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Local Fractional Hilbert-type Inequalities in a Half-discrete
Case
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ABSTRACT. We provide a comprehensive analysis of fractal Hilbert-type inequalities in this
study. More specifically, we prove a generalised half-discrete Hilbert-type inequality with
weight functions and a general local fractional continuous kernel. We examine certain selec-
tions of power weight functions and homogeneous kernels as an application.
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1. Introduction

Let p and ¢ be a pair of non-negative conjugate parameters i.e. + + % =1,p>1.In
essence, the famous Hilbert integral inequality (see [4]) asserts that
f(@)g(y)

7r
[ Taty oy < e bl (1)
.7T
sin % ?
appearing on the right-hand side of (1), is the best possible in the sense that it can
not be replaced by a smaller positive constant so that the inequality still holds.

Following its discovery, the Hilbert inequality was the subject of in-depth research
by numerous authors. There were several generalisations available, including exten-
sions to multidimensional instances, weight functions and integration domains, in-
equalities with wider kernels, and refinements of the original Hilbert inequality. Even
though it is classical, many writers find the Hilbert inequality to be an interesting
subject. A complete analysis of the early evolution of the Hilbert inequality is given
in [4], and a set of more recent results is given in [6].

Here we present a brief overview of the key concepts in local fractional calculus to
aid the reader’s understanding. The concepts of the local fractional derivative and
local fractional integral discussed in [10] (see also [11]) will be mostly covered in this
section.

Let R* 0 < a < 1, be an a-type fractal set of real line numbers. We define addition
and multiplication operations on R* by a®*+b® := (a+b)* and a®-b® = a®b* := (ab)?,
a®,b* € R, Obviously, with these two operations, R® is a field with an additive
identity 0% and a multiplicative identity 1.

where f € LP(R;) and g € L4(R,) are non-negative functions. The constant
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The basic step in developing the local fractional calculus on R® is the notion of
the local fractional continuity. A non-differentiable function f : R — R is said to
be local fractional continuous at zg, if for any € > 0, there exists § > 0, such that
|z — xo| < ¢ implies |f(z) — f(zo)| < €. Throughout this paper C,(I) stands for the
set of local fractional continuous functions on interval I.

The local fractional derivative of f of order « at the point x = xq is defined by

_@f@)| . T +a)(f@) - ()

dxe z—o (x — o)™

=T

f(a)(xo)

)

where T is the usual Gamma function. Alternatively, we write f(®)(z) = D2 f(z).
k+1

Moreover, if fF+De(z) =D ... DY f(x) is well-defined for every x € I, then we say

that f belongs to D41)a (1), k=0,1,2,....

The local fractional integral can be defined for a class of local fractional continuous
functions. Let f € Cyla,b] and let P = {to,t1,...,tn}, N € N, be a partition of inter-
val [a,b] such that a =ty < ¢ < -+ < ty_1 <ty = b. Furthermore, for this partition
P7 let Atj = tj+1 - tj, j = O, .. .,N - ]., and At = max{Atl,Atg,. . .,Athl}. In
this setting, the local fractional integral of f on the interval [a, b] of order a (denoted
by a]lga)f(x)) is defined by

(a) I N .
L,V f(@) = = [ fe)(de)* = im0 f(t)(At)°

ol J,

where a! :=T'(1 + «). If for any x € [a, b], there exists a[éa)f(x), then we denote by
f(x) € I(a,b).

Similarly to the Riemann integral, we have an analogue of the Newton-Leibnitz
formula on the fractal space. Namely, if f = ¢(® € C,a,b], then aIb(a)f(a:) =
g(b) — g(a). For example, if f(x) =27, v > 0, then

I'(1
aIlga)x’y = 7( + ’Y)
Fl+~+a)

For more details about the above presented concepts of fractional differentiability
and integrability, the reader is referred to [1], [5], [7] and [8] and references therein.

The starting point in establishing Hilbert-type inequalities is the well-known Holder
inequality. A fractal version of the Holder inequality (see [11]) asserts that if %—l—% =1,
p > 1, then the inequality

(b7 — grte).

Q=

O f@g@) < [ 10 @] 1000 @)] @

holds for all f,g € Cy(a,b).
Besides, we introduce the following notation and definition (see [3]).

Definition 1.1. Let f: I C R — R. If the following inequality
fQ@1+ (1= Naa) < A% f(ar) + (1= A)* f(x2) (3)

holds for any zy,zo € I and A € [0,1], then f is said to be a generalized convex
function on I.



610 P. VUKOVIC

Mo et al. [9] proved the following generalized Hermite-Hadamard inequality for

local fractional integral: let f € i [a,b] be a generalized convex function on [a, b
with a < b. Then

a+b Fl+a) ( f(a) + f(b)
f( 2 )f@a)a T )

Applying above inequality we proved next two lemmas (see also [12]).

