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Metrics for Sets of Atoms and Logic Programs

Mircea Preda

Abstract. The information systems that represent entities by using logic programs some-
times need to know if two entities are similar in order to facilitate the knowledge transfer
between them. The similarities between such entities must be measured by measuring the
distances between the logic programs representing them. The paper proposes a configurable
framework to define distances for the class of the logic programs whose answers are or can
be converted to sets of ground atoms. The distance between two logic programs is measured
regarding to a set of criteria, each criterion being described by a measure function. The qual-
ities of the presented framework are illustrated by comparing it with a well known distance
between Herbrand interpretations.
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1. Introduction

Numerous modern information systems need to deal with information that admits
logical representations. For example it is common in the case of the Semantic Web
systems to represent the knowledge about users by using logic programs. If such
Web support systems need to know if two users have similar preferences then they
must measure if the two logic programs that represent the users are similar. This
paper proposes a configurable framework to define distances for a large class of logic
programs. Its configurability allows us to use it in situations that require a careful
analysis of the domain’s particularities, a usage example for a Web recommendation
system being presented in [3]. The similarities between two logic programs are mea-
sured regarding a set of criteria, each criterion having attached a measure function
that indicates the degree of satisfaction of the criterion by the logic program. These
measures are combined in a metric on the set of the logic programs, two combination
variants being presented in the paper. The presentation concludes with a comparison
between the new proposed framework and a well known distance between Herbrand
interpretations for logic programs [2].

2. Distances between logic programs

Two logic programs may be considered similar if they provide in almost all cases
similar answers to queries. The logic equivalence is a stronger notion, two logic pro-
grams are said to be logic equivalent if they provide same answers to queries. Usually,
the answers provided by logic programs are sets of atoms or sets of literals. Conse-
quently, a similarity measure on the logic programs space can be defined by defining
similarity measures for atoms and sets of atoms. This topic was extensively discussed
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in [4, 5, 1]. However, the methods proposed until now cannot be easily adapted to
the specificities of a particular domain and they are not efficient for a large number
of applications that require a careful study of the domain’s characteristics.

In the following paragraphs we will propose an intuitive and configurable framework
for measuring similarities between sets of atoms. The similarities between two atoms
are given by the similarities between their structures measured according with a set
of similarity features. These features will be combined using elements from multi
criteria decision theory. Only the ground atoms case will be considered in the paper.

2.1. Mathematical background. Let (A, d) be a metric space where A is a set and
d a metric (distance function). A metric space is bounded if the metric is bounded,
it exists m ∈ R+ such that d(x, y) ≤ m,∀x, y ∈ A.

Definition 2.1. Let (A, d) be a metric space bounded by a constant m and let C(A)
be the family of the all closed subsets of A. The mapping h : C(A) × C(A) → R
defined by

h(S, T ) =





max{supx∈S{infy∈T d(x, y)},
supx∈T {infy∈S d(x, y)}} if S 6= ∅, T 6= ∅
0 if S = T = ∅
m if S = ∅ 6= T or T = ∅ 6= S

,

is named the Hausdorff metric induced by d.

Definition 2.2. Let (A, d) be a metric space bounded by a constant m and let C(A)
be the family of the all closed subsets of A. The function md : C(A) × C(A) → R
defined by:

md(S, T ) =





1
2max{|S|, |T |} ·( ∑

x∈S

inf
y∈T

d(x, y) +
∑

x∈T

inf
y∈S

d(x, y)
)

if S 6= ∅, T 6= ∅
0 if S = T = ∅
m if S = ∅ 6= T or T = ∅ 6= S

,

is named the minimum distances sum metric induced by d.

2.2. A metric for sets of atoms.

Definition 2.3. Let F be a finite set of functors (function symbols) and let P be a
finite set of predicate (relation) symbols. A ground term has the form f(t1, ..., tn),
n ≥ 0 with f/n an n-arity functor and t1, ..., tn ground terms. A ground atom is
a construction p(t1, ..., tn), n ≥ 0 with p/n an n-arity predicate symbol and t1, ...,
tn ground terms. Ag describes the set of the all ground atoms constructed based on
F and P. Ag = 2Ag represents the family of the all subsets of atoms. The function
symbols with 0 arity (with 0 arguments) are also named constant symbols or constants.

