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Abstract. We provide a comprehensive analysis of fractal Hilbert-type inequalities in this

study. More specifically, we prove a generalised half-discrete Hilbert-type inequality with

weight functions and a general local fractional continuous kernel. We examine certain selec-
tions of power weight functions and homogeneous kernels as an application.
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1. Introduction

Let p and q be a pair of non-negative conjugate parameters i.e. 1
p + 1

q = 1, p > 1. In

essence, the famous Hilbert integral inequality (see [4]) asserts that∫
R2

+

f(x)g(y)

x+ y
dxdy ≤ π

sin π
p

‖f‖p‖g‖q, (1)

where f ∈ Lp(R+) and g ∈ Lq(R+) are non-negative functions. The constant π
sin π

p
,

appearing on the right-hand side of (1), is the best possible in the sense that it can
not be replaced by a smaller positive constant so that the inequality still holds.

Following its discovery, the Hilbert inequality was the subject of in-depth research
by numerous authors. There were several generalisations available, including exten-
sions to multidimensional instances, weight functions and integration domains, in-
equalities with wider kernels, and refinements of the original Hilbert inequality. Even
though it is classical, many writers find the Hilbert inequality to be an interesting
subject. A complete analysis of the early evolution of the Hilbert inequality is given
in [4], and a set of more recent results is given in [6].

Here we present a brief overview of the key concepts in local fractional calculus to
aid the reader’s understanding. The concepts of the local fractional derivative and
local fractional integral discussed in [10] (see also [11]) will be mostly covered in this
section.

Let Rα, 0 < α ≤ 1, be an α-type fractal set of real line numbers. We define addition
and multiplication operations on Rα by aα+bα := (a+b)α and aα ·bα = aαbα := (ab)α,
aα, bα ∈ Rα. Obviously, with these two operations, Rα is a field with an additive
identity 0α and a multiplicative identity 1α.
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LOCAL FRACTIONAL HILBERT-TYPE INEQUALITIES 609

The basic step in developing the local fractional calculus on Rα is the notion of
the local fractional continuity. A non-differentiable function f : R → Rα is said to
be local fractional continuous at x0, if for any ε > 0, there exists δ > 0, such that
|x− x0| < δ implies |f(x)− f(x0)| < εα. Throughout this paper Cα(I) stands for the
set of local fractional continuous functions on interval I.

The local fractional derivative of f of order α at the point x = x0 is defined by

f (α)(x0) =
dαf(x)

dxα

∣∣∣∣
x=x0

= lim
x→x0

Γ(1 + α)(f(x)− f(x0))

(x− x0)α
,

where Γ is the usual Gamma function. Alternatively, we write f (α)(x) = Dα
xf(x).

Moreover, if f (k+1)α(x) =

k+1︷ ︸︸ ︷
Dα
x . . . D

α
x f(x) is well-defined for every x ∈ I, then we say

that f belongs to D(k+1)α(I), k = 0, 1, 2, . . . .
The local fractional integral can be defined for a class of local fractional continuous

functions. Let f ∈ Cα[a, b] and let P = {t0, t1, . . . , tN}, N ∈ N, be a partition of inter-
val [a, b] such that a = t0 < t1 < · · · < tN−1 < tN = b. Furthermore, for this partition
P , let ∆tj = tj+1 − tj , j = 0, . . . , N − 1, and ∆t = max{∆t1,∆t2, . . . ,∆tN−1}. In
this setting, the local fractional integral of f on the interval [a, b] of order α (denoted

by aI
(α)
b f(x)) is defined by

aI
(α)
b f(x) =

1

α!

∫ b

a

f(x)(dx)α =
1

α!
lim

∆t→0

N−1∑
j=0

f(tj)(∆tj)
α,

where α! := Γ(1 + α). If for any x ∈ [a, b], there exists aI
(α)
x f(x), then we denote by

f(x) ∈ I(α)
x [a, b].

Similarly to the Riemann integral, we have an analogue of the Newton-Leibnitz

formula on the fractal space. Namely, if f = g(α) ∈ Cα[a, b], then aI
(α)
b f(x) =

g(b)− g(a). For example, if f(x) = xγ , γ > 0, then

aI
(α)
b xγ =

Γ(1 + γ)

Γ(1 + γ + α)
(bγ+α − aγ+α).