Lemma 1.1. If f € I;a)(RQ, F@t) <0, fCI(t) >0 (t € (1/2,00)), then we have

1 o o 1 0 1 [e%e} N
e ARCLE SM;WSM/% FO@E®. )

Lemma 1.2. Letr >0, m,n € N, and K(z,y) be strictly decreasing and generalized
convex function in both variables on Ry. Then

K(m,y)y™*" and K(z,n)z™"
are strictly decreasing and generalized convex function on R,.

In this research, a new Hilbert-type inequality with a general homogeneous kernel
and best constant is obtained by the use of weight functions and local fractional
calculus technique.

2. Main results

The basic step in researching Hilbert-type inequalities is the well-known Hélder’s in-
equality. A half-discrete fractal version of Hélder’s inequality is proved in the following
lemma.

Lemma 2.1. Let %Jr% =1,p > 1, and let h, F, G € Co(R%) be non-negative
functions. If

1 * o . o
0<F(1+a)/0 ;h(x,n)F (z,n)(dx)* < o0,

and

1 * o . N
0< m/o Zh(x,n)G (z,n)(dx)* < oo,

n=1

then the following inequality holds

e, e G

1 o . N
< (M / 3 ) ) ) )

B =

=
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Proof. The inequality (6) is trivially true in the case when h or F or G is identically
equal to zero. Suppose that

» 1
1—|—a/ thnF(a:n)(da:) (1—|—a)/0 thn ,n)(dz)* # 0.

Applying the known a—Young’s inequality

(0 (e}

o o 1 1
xrya < £+yfa,x,y20,andf—|—f:1,p>l,
p“ P q
to
o h(l” n) k¥ (x,n)
€T =
tara) Jo Lomer Pz, n)FP(z,n)(dz)*
and
o e h(z,n)G9(x,n)
e Jo Xt hle n)Gi(z,n) (de)e
obtaining

[h(z,n)]# F(z,n) [h(z,n)]7 G(z,n)

( )fo > L h(z,n)Fr(x, n)(dm)a)% (F(1+a) fo > h(z,n)Ga(x, n)(dw)o‘)%
< h(z,n)F?(x,n)

F(ﬁm) Jo~ o0y h(z,n) FP (2, n)(dx)>
h(z,n)G(z,n)
r(11+a) IS o0 b, n)Ga(z,n)(dx)>
Intergrating and summarizing both side of the above inequality, we have

> W@, n)F(x,n)G(z,n)(dz)*

%ng

+

e Jo
(ratra fo°° 5oy bl ) Fr(a,n)(de))” (ks fo 02 hle, )G (2, n) (do)* )
> h(z,n)FP(z,n)(dx)*
< —
e F(HQ) I Zoo h(z,n)F?(x,n)(dzx)
ey Jo. et (@, n)G(z, n) 11

=

1 F(1+a) fo

Wiuma@mm)_ﬁ+ﬁzﬂ

-‘rj I =
9" Tt DY

The previous lemma will serve us to prove the main result.

Theorem 2.2. Let % + % =1, p>1, and let (an)nen be non-negative real sequence.

If o, f, ¥ € Co(Ry) and K € Co(R4)? is non-negative decreasing function in both
variables on Ry, then the following inequalities hold and are equivalent

1
m/o ZK (o) J) ati)”
1 > p « % = q aq %
< (M/O (w1 f)P(x)(dx) ) <§ (Yuw2) (n)an> ) (7)

n=1
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and
( o)) (e [ K@) )
1 o ) D\ 7
<t | @)’ 0
where
A= 3 Klam) v 7r(0) )
and
)= e | Ko@), (10)

Proof. The left-hand side of inequality (7) can be presented differently in this man-
ner:

ﬁ /OOO > K(x,n)f(z)a(dr)
n=1

1 oo X " . 1)[} n §
e ), XK msw S S

Now, applying the half-discrete Holder’s inequality (6) to the above relation gives
L Y kG e
_— x,n) f(x)ay,(dr
I'l+«) Jo —
1
: / Y " (x) ’
< | =— K(x,n)fP(x dx)®
<m+a> A o

1 oo 0 aqwq(n) e %
(roem [ Syema Gar)

At last, using the Fubini theorem and definitions of functions w; and ws we obtain
(7).