Let V = {v1, v2, ..., vn} be a finite nonempty set of criteria used to study the
similarities between two sets of atoms. We consider that each criteria v ∈ V has
attached a quadruple Xv = (Xv, 0v,⊕,≤) composed from a nonempty set Xv, an
internal operation ⊕ : Xv × Xv → Xv, which is associative, commutative and has
a neutral element 0v, and ≤ a partial order relation on pe Xv with 0v the smallest
element. Formally, the following properties are satisfied:

i) x⊕ (y ⊕ z) = (x⊕ y)⊕ z, ∀x, y, z ∈ Xv;
ii) x⊕ y = y ⊕ x, ∀x, y ∈ Xv;



METRICS FOR SETS OF ATOMS AND LOGIC PROGRAMS 69

iii) x ⊕ 0v = x, ∀x ∈ Xv. In accordance with the properties i), ii), iii) (Xv,⊕) is
commutative monoid;

iv) 0v ≤ x,∀x ∈ Xv;
v) ⊕ maintains the order relation ≤. If x ≤ u and y ≤ v then x⊕ y ≤ u⊕ v.
Let us suppose that we can define a function f(v) : Ag → Xv that satisfies the

following properties:
a) f(v)(A) ≥ 0v, ∀A ⊆ Ag;
b) f(v)(∅) = 0v;
c) If Ai,i≥0 ⊆ Ag, ∀i, j : Ai ∩Aj = ∅ then f(v)(∪iAi) = ⊕if(v)(Ai).

f(v), v ∈ Vi, i ∈ 1, n are pseudo measures over the universe Ag. They are not measures
because the property f(v)(A) = 0v ⇒ A = ∅,∀A ⊆ Ag is not imposed. The purpose
of these functions is to describe a set of atoms regarding to a criterion v (the degree
of satisfaction of the criterion v by the set of atoms A).

The pseudo measures f(v) can be relatively easy defined by considering the struc-
ture of the atoms. The directed graphs provide a good representation of the elements
and relationships involved by structures. Consequently, we will present the graph
representation of an atom.

Definition 2.4. Let Γt be the graph attached to a term t = f(t1, ..., tn). Γt is defined
by the following 4 rules:
(1) If f is a functor with arity 0 (a constant) then Γt contains only one node ( the

root) labeled with f .
(2) If f is a functor with arity > 0 then Γt is composed from a node ( the root)

labeled with f(t1, ..., tn) and conected by directed edges with the roots of the graphs
Γt1 , ..., Γtn . These directed edges are labeled with the symbols f1,..., fn.

(3) Γt does not include two nodes with same label. Each node from Γt can be uniquely
identified by its label.

(4) Γt cannot include two edges with same source, same destination and same label.
A directed edge is identified by a triple (s, t, e) with s - the source node label, t -
the destination node label and the edge’s label e.

Definition 2.5. Let Γa be the graph attached to a ground atom a = p(t1, ..., tn). Γa

is defined by the following two rules:
(1) If p is a predicate symbol with arity 0 then Γa consists in a single node labeled

with p.
(2) If p is a predicate symbol with arity > 0 then Γa consists from a node labeled with

p(t1, ..., tn) that is connected by directed edges with the root nodes of the graphs
Γt1 , ..., Γtn . These edges are labeled with the symbols p1, ...,pn.

Γa can be represented as a pair Γa = (Va, Ea) where Va and Ea are the sets of
nodes, and, respectively, of edges from Γa.

As it is illustrated in the following examples, a criterion can be associated to an
element that can be found in the graphs attached to the atoms from Ag, an element
that can be a node label or an edge label or a subgraph.

Example 2.1. Let us consider V = {a, b}. Xa = Xb = (L, ∅,∪,⊆) unde L is the
family of the all sets of sequences of edge labels. We define f(a)(A) to be the set of
the sequences of edge labels from the paths that unite the root of a graph attached to
an atom from A with a node labeled with the function symbol a.

f(a)({g(f(a), g(a, b))}) = {g2g1, g1f1}.
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f(a)({g(f(b), b)}) = ∅.
The criterion a compares two sets of atoms from the point of view of the position of
the function symbol a inside of their structures. Similarly, f(b)(A) is defined as the
set of the sequences attached to the paths that unite the root of a graph corresponding
to an atom from A with a node labeled with the function symbol b.

f(b)({g(f(a), g(a, b))}) = {g2g2}.
f(b)({g(f(b), b)}) = {g1f1, g2}.

Example 2.2. If the criteria v ∈ V is represented by a node label then we can consider
Xv = (N, 0,+,≤) and define

f(v)(A) = |{a ∈ A|Γa = (Va, Ea), v ∈ Va}|. (1)

f(v)(A) represents the number of the occurrences of a node labeled with v in the set
of the graphs that are attached to the ground atoms from A. By |.| it is represented
the cardinal function for sets. Similarly, if v is an edge label, Xv = (N, 0,+,≤) and
f(v) can be defined as follows:

f(v)(A) = |{a ∈ A|Γa = (Va, Ea), v ∈ Ea}|, (2)

the number of occurrences of the edge label v in the graphs Γa, a ∈ A.