For more details about the above presented concepts of fractional differentiability
and integrability, the reader is referred to [1], [5], [7] and [8] and references therein.

The starting point in establishing Hilbert-type inequalities is the well-known Hölder
inequality. A fractal version of the Hölder inequality (see [11]) asserts that if 1

p+ 1
q = 1,

p > 1, then the inequality

aI
(α)
b f(x)g(x) ≤

[
aI

(α)
b fp(x)

] 1
p
[
aI

(α)
b gq(x)

] 1
q

(2)

holds for all f, g ∈ Cα(a, b).
Besides, we introduce the following notation and definition (see [3]).

Definition 1.1. Let f : I ⊆ R→ Rα. If the following inequality

f(λx1 + (1− λ)x2) ≤ λαf(x1) + (1− λ)αf(x2) (3)

holds for any x1, x2 ∈ I and λ ∈ [0, 1], then f is said to be a generalized convex
function on I.
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Mo et al. [9] proved the following generalized Hermite-Hadamard inequality for

local fractional integral: let f ∈ I(α)
x [a, b] be a generalized convex function on [a, b]

with a < b. Then

f

(
a+ b

2

)
≤ Γ(1 + α)

(b− a)α
aI

(α)
b f ≤ f(a) + f(b)

2α
. (4)

Applying above inequality we proved next two lemmas (see also [12]).

Lemma 1.1. If f ∈ I(α)
x (R+), f (α)(t) < 0, f (2α)(t) > 0 (t ∈ (1/2,∞)), then we have

1

Γ(1 + α)

∫ ∞
1

f(t)(dt)α ≤ 1

Γ(1 + α)

∞∑
n=1

f(n) ≤ 1

Γ(1 + α)

∫ ∞
1
2

f(t)(dt)α. (5)

Lemma 1.2. Let r > 0, m, n ∈ N, and K(x, y) be strictly decreasing and generalized
convex function in both variables on R+. Then

K(m, y)y−αr and K(x, n)x−αr

are strictly decreasing and generalized convex function on R+.

In this research, a new Hilbert-type inequality with a general homogeneous kernel
and best constant is obtained by the use of weight functions and local fractional
calculus technique.

2. Main results

The basic step in researching Hilbert-type inequalities is the well-known Hölder’s in-
equality. A half-discrete fractal version of Hölder’s inequality is proved in the following
lemma.

Lemma 2.1. Let 1
p + 1

q = 1, p > 1, and let h, F, G ∈ Cα(R2
+) be non-negative

functions. If

0 <
1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

h(x, n)F p(x, n)(dx)α <∞,

and

0 <
1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

h(x, n)Gq(x, n)(dx)α <∞,

then the following inequality holds

1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

h(x, n)F (x, n)G(x, n)(dx)α

≤

(
1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

h(x, n)F p(x, n)(dx)α

) 1
p

×

(
1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

h(x, n)Gq(x, n)(dx)α

) 1
p

. (6)
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Proof. The inequality (6) is trivially true in the case when h or F or G is identically
equal to zero. Suppose that

1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

h(x, n)F p(x, n)(dx)α× 1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

h(x, n)Gq(x, n)(dx)α 6= 0.

Applying the known α−Young’s inequality

x
α
p y

α
q ≤ xα

pα
+
yα

qα
, x, y ≥ 0, and

1

p
+

1

q
= 1, p > 1,

to

xα :=
h(x, n)F p(x, n)

1
Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)F p(x, n)(dx)α

and

yα :=
h(x, n)Gq(x, n)

1
Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)Gq(x, n)(dx)α

obtaining

[h(x, n)]
1
p F (x, n) [h(x, n)]

1
q G(x, n)(

1
Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)F

p(x, n)(dx)α
) 1
p
(

1
Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)G

q(x, n)(dx)α
) 1
p

≤ 1

pα
h(x, n)F p(x, n)

1
Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)F

p(x, n)(dx)α

+
1

qα
h(x, n)Gq(x, n)

1
Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)G

q(x, n)(dx)α
.

