(x− 1)[2(p + q + 1)f(x)− (2p + 1)]

=

= lim
x→−∞

f(x)
x− 1

· lim
x→−∞

[x− f(x)](2q + 1)
2(p + q + 1)f(x)− (2p + 1)

=

= [−(2q + 1)] · lim
x→−∞

1− f(x)
x

2(p + q + 1)
f(x)

x
− (2p + 1)

x

=

= −(2q + 1) · 2
−2(p + q + 1)

=
2q + 1

p + q + 1
,

so that (4) is proved for x → −∞.

Thus the straight line y = −x +
2q + 1

p + q + 1
is an asymptote at −∞ for the graph

of f . On the other hand, since f−1 = f , the graph of f is symmetrical with respect

to the diagonal ∆ = {(x, x); x ∈ R}, and so is the straight line y = −x +
2q + 1

p + q + 1
.

These informations lead to the fact that the same straight line is an asymptote at +∞
for the graph of f . Thus (j) is proved. To prove (k), assume that µ :=

2p + 1
p + q + 1

/∈ Z.

Then we have
[µ] < µ < [µ] + 1.

¿From lim
x→±∞

[f(x) + x] = µ ∈][µ], [µ] + 1[, it follows that for M > 0 sufficiently large,

we have f(x) + x ∈][µ], [µ] + 1[, ∀x such that |x| > M . If m ∈ Z and |m| > M , then

f(m) + m ∈][µ], [µ] + 1[ ,
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which implies f(m) + m /∈ Z, i.e. f(m) /∈ Z. To finish the proof, we have to prove
(l). From (1′) written for x = 0, one obtains

[f(0)]2p+1[f(0)− 1]2q+1 = 0,

which is equivalent to f(0) ∈ {0, 1}. But a :=
2p + 1

2(p + q + 1)
∈]0, 1[ is the only fixed

point of f , so that f(0) 6= 0. It follows that f(0) = 1. Similarly, f(1) = 0. Assume
now that

n := f(2) ∈ Z.

Then from (1′) written for x = 2 one obtains

(5) 22p+1 = n2p+1(n− 1)2q+1.

On the other hand, f being decreasing, we have

n := f(2) < f(1) = 0.

Thus n is a negative integer. From this and from (5) we infer that

n = −1

and hence
22p+1 (5)

= (−1)(−2)2q+1 = 22q+1.

This leads to p = q. In this case, (1′) is equivalent to

x(x− 1) = f(x)[f(x)− 1],

which may be consider as an algebraic equation of second degree in the unknown
f(x), namely

[f(x)]2 − f(x) + x(1− x) = 0.

The solution is given by

f(x) ∈
{

1− (1− 4x + 4x2)1/2

2
,
1 + (1− 4x + 4x2)1/2

2

}
=

=
{

1− (2x− 1)
2

,
1 + (2x− 1)

2

}
= {1− x, x}, x ∈ R.

Since f is decreasing, we must have

f(x) = 1− x, x ∈ R.

Of course, in this case we have

f(2) = −1 and f(Z) = Z.

Conversely, if p = q, then we have already observe that (1′) leads to f(x) = 1 − x,
and hence f(2) = −1 ∈ Z. The proof is complete. ¤

Now we consider an application of Theorem 1.1 in which the interval ]α, β[ is
bounded.

2.2. Theorem. Let α ∈]0, 1[, β ∈]1, 2[. Then there exists a function f : [0, 1] →
[0, 1] such that

xβ − xα = [f(x)]β − [f(x)]α, ∀x ∈ [0, 1]
and

(a) f is strictly decreasing on [0, 1], f(0) = 1, f(1) = 0;

(b) a1 :=
(

α

β

) 1
β−α

is the only fixed point of f ;

(c) f−1 = f on [0, 1];
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(d) f is continuous on [0, 1];
(e) f ∈ C∞(R \ {a1});
(f) if there exists