Let v ∈ V. The binary relation =v⊆ Ag × Ag defined by A =v B if and only if
f(v)(A) = f(v)(B) is an equivalence relation (reflexive, symmetric and transitive).
Let d : Ag × Ag → Rnd

+ , for an arbitrary nd, nd ∈ N∗. d is an =v-distance defined on
Ag if and only if the following 3 properties are satisfied:

a) d(A,B) ≥ 0nd , d(A,B) = 0nd ⇔ A =v B, ∀A,B ⊆ Ag,
b) d(A,B) = d(B, A),∀A,B ⊆ Ag,
c) d(A,B) ≤ d(A,C) + d(C,B),∀A,B, C ⊆ Ag.

d is =V-distance if and only if d is =v - distance ∀v ∈ Vi,∀i ∈ 1, n. If d is =V -
distance then the equivalence d(A,B) = 0nd ⇔ A =v B, ∀v ∈ Vi, ∀i ∈ 1, n is true. We
denote by Dv the family of the all functions d : Ag ×Ag → Rnd

+ , nd ∈ N∗ that are =v

- distances. DV =
⋂

v∈VDv represents the family of the all =V - distances.

Definition 2.6. We name distance synthesis operator an application Θ : Dv1 × ...×
Dvn → DV. If dvi are =vi - distances, ∀i ∈ 1, n and Θ is a distance synthesis operator
then Θ(dv1 , ..., dvn) is an =V - distance defined on Ag.

The following propositions present examples of distance synthesis operators.

Proposition 2.1. Let V be a set of criteria partitioned in m families V1, V2,..., Vm

of related criteria, Vi ∩ Vj = ∅, i, j ∈ 1, m, i 6= j and
⋃m

i=1 Vi = V. The applications
dp

a : Dv1 × ...×Dvn → DV defined by

dp
a(dv1 , ..., dvn) : Ag × Ag → Rs

+

dp
a(dv1 , ..., dvn)(A,B) =

(dp
1(dv1 , ..., dvn)(A,B), ..., dp

m(dv1 , ..., dvn)(A,B)) ∈ Rs
+

(3)

where
dp

i (dv1 , ..., dvn)(A,B) = (
∑

v∈Vi
dv(A,B)p)1/p,

∀i ∈ 1, m, p ∈ N∗ (4)

and
d∞i (dv1 , ..., dvn)(A, B) = max

v∈Vi

{dv(A, B)},∀i ∈ 1,m, p = ∞ (5)

are distance synthesis operators ∀p ∈ N∗ ∪ {∞}. The definition domain of these
operators is represented by the all sets of distances (dv1 , ..., dvn) with the property that
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∀dv′ , dv′′ ∈ Vi, i ∈ 1,m ndv′ = ndv′′ = ni (every two distances from same partition
subset have same codomain). In this case s = n1 + ... + nm.

Proof: During the demonstration the following two notations will be used:

dp
a(dv1 , ..., dvn

)(A,B) not= dp
a(A,B) and

dp
i (dv1 , ..., dvn)(A,B) not= dp

i (A,B),∀i ∈ 1,m.

The order relation ≤⊆ Rn
+ × Rn

+ is defined by (x1, ..., xn) ≤ (y1, ..., yn) if and only if
∃j ∈ 1, n such that xi = yi, ∀i ∈ 1, j and xj+1 < yj+1.

i) dv(A,B) ≥ 0ndv , ∀A,B ⊆ Ag,∀v ∈ V. Consequently, dp
i (A,B) ≥ 0ni , ∀A,B ⊆

Ag, ∀i ∈ 1,m, ∀p ∈ N∗ ∪ {∞}. Results that dp
a(A, B) ≥ (0, ..., 0), ∀A,B ⊆

Ag, ∀p ∈ N∗ ∪ {∞}. Moreover, dp
a(A,B) = (0, ..., 0) involve dp

i (A,B) = 0ni , ∀i ∈
1, m. Consequently, dv(A,B) = 0ndv ,∀v ∈ V or, equivalently, A =v B, ∀v ∈ V;

ii) Let A,B, C ⊆ Ag be subsets of ground atoms, p ∈ N∗ şi i ∈ 1, n. Then,

dp
i (A,B) = (

∑
v∈Vi

dv(A,B)p)
1
p

≤ (
∑

v∈Vi

(dv(A,C) + dv(C,B))p)
1
p

≤ (
∑

v∈Vi

dv(A,C)p)
1
p + (

∑
v∈Vi

dv(C,B)p)
1
p

= dp
i (A, C) + dp

i (C, B).