Intergrating and summarizing both side of the above inequality, we have
1

Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)F (x, n)G(x, n)(dx)α(

1
Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)F

p(x, n)(dx)α
) 1
p
(

1
Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)G

q(x, n)(dx)α
) 1
p

≤ 1

pα

1
Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)F

p(x, n)(dx)α

1
Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)F

p(x, n)(dx)α

+
1

qα

1
Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)G

q(x, n)
1

Γ(1+α)

∫∞
0

∑∞
n=1 h(x, n)G

q(x, n)(dx)α
=

1

pα
+

1

qα
= 1α.

�

The previous lemma will serve us to prove the main result.

Theorem 2.2. Let 1
p + 1

q = 1, p > 1, and let (an)n∈N be non-negative real sequence.

If ϕ, f, ψ ∈ Cα(R+) and K ∈ Cα(R+)2 is non-negative decreasing function in both
variables on R+, then the following inequalities hold and are equivalent

1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

K(x, n)f(x)aαn(dx)α

≤
(

1

Γ(1 + α)

∫ ∞
0

(ϕω1f)p(x)(dx)α
) 1
p

( ∞∑
n=1

(ψω2)q(n)aαqn

) 1
q

, (7)
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and

( ∞∑
n=1

(ψω2)−p(n)

(
1

Γ(1 + α)

∫ ∞
0

K(x, n)f(x)(dx)α
)p) 1

p

≤
(

1

Γ(1 + α)

∫ ∞
0

(ϕω1f)p(x)(dx)α
) 1
p

, (8)

where

ωp1(x) :=

∞∑
n=1

K(x, n)ψ−p(n) (9)

and

ωq2(n) :=
1

Γ(1 + α)

∫ ∞
0

K(x, n)ϕ−q(x)(dx)α. (10)

Proof. The left-hand side of inequality (7) can be presented differently in this man-
ner:

1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

K(x, n)f(x)aαn(dx)α

=
1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

K(x, n)f(x)
ϕ(x)

ψ(n)
aαn

ψ(n)

ϕ(x)
(dx)α.

Now, applying the half-discrete Hölder’s inequality (6) to the above relation gives

1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

K(x, n)f(x)aαn(dx)α

≤

(
1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

K(x, n)fp(x)
ϕp(x)

ψp(n)
(dx)α

) 1
p

×

(
1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

K(x, n)aαqn
ψq(n)

ϕq(x)
(dx)α

) 1
q

.

At last, using the Fubini theorem and definitions of functions ω1 and ω2 we obtain
(7).

Now, we are going to prove the equivalence of inequalities (7) and (8). For that
reason, suppose that inequality (7) holds. Defining the sequence (an)n∈N by

aαn := (ψω2)−p(n)

(
1

Γ(1 + α)

∫ ∞
0

K(x, n)f(x)(dx)α
)p−1
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and using (7), we have

∞∑
n=1

(ψω2)−p(n)

(
1

Γ(1 + α)

∫ ∞
0

K(x, n)f(x)(dx)α
)p

=
1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

K(x, n)f(x)aαn(dx)α

≤
(

1

Γ(1 + α)

∫ ∞
0

(ϕω1f)p(x)(dx)α
) 1
p

( ∞∑
n=1

(ψω2)q(n)aαqn

) 1
q

=

( ∞∑
n=1

(ψω2)−p(n)

(
1

Γ(1 + α)

∫ ∞
0

K(x, n)f(x)(dx)α
)p) 1

q

,

that is, we get (8).
Now, suppose that inequality (8)) holds. In that case, another use of the fractal

discrete Hölder’s inequality (see also [12]) yields

1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

K(x, n)f(x)aαn(dx)α

=

∞∑
n=1

(ψω2)−1(n)

(
1

Γ(1 + α)

∫ ∞
0

K(x, n)f(x)(dx)α
)

(ψω2)(n)aαn

≤

( ∞∑
n=1

(ψω2)−p(n)

(
1

Γ(1 + α)

∫ ∞
0

K(x, n)f(x)(dx)α
)p) 1

p
( ∞∑
n=1

(ψω2)q(n)aαqn

) 1
q

≤
(

1

Γ(1 + α)

∫ ∞
0

(ϕω1f)p(x)(dx)α
) 1
p

( ∞∑
n=1

(ψω2)q(n)aαqn

) 1
q

,

which implies (7). Hence, inequalities (7) and (8) are equivalent. �

In order to obtain an application of Theorem 2.2, we need the following lemma.