ρ1 : lim
x→a1

f ′(x) ∈ R̄,

then f ∈ C1(]0, 1]) and f ′(a1) = −1;
(g) if there exists ρ1 ∈ R̄ and

ρ2 := lim
x→a1

f ′′(x) ∈ R,

then f ∈ C2(]0, 1[) and

f ′′(a1) = − 2
3a1

· (β − 1)(β − 2)− (α− 1)(α− 2)
β − α

> 0;

(h) if there exist ρ1, ρ2 as above, then there exists δ > 0 such that

f(x) + x ≥ 2a1 ∀x ∈]a1 − δ, a1 + δ[ ;

(i) we have

f(x0) = sup{x ∈ [a1, 1[ ; xβ − xα ≤ xβ
0 − xα

0 } ∀x0 ∈]0, a1] ;

f(x0) = inf{x ∈]0, a1] ;xβ − xα ≤ xβ
0 − xα

0 } ∀x0 ∈ [a1, 1[ .

(j) Put (N∗)−1 :=
{

1,
1
2
,
1
3
, . . .

}
. If α ∈ Q and β = α + 1, then: there exists

n ∈ N \ {0, 1} such that

f

(
1
n

)
∈ (N∗)−1

if and only if

α =
1

n− 1
.

Proof. We apply Theorem 1.1 to α = 0, β = 1, g(x) := xβ − xα, λ = 0. Obviously,
g ∈ C∞([0, 1]). Then

g′(x) = xα−1(βxβ−α − α), x ∈ [0, 1],

which leads to

g′(x) < 0 for 0 ≤ x <

(
α

β

) 1
β−α

=: a1,

g′(x) = 0 for x = a1,

g′(x) > 0 for x ∈]a1, 1].

Thus g satisfies the hypothesis of Theorem 1.1 for a := a1 =
(

α

β

) 1
β−α

∈]0, 1[ and,

from Theorem 1.1 we infer that there exists f :]0, 1[→]0, 1[ such that

g(x) = xβ − xα = g(f(x)) = [f(x)]β − [f(x)]α, x ∈]0, 1[ ,

lim
x↘0

f(x) = 1, lim
x↗1

f(x) = 0 and the properties (i)-(ix) of Theorem 1.1 hold. These

results lead to the fact that f satisfies (a)-(f) of Theorem 2.2.
To prove (g), we compute

g′′(x) = β(β − 1)xβ−2 − α(α− 1)xα−2 > 0, ∀x > 0,

g(3)(x) = β(β − 1)(β − 2)xβ−3 − α(α− 1)(α− 2)xα−3
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and

f ′′(a1)
(2)
= −2

3
· g(3)(a1)

g′′(a1)
=

= −2
3
· β(β − 1)(β − 2)aβ−3

1 − α(α− 1)(α− 2)aα−3
1

β(β − 1)aβ−2
1 − α(α− 1)aα−2

1

=

= −2
3
· aα−3

1 [β(β − 1)(β − 2)aβ−α
1 − α(α− 1)(α− 2)]

aα−2
1 [β(β − 1)aβ−α

1 − α(α− 1)]
=

= − 2
3 · a1

·
β(β − 1)(β − 2) · α

β
− α(α− 1)(α− 2)

β(β − 1) · α

β
− α(α− 1)

=

= − 2
3 · a1

· (β − 1)(β − 2)− (α− 1)(α− 2)
β − α

.

Thus

sign f ′′(a1) = sign
(
− 2

3a1(β − α)

)
·

·sign [(β − 1)(β − 2)− (α− 1)(α− 2)] = (−1)(−1) = +1,

which finishes the proof of (g).
Now (h) follows easily from (g), since f ′′(a1) > 0 and f ∈ C2(]0, 1[) imply the

strictly convexity of f on an interval ]a1 − δ, a1 + δ[. This leads to

f(x) ≥ f(a1) + f ′(a1)(x− a1) = a1 − (x− a1) = 2a1 − x,

i.e.
f(x) + x ≥ 2a1, ∀x ∈]a1 − δ, a1 + δ[

and we have equality if and only if x = a1.
The assertion (i) of Theorem 2.2 follows from (ix) Theorem 1.1. The proof will be

finished if we prove (j). Assume that there exist n, p ∈ {2, 3, . . . , } such that

f

(
1
n

)
=

1
p
,

i.e.