Now, we are going to prove the equivalence of inequalities (7) and (8). For that
reason, suppose that inequality (7) holds. Defining the sequence (a,)nen by

@ = (W) #(n) <r : OOK(:ﬂ,n)f(sz:)(dx)a)p_1

(1+a) /o
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and using (7), we have

i(qm) ( 1+a/ K (2, n) f ()(da)” )p

n=1

= / nlexn ay(dx)®

< <r<11+a> / (wwlf)p(x)(da?)“y @(wz)q(n) azq>é
(iw”) W(rey [ B s ))

that is, we get (8).
Now, suppose that inequality (8)) holds. In that case, another use of the fractal

discrete Holder’s inequality (see also [12]) yields
1 * « @
Fira ), 2K s
= S0 (g [ K ) ()
— r1+a) Jo ’ "

o0 3 1 ) P % oo %
< (wa) ') (s | Ko@) ) (Z(ww(n) )
<t [ @)’ <Z<ww2>q<n> ) 7

which implies (7). Hence, inequalities (7) and (8) are equivalent. O

In order to obtain an application of Theorem 2.2, we need the following lemma.

Lemma 2.3. Let % + % =1,p>1, and let K € C,(R2) be a non-negative ho-
mogeneous function of degree —as, s > 0. If K is decreasing and generalized convex
function in both variables on Ry, then

n=1
<T(1+ o)z P47 k(pAy), x>0, (11)
and
1 o —o a
wi(n) = 7“1 ) /0 K (z,n)z~ " (dx)
<T(1 4 a)n® s tdi (2 — 5 — gAy), (12)

)

where Ay € (max{ 158,

) %) and Ay € (max{ 1=
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Proof. Using Lemmas 1.1 and 1.2, we obtain

wi(z) <T(1+a) /000 K (, t)t P42 (dt)~,

1
I'l+a)

Furthermore, using homogeneity of function K and obvious substitution u = % we
have

a—o — QS 1 o —Q «
(e) < T+ aja oot e /0 K (1, w)u2 (du)
=T(1+ a)xa_apA2_‘“k(pA2),
which implies (11). Similarly, we obtain (12). O
The main results are stated below.

Theorem 2.4. Let % —4—% =1,p> 1 Let f € Co(Ry) and let (an)nen be non-
negative real sequence. If K(x,y), A1, Az are defined as in Lemma 2.3,then the
following inequalities hold and are equivalent

ﬁ/{) ZK x,m) as(dz)® (13)

1 > -
<L|l——— a(l=s)+ap(A1=Az2) £P (1) (dz)® a(l—s)+aq(A2—A1) jaq
<t (g [0 ) (Sn @)

and

S

a(s—1)(p—1)+ap(A1—Az) K( 14
(Zn (roey [ Kt <dw>)> (14

1 . v
a(l—s)+ap(Ai1—Asz) ¢p o
(e | P )’

IN
=~

.e\»—A

where L = [I'(1 + a)k(pAQ)]% k(2—s—qAp)a.

We now study some of the interesting choices of the parameters A; and As. More
precisely, let the parameters A; and As fulfil the requirement

pAs + qA; =2 —s. (15)
Then, the constant L from Theorem 2.4 turns into
1
L* = [L(1+a)]? k(pAy). (16)

Further, the inequalities (13) and (14) take form

m A ;K(x,n)f(x)ag(dx)”‘ (17)

1 oo = o0 q
<Ll -— —a+apqA; P —a+apqAs aq
< (g [ ) (St )
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and

(Z o (P=1)(1-pgAz) (F(ll—i—a) /OOO K(x,n)f(x)(dfﬂ)a> ) (18)

n=1

In the next theorem we prove that, if the parameters A; and A, satisfy condition
(15), then one obtains the best possible constant.

1
P

Theorem 2.5. Let s, A1, Ay and K (x,y) be defined as in Theorem 2./. If the param-
eters Ay and Ag satisfy condition (15), then the constant L* = [['(1 + a)]l/q k(pAs)
in inequalities (17) and (18) is the best possible.

Proof. For this reason, put f(z) = =~ —apAz—F

agdr— ¢ where

%X[LJFOO) and @ = n
O<e< %. Let us suppose that the inequality (17) is valid. First, we obtain

; Oom*aJraqul ) 2)(dz)®
i / () ) (19)

1 * —a—ae o 1
- I‘(1+a)/1 * (@2)" = SFi o)

By using Lemma 1.1 we have

1 1 > 1 >
— —Q—QE o < —X—QE
Il+a)e™ T(1+a) /1 " (d)* < Taey ;”

1 o0
_ n—atapgAsgaq
I'(l+a) ; "

1 o 1 o0
< ——QE d « —x—QE d a'
_I‘(l—l—a)/; w T (dw) +F(1—|—a)/1 w T (du)

Hence, we obtain

© 1
Z n7a+aqu2agq < = +O(1). (20)

n=1

Now, let suppose that there exits a positive constant M, M < L*, such that the
inequality (17)) is still valid if we replace L* with M. Hence, if we insert relations
(19) and (20) in inequality (17), with the constant M instead of L*, we have

2 < m(M+ o(1)). (21)

On the other hand, we estimate the left-hand side of inequality (17). Namely, if we

insert the above defined function (f(z) and sequence (a%)nen in the left-hand side of
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(17), we get the inequality