Lemma 2.3. Let 1
p + 1

q = 1, p > 1, and let K ∈ Cα(R2
+) be a non-negative ho-

mogeneous function of degree −αs, s > 0. If K is decreasing and generalized convex
function in both variables on R+, then

$p
1(x) :=

∞∑
n=1

K(x, n)n−αpA2

≤ Γ(1 + α)xα−αpA2−αsk(pA2), x > 0, (11)

and

$q
2(n) :=

1

Γ(1 + α)

∫ ∞
0

K(x, n)x−αqA1(dx)α

≤ Γ(1 + α)nα−αs−αqA1k(2− s− qA1), (12)

where A1 ∈
(

max{ 1−s
q , 0}, 1

q

)
and A2 ∈

(
max{ 1−s

p , 0}, 1
p

)
.
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Proof. Using Lemmas 1.1 and 1.2, we obtain

$p
1(x) ≤ Γ(1 + α)

1

Γ(1 + α)

∫ ∞
0

K(x, t)t−αpA2(dt)α.

Furthermore, using homogeneity of function K and obvious substitution u = t
x we

have

$p
1(x) ≤ Γ(1 + α)xα−αpA2−αs 1

Γ(1 + α)

∫ ∞
0

K(1, u)u−αpA2(du)α

= Γ(1 + α)xα−αpA2−αsk(pA2),

which implies (11). Similarly, we obtain (12). �

The main results are stated below.

Theorem 2.4. Let 1
p + 1

q = 1, p > 1. Let f ∈ Cα(R+) and let (an)n∈N be non-

negative real sequence. If K(x, y), A1, A2 are defined as in Lemma 2.3,then the
following inequalities hold and are equivalent

1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

K(x, n)f(x)aαn(dx)α (13)

≤ L
(

1

Γ(1 + α)

∫ ∞
0

xα(1−s)+αp(A1−A2)fp(x)(dx)α
) 1
p

( ∞∑
n=1

nα(1−s)+αq(A2−A1)aαqn

) 1
q

,

and ( ∞∑
n=1

nα(s−1)(p−1)+αp(A1−A2)

(
1

Γ(1 + α)

∫ ∞
0

K(x, n)f(x)(dx)α
)p) 1

p

(14)

≤ L
(

1

Γ(1 + α)

∫ ∞
0

xα(1−s)+αp(A1−A2)fp(x)(dx)α
) 1
p

,

where L = [Γ(1 + α)k(pA2)]
1
p k(2− s− qA1)

1
q .

We now study some of the interesting choices of the parameters A1 and A2. More
precisely, let the parameters A1 and A2 fulfil the requirement

pA2 + qA1 = 2− s. (15)

Then, the constant L from Theorem 2.4 turns into

L∗ = [Γ(1 + α)]
1
p k(pA2). (16)

Further, the inequalities (13) and (14) take form

1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

K(x, n)f(x)aαn(dx)α (17)

≤ L∗
(

1

Γ(1 + α)

∫ ∞
0

x−α+αpqA1fp(x)(dx)α
) 1
p

( ∞∑
n=1

n−α+αpqA2aαqn

) 1
q

,
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and ( ∞∑
n=1

nα(p−1)(1−pqA2)

(
1

Γ(1 + α)

∫ ∞
0

K(x, n)f(x)(dx)α
)p) 1

p

(18)

≤ L∗
(

1

Γ(1 + α)

∫ ∞
0

x−α+αpqA1fp(x)(dx)α
) 1
p

.

In the next theorem we prove that, if the parameters A1 and A2 satisfy condition
(15), then one obtains the best possible constant.

Theorem 2.5. Let s, A1, A2 and K(x, y) be defined as in Theorem 2.4. If the param-

eters A1 and A2 satisfy condition (15), then the constant L∗ = [Γ(1 + α)]
1/q

k(pA2)
in inequalities (17) and (18) is the best possible.