(6)
1
nβ

− 1
nα

=
1
pβ
− 1

pα
,

where α =
l

k
∈ Q (l, k ∈ N \ {0}), β = α + 1 =

l

k
+ 1 =

l + k

k
. In these conditions,

(6) may be rewritten as

1
nα

(
1
n
− 1

)
=

1
pα

(
1
p
− 1

)

or, equivalently
( p

n

)α

=
1
p − 1
1
n − 1

=
p− 1
n− 1

· n

p
,

or further

(6′)
pα+1

nα+1
=

p− 1
n− 1

⇔ (n− 1)p
l+k

k = (p− 1)n
l+k

k ⇔
⇔ (n− 1)kpl+k = (p− 1)knl+k,
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where n, p ∈ {2, 3, . . .}. Since (n, n − 1) = (p, p − 1) = 1, any prime divisor of p is a
divisor of n and any prime divisor of n is a divisor of p. It follows easily from (6′)
that

p = n.

It follows that

f

(
1
n

)
=

1
n

,

which implies (via (b)), that

a1 :=
α

α + 1
=

1
n

,

which is equivalent to

α =
1

n− 1
.

Thus an implication of (j) is proved. Conversely, assume that β = α+1 and α =
1

n− 1
,

where n ∈ {2, 3, . . .}. Then

f

(
1
n

)
= f

(
α

α + 1

)
= f(a1)

(b)
= a1 =

α

α + 1
=

1
n
∈ (N∗)−1.

The proof is complete. ¤
Next we prove an operatorial version of Theorem 2.2, as an application of Theorem

1.2.
Let H be a Hilbert space. Denote by A(H) the real vector space of all self-adjoint

operators acting on H. Let T be a fixed element of A(H). Put

A1 = A1(T ) := {U ∈ A(H); UT = TU},
X := {U ∈ A1; UV = V U ∀V ∈ A1}

(see [5], p.303− 305)

X+ := {U ∈ X; 〈U(h), h〉 ≥ 0, ∀h ∈ H}.
It is known that X is an order-complete vector lattice and a commutative algebra

of operators.

2.3. Theorem. Let α ∈]0, 1[, β ∈]1, 2[, a1 :=
(

α

β

) 1
β−α

. Let

Al := {U ∈ X; σ(U) ⊂]0, a1[} ∪ {a1I},
Ar := {U ∈ X; σ(U) ⊂]a1, 1[} ∪ {a1I},

where σ(U) is the spectrum of U and I is the identity operator on H.
Put a := a1I ∈]0, I[. Let

A := Al ∪Ar.

Then there exists a strictly decreasing map

F : A → A

such that
Uβ − Uα = [(F (U)]β − [F (U)]α ∀U ∈ A

and F has the following properties:
(i) a =: a1I is the only fixed point of F ;
(ii) F is invertible and F−1 = F on A;
(iii) F can be constructed by formulae

F (U0) = sup{U ∈ Ar; Uβ − Uα ≤ Uβ
0 − Uα

0 } ∀U0 ∈ Al,
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F (U0) = inf{U ∈ Al; Uβ − Uα ≤ Uβ
0 − Uα

0 } ∀U0 ∈ Ar.

Proof. We apply Theorem 1.2 to X, a, A defined above and to g : A → X,

g(U) := Uβ − Uα, U ∈ A.