I = 1—|—a / ZKwn Yay (dx)® (22)

S /1 e (() [ Kt ) o,

where we used Lemma 1.1. By using the substitution u = £ we obtain

1 & Ca—ae 1 o —apAy—<= w)® )%
zgzm/l , <F(1+a)/ K(1,u)u (du) )(d o (23)

Since the kernel K is strictly decreasing in both variables, it follows that K(1,0) >
K(1,t), for t > 0, so we have

1 o0 «E
—— [ K(Luu P (du)”
i [, K (du)
K(

1 > o
> —— [ K(Luu P (du)® — S [ K(Luu P (d
*F(1+a)/0 (1, u)u (du) F1+a/ yu)u (du)®

g K(l 0) A ae
i (pa +>_ ! 2oPATE o
(p *Tg) T TO ) - pA, - 2)e

and consequently

P k(pA2+§) K(1,0) 1
T T(1+a) T2(1+a) (1—pAs — ) (pAs — = — 1)

Stated differently, the relations (22), (23) and (24) yield the estimate for the left-hand
side of inequality (17):

1 / 1
T K(xz,n) ag (dr)® < ———(L" + o(1)). (25)
IF(1+a) Jo Z 50‘F%(1+a)
In the end, by comparing (21) and (25), and by letting e — 0%, we get that L* < M,
which contradicts with the assumption that the constant M is smaller than L*.
The equivalence of inequalities (17) and (18) means that the constant L* is the
best possible in the inequality (18). The proof is now completed. O

(24)

The following results are corollaries of Theorem 2.4. We used the kernel K;(z,y) =
(r+y)~*%, s >0, to process. By using local fractional calculus, we obtain
o 1 I'(1+ sa) 1
— =— <0 0
Ox (iL' + y)as 1"(1 + (S _ 1)0() (Z‘ + y)a(s+1) =Y x,y >0,
and similarly

92 1 (14 (s+1)a) 1
= > .
02 (x +y)*  T(1+ (s —a) (z +y)eG+2) = 0, z,y>0

Applying Lemma 1.2 we obtain

o 20

pyee (r,y)z7*" <0 and e

Ki(z,y)z™*" >0 (26)
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for r > 0.
As we proceed, we assume that
2 — 2 —
A=""0 A, =27 (27)
2q 2p
Then, the constant L* from Theorem 2.5 becomes
L* = T#(1+a)k(pAy)

as

T#(1+ o)k (1—%) :F%(Ha)mia) /Ooo gj;;s(du)a
= T%(1+a)Ba (%;)

Now, from Theorem 2.5 we get the following result.

Corollary 2.6. Let 1% + % =1,p>1,0<s5<2 and f € Co(R;) be non-negative
function and (an)nen be non-negative real sequence. Then the following inequalities
hold and are equivalent

1 * o f(@)ay a
I'l+ ) /0 nzz:l (x4 y)os (da) (28)

i (i [ o) (S

(i n® (F(lia) /OOO (xjjr(z))as (dm)ay’) 3 -

I v 2\
< (g [ e @)

where the constant Ly = TYP(1+ a)B, (£, %) is the best possible.

and

Remark 2.1. The constant appearring in our next example is expressed in terms of
a local fractional hypergeometric function defined by

1 1 ! — (e} cC—0— (e} —acx «
B (bc—b)F(1+a)/0 (VA=) = 27 )

where ¢ > 0> 0, 2] < 1.

To find the corresponding constant, let Ky (z,y) be defined by Ko (z,y) = (x +y +
max{z,y})”*, 0 < s < 2, and let A;, A2 be defined by (27). Lemma 1.2 is utilised
to establish that the functions Ky (z,y)x~*" and Ks(z,y)y~*", r > 0, are decreasing
and generalized convex functions for any fixed x € Ry or y € R, respectively.

According to Theorem 2.5, the related inequalities are given with the best possible

constant
s s s 1
L, =2'"%B (f 1) Fo(s 2.2 412
2 « 23 241 S, 25 2 + 9 92

oF (a,b;¢;2) =

(see also [12]).
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Remark 2.2. With regards to the best constants, another intriguing aspect appears
when considering certain operator expressions closely connected to Hardy-Hilbert-
type inequalities (18). For the sake of making things simple, we deal here with
inequality (18) for 41 = Ay = i and s = 1. Given this setting, inequality (18)
reduce to

1
20 F s < B(2 )1 oo (30)

where £; : LP(R;) — [°? is linear operator

D= ey |, K@@, nen

As a consequence of inequality (30), the operator £; is well-defined and bounded, as
well. In addition, since k‘(%) is the best constant in (30), we are able to determine
norms of £;. Namely, exploiting this fact, it follows that

L1 flliar k<1>

[[£1]] = sup
q

10 IfllLerry)
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