In same manner
d∞i (A,B) = max

v∈Vi

{dv(A,B)}
≤ max

v∈Vi

{dv(A,C) + dv(C,B)}
≤ max

v∈Vi

{dv(A,C)}+ max
v∈Vi

{dv(C, B)}
= d∞i (A,C) + d∞i (C, B).

Consequently, dp
a(A,B) ≤ dp

a(A,C) + dp
a(C,B),∀A, B,C ⊆ Ag and ∀p ∈ N∗ ∪

{∞}. ¤

Example 2.3. (An extension of the example 2.1)
Let L be the set of the sequences of edge labels. The function lp : L × L → N

maps to each pair of sequences the length of their common prefix. Let l1, l2 ∈ L,
l1 = a1

1, ..., a
1
m1

, l2 = a2
1, ..., a

2
m2

be two sequences of labels. If lp(l1, l2) = j then
a1

i = a2
i ,∀i ∈ 1, j şi a1

j+1 6= a2
j+1. For example, lp(g2g2, g2) = 1. lp satisfies the

following two properties:
i) lp(l1, l2) = lp(l2, l1), ∀l1, l2 ∈ L;
ii) lp(l1, l2) ≥ min{lp(l1, l3), lp(l2, l3)},∀l1, l2, l3 ∈ L.

Proposition 2.2. The function dl : L × L → [0, 1] defined by:

dl(l1, l2) =
max{m1,m2} − lp(l1, l2)

max{m1,m2} , (6)

where max{m1,m2} represents the maximum of the lengths of the sequences l1 and
l2, is a distance.

Proof:
(1) dl(l1, l2) ≥ 0, ∀l1, l2 ∈ L. dl(l1, l2) = 0 involves max{m1,m2} = lp(l1, l2) from

where l1 = l2;
(2) dl(l1, l2) = dl(l2, l1), ∀l1, l2 ∈ L;
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(3) dl(l1, l2) ≤ dl(l1, l3) + dl(l3, l2),∀l1, l2, l3 ∈ L. The following notations are used:
Mij = max{mi,mj}, lij = lp(li, lj), ∀i, j ∈ 1, 3. In these conditions, we must
prove that:

M12 − l12
M12

≤ M13 − l13
M13

+
M32 − l32

M32
⇔

0 ≤ M12M13M32 + M13M32l12−
M12M32l13 −M12M13l32.

The last inequality is true according with the properties of the function lp. ¤
Let dh

l be the Hausdorff metric induced by dl. For the set of criteria V = {{a, b}}
from the example 2.1 we define

d(a) : Ag × Ag → [0, 1], da(A,B) = dh
l (f(a)(A), f(a)(B))

and
d(b) : Ag × Ag → [0, 1], db(A,B) = dh

l (f(b)(A), f(b)(B)).
In these settings

d2
a({g(f(a), g(a, b))}, {g(f(b), b)}) =
= (d(a)({g(f(a), g(a, b))}, {g(f(b), b)})2+

+d(b)({g(f(a), g(a, b))}, {g(f(b), b)})2) 1
2

=
√

dh
l ({g2g1, g1f1}, ∅) + dh

l ({g2g2}, {g1f1, g2})
=

√
2 ≈ 1.4142.

An obvious problem of the Hausdorff metric is its sensitivity to the extreme points
of the sets. In fact, these points establish the distance between two sets.

If the functions d(a) and d(b) are defined using the minimum distances sum metric
dmd

l induced by dl:

d(a) : Ag × Ag → [0, 1], da(A,B) = dmd
l (f(a)(A), f(a)(B))

and
d(b) : Ag × Ag → [0, 1], db(A,B) = dmd

l (f(b)(A), f(b)(B)),
then

d2
a({g(f(a), g(a, b))}, {g(f(b), b)}) =
= (d(a)({g(f(a), g(a, b))}, {g(f(b), b)})2+

+d(b)({g(f(a), g(a, b))}, {g(f(b), b)})2) 1
2

=
√

dmd
l ({g2g1, g1f1}, ∅) + dmd

l ({g2g2}, {g1f1, g2})
=

√
12 + ( 1

4 ( 1
2 + 1 + 1

2 ))2 =
√

5
4 ≈ 1.1180.