Proof. For this reason, put f̃(x) = x−αqA1−αεp χ[1,+∞) and ãαn = n−αpA2−αεq where

0 < ε < 1−pA2

q . Let us suppose that the inequality (17) is valid. First, we obtain

1

Γ(1 + α)

∫ ∞
0

x−α+αpqA1 f̃p(x)(dx)α (19)

=
1

Γ(1 + α)

∫ ∞
1

x−α−αε(dx)α =
1

εαΓ(1 + α)
.

By using Lemma 1.1 we have

1

Γ(1 + α)εα
=

1

Γ(1 + α)

∫ ∞
1

u−α−αε(du)α ≤ 1

Γ(1 + α)

∞∑
n=1

n−α−αε

=
1

Γ(1 + α)

∞∑
n=1

n−α+αpqA2 ãαqn

≤ 1

Γ(1 + α)

∫ ∞
1
2

u−α−αε(du)α +
1

Γ(1 + α)

∫ ∞
1

u−α−αε(du)α.

Hence, we obtain

∞∑
n=1

n−α+αpqA2 ãαqn ≤
1

εα
+O(1). (20)

Now, let suppose that there exits a positive constant M, M < L∗, such that the
inequality (17)) is still valid if we replace L∗ with M. Hence, if we insert relations
(19) and (20) in inequality (17), with the constant M instead of L∗, we have

1

Γ(1 + α)

∫ ∞
1

∞∑
n=1

K(x, n)f̃(x) ãαn (dx)α ≤ 1

εαΓ
1
p (1 + α)

(M + o(1)). (21)

On the other hand, we estimate the left-hand side of inequality (17). Namely, if we

insert the above defined function (f̃(x) and sequence (ãαn)n∈N in the left-hand side of
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(17), we get the inequality

Iε :=
1

Γ2(1 + α)

∫ ∞
0

∞∑
n=1

K(x, n)f̃(x) ãαn (dx)α (22)

≥ 1

Γ(1 + α)

∫ ∞
1

x−αqA1−αεp

(
1

Γ(1 + α)

∫ ∞
1

K(x, y)y−αpA2−αεq (dy)α
)

(dx)α,

where we used Lemma 1.1. By using the substitution u = y
x we obtain

Iε ≥
1

Γ(1 + α)

∫ ∞
1

x−α−αε

(
1

Γ(1 + α)

∫ ∞
1
x

K(1, u)u−αpA2−αεq (du)α

)
(dx)α. (23)

Since the kernel K is strictly decreasing in both variables, it follows that K(1, 0) ≥
K(1, t), for t > 0, so we have

1

Γ(1 + α)

∫ ∞
1
x

K(1, u)u−αpA2−αεq (du)α

≥ 1

Γ(1 + α)

∫ ∞
0

K(1, u)u−αpA2−αεq (du)α − K(1, 0)

Γ(1 + α)

∫ 1
x

0

K(1, u)u−αpA2−αεq (du)α

= k

(
pA2 +

ε

q

)
− K(1, 0)

Γ(1 + α)(1− pA2 − ε
q )α

xαpA2+αε
q −α

and consequently

Jε ≥
1

εα

k
(
pA2 + ε

q

)
Γ(1 + α)

+
K(1, 0)

Γ2(1 + α)

1

(1− pA2 − ε
q )α(pA2 − ε

p − 1)α
. (24)

Stated differently, the relations (22), (23) and (24) yield the estimate for the left-hand
side of inequality (17):

1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

K(x, n)f̃(x) ãαn (dx)α ≤ 1

εαΓ
1
p (1 + α)

(L∗ + o(1)). (25)

In the end, by comparing (21) and (25), and by letting ε −→ 0+, we get that L∗ ≤M,
which contradicts with the assumption that the constant M is smaller than L∗.

The equivalence of inequalities (17) and (18) means that the constant L∗ is the
best possible in the inequality (18). The proof is now completed. �

The following results are corollaries of Theorem 2.4. We used the kernel K1(x, y) =
(x+ y)−αs, s > 0, to process. By using local fractional calculus, we obtain

∂α

∂xα
1

(x+ y)αs
= − Γ(1 + sα)

Γ(1 + (s− 1)α)

1

(x+ y)α(s+1)
≤ 0, x, y > 0,

and similarly

∂2α

∂x2α

1

(x+ y)αs
=

Γ(1 + (s+ 1)α)

Γ(1 + (s− 1)α)

1

(x+ y)α(s+2)
≥ 0, x, y > 0.