In [19] p. 79-80 we proved that
U 7→ Un

is convex on X+ (where n ∈ N \ {0}). That proof has not used that n ∈ N, but only
the convexity of the map

x 7→ xβ , x ∈ R+,

which is valid for any real β ≥ 1. Thus

U 7→ Uβ , U ∈ X+ (β ≥ 1),

is a convex operator by the same proof.
Similarly,

U → Uα, U ∈ X+, α ∈]0, 1[,
is concave on X+ by the concavity of the elementary function

x 7→ xα, x ∈ [0,∞[, α ∈]0, 1[ .

Thus
g(U) = Uβ − Uα, U ∈ X+,

is convex as a sum of two convex operators. We have

g′(U)(V ) = (βUβ−1 − αUα−1)V, U ∈ X+, V ∈ X.

We have to prove that

U ∈ Al \ {a} ⇒ g′(U) ∈ −Izom+(X).

Let U ∈ Al \ {a}. Then σ(U) ⊂]0, a1[. Thus for any t ∈ σ(U) we have

0 < t < a1 =
(

α

β

) 1
β−α

, hence 0 < tβ−α <
α

β
, which implies −α < βtβ−α − α < 0.

These relations yield:
−αtα < βtβ − αtα < 0,

which imply
βtβ−1 − αtα−1 < 0 (t ∈ σ(U)).

Thus
σ(βUβ−1 − αUα−1) ⊂]−∞, 0[ .

This leads to the fact that βUβ−1 − αUα−1 is invertible and

σ((βUβ−1 − αUα−1)−1) ⊂]−∞, 0[ ,

i.e.
(βUβ−1 − αUα−1)−1 < 0.

Using the commutativeness of X, from this, we obtain

g′(U)(V ) = (βUβ−1 − αUα−1)V < 0,

(g′(U))−1(V ) = (βUβ−1 − αUα−1)−1V < 0, U, V ∈ X+

(the product of two permutable operators, one of which being positive and the other
one being negative, is a negative operator).

Thus
g′(U), (g′(U))−1 ∈ −Izom+(X) ∀U ∈ Al.
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Similarly,
g′(U), (g′(U))−1 ∈ Izom+(X) ∀U ∈ Ar.

Now we prove that
R(gl) = R(gr).

Let gl(U1) ∈ R(gl) be such that U1 ∈ Al \ {a}. Let f : [0, 1] → [0, 1] be the function
constructed in Theorem 2.2. Let

U2 := F (U1),

where F (U1) is as in Lemma 3.3.1 [4], p.227 (functional calculus applied to f). Then

σ(U2) = σ(F (U1)) = f(σ(U1)) ⊂]a1, 1[

(σ(U1) ⊂]0, a1[⇒ f(σ(U1)) ⊂]a1, 1[
since f applies ]0, a1[ onto ]a1, 1[). Thus U2 ∈ Ar. On the other hand, the construction
of f implies

g(t1) = g(f(t1)) ∀t1 ∈]0, 1[ .

We integrate this equality on the spectrum σ(U1) ⊂]0, a1[⊂]0, 1[, with respect to the
spectral measure attached to U1, one obtains:

gl(U1) = gr(F (U1)) = gr(U2) ∈ R(gr)

(since U2 := F (U1) ∈ Ar). Thus gl(U1) ∈ R(gr), ∀U1 ∈ Al \ {a}, which means that
R(gl) ⊂ R(gr). Similarly, we have R(gr) ⊂ R(gl), so that we have

R(gl) = R(gr).

Now all conditions from the hypothesis of Theorem 1.2 are accomplished, so that the
conclusion follows and the proof is complete. ¤
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(Alina Olteanu) University Politehnica of Bucharest
Department of Mathematics I
Splaiul Independentei 313
060032 Bucharest, Romania
E-mail address: alinaolteanu001@yahoo.ie

(Octav Olteanu) University Politehnica of Bucharest
Department of Mathematics I
Splaiul Independentei 313
060032 Bucharest, Romania
E-mail address: oolteanu@mathem.pub.ro