Applying Lemma 1.2 we obtain

∂α

∂xα
K1(x, y)x−αr ≤ 0 and

∂2α

∂x2α
K1(x, y)x−αr ≥ 0 (26)
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for r > 0.
As we proceed, we assume that

A1 =
2− s

2q
, A2 =

2− s
2p

. (27)

Then, the constant L∗ from Theorem 2.5 becomes

L∗ = Γ
1
p (1 + α)k(pA2)

= Γ
1
p (1 + α)k

(
1− s

2

)
= Γ

1
p (1 + α)

1

Γ(1 + α)

∫ ∞
0

u−α−
αs
2

(1 + u)αs
(du)α

= Γ
1
p (1 + α)Bα

(s
2
,
s

2

)
.

Now, from Theorem 2.5 we get the following result.

Corollary 2.6. Let 1
p + 1

q = 1, p > 1, 0 < s < 2, and f ∈ Cα(R+) be non-negative

function and (an)n∈N be non-negative real sequence. Then the following inequalities
hold and are equivalent

1

Γ(1 + α)

∫ ∞
0

∞∑
n=1

f(x)aαn
(x+ y)αs

(dx)α (28)

≤ L1

(
1

Γ(1 + α)

∫ ∞
0

xαp(1−
s
2 )−αfp(x)(dx)α

) 1
p

( ∞∑
n=1

nαq(1−
s
2 )−αaαqn

) 1
q

,

and ( ∞∑
n=1

n
αps
2 −α

(
1

Γ(1 + α)

∫ ∞
0

f(x)

(x+ y)αs
(dx)α

)p) 1
p

(29)

≤ L1

(
1

Γ(1 + α)

∫ ∞
0

xαp(1−
s
2 )−αfp(x)(dx)α

) 1
p

,

where the constant L1 = Γ1/p(1 + α)Bα
(
s
2 ,

s
2

)
is the best possible.

Remark 2.1. The constant appearring in our next example is expressed in terms of
a local fractional hypergeometric function defined by

2F
α
1 (a, b; c; z) =

1

Bα(b, c− b)
1

Γ(1 + α)

∫ 1

0

t(b−1)α(1− t)(c−b−1)α(1− zt)−aα(dt)α,

where c > b > 0, |z| ≤ 1.
To find the corresponding constant, let K2(x, y) be defined by K2(x, y) = (x+ y+

max{x, y})−αs, 0 < s < 2, and let A1, A2 be defined by (27). Lemma 1.2 is utilised
to establish that the functions K2(x, y)x−αr and K2(x, y)y−αr, r > 0, are decreasing
and generalized convex functions for any fixed x ∈ R+ or y ∈ R+, respectively.

According to Theorem 2.5, the related inequalities are given with the best possible
constant

L2 = 21−αsBα

(s
2
, 1
)

2F
α
1

(
s,
s

2
;
s

2
+ 1;−1

2

)
(see also [12]).
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Remark 2.2. With regards to the best constants, another intriguing aspect appears
when considering certain operator expressions closely connected to Hardy-Hilbert-
type inequalities (18). For the sake of making things simple, we deal here with
inequality (18) for A1 = A2 = 1

pq and s = 1. Given this setting, inequality (18)

reduce to

‖L1f‖lαp ≤ k
(1

q

)
‖f‖Lαp(R+) (30)

where L1 : Lp(R+)→ lαp is linear operator

(L1f)n =
1

Γ(1 + α)

∫ ∞
0

K(x, n)f(x)(dx)α, n ∈ N.

As a consequence of inequality (30), the operator L1 is well-defined and bounded, as
well. In addition, since k

(
1
q

)
is the best constant in (30), we are able to determine

norms of L1. Namely, exploiting this fact, it follows that

‖L1‖ = sup
f 6=0

‖L1f‖lαp
‖f‖Lαp(R+)

= k
(1

q

)
.
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