Because d2
a(S, T ) ∈ [0,

√
2], ∀S, T ∈ Ag, we can scale the results in the range [0,1]

and obtain d2
a({g(f(a), g(a, b))}, {g(f(b), b)}) ≈ 0.7805.

The employed criteria have a strong influence on the degree of similarity between
two sets of atoms. For example, let us consider V = {ab} where f(ab) : Ag →
L, f(ab)(A) = f(a)(A) ∪ f(b)(A). The criterion ”ab” compares two sets of atoms
regarding how the function symbols f and g are composed for constructing the atoms.

f(ab)({g(f(a), g(a, b))}) = {g1f1, g2g1, g2g2} and

f(ab)({g(f(b), b)}) = {g1f1, g2}.
The distance

d2
a({g(f(a), g(a, b))}, {g(f(b), b)}) =

=
√

dmd
l ({g1f1, g2g1, g2g2}, {g1f1, g2})2

= 1
6 (0 + 1

2 + 1
2 + 0 + 1

2 ) = 1
4 = 0.25.
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It can be observed that, regarding to this criterion, the atoms g(f(a), g(a, b)) and
g(f(b), b) are very similar.

Remark 2.1. If the set V satisfies the property: ∀A,B ⊆ Ag : A =v B, ∀v ∈ Vi, ∀i ∈
1, n ⇒ A = B then the functions dp

a are distances (metrics),∀p ∈ N∗ ∪ {∞}.
Proposition 2.3. The distances dp

a, p ∈ N∗ ∪ {∞} are similar with the following
meaning: for every p, q ∈ N∗ ∪ {∞}, ∃a, b ∈ R such that a · dq

a(A,B) ≤ dp
a(A,B) ≤

b · dq
a(A,B), ∀A, B ⊆ Ag.

Example 2.4. If k = maxi∈1,n{|Vi|}, then d∞a (A, B) ≤ d2
a(A,B) ≤

√
k · d∞a (A,B)

and d∞a (A,B) ≤ d1
a(A,B) ≤ k · d∞a (A,B), ∀A,B ⊆ Ag.

In the following paragraphs, we will present several alternate ways to obtain dis-
tances defined on the set of the all subsets of atoms starting from pseudo measures
that are attached to the criteria from V.

Proposition 2.4. Let v ∈ V and f(v) : Ag → Xv a pseudo measure. The application
dv : Ag × Ag → Xv, dv(A,B) = f(v)((A \B) ∪ (B \ A)) satisfies the three properties
that define an =v - distance.

Proof:
(1) dv(A,B) ≥ 0v, ∀A, B ∈ Ag because 0v is the smallest element from Xv. More-

over, dv(A, B) = 0v involves f(v)(A \ B) ⊕ f(v)(B \ A) = 0v or, equivalently,
f(v)(A \B) = f(v)(B \A) = 0v. Consequently, f(v)(A) = f(v)(B).

(2) dv(A,B) = dv(B, A), ∀A,B ∈ Ag.
(3) Let A,B, C ∈ Ag. The inequality dv(A,B) ≤ dv(A,C)⊕dv(C, B) can be restated

as f(v)(A\B)⊕f(v)(B \A) ≤ f(v)(A\C)⊕f(v)(C \A)⊕f(v)(C \B)⊕f(v)(B \
C). This last inequality is true because the internal composition operation ⊕
maintains the inequality relation ≤.

¤
Proposition 2.5. Let v ∈ V be a criteria, Xv = (N, 0, +,≤) and f(v) : Ag → N a
pseudo measure. The functions d(v) : Ag × Ag → R+ defined by

d(v)(A,B) =
|f(v)(A)− f(v)(B)|

max{f(v)(A), f(v)(B)} , (7)

d(v)(A,B) =
|f(v)(A)− f(v)(B)|

f(v)(A ∪B)
, (8)

d(v)(A,B) = f(v)((A \B) ∪ (B \A)), (9)

d(v)(A,B) =
f(v)((A \B) ∪ (B \A))

f(v)(A ∪B)
. (10)

are =v - distances on Ag.

Proposition 2.6. Let V be a set of criteria and α1, α2, ..., αn ∈ R+ a set of real
coefficients. The applications dp

a : Dv1 × ...×Dvn → DV defined by

dp
a(dv1 , ..., dvn) : Ag × Ag → Rs

+

dp
a(dv1 , ..., dvn)(A,B) =

(
n∑

i=1

αp
i dvi(A,B)p

)1/p

, p ∈ N∗ (11)

and dp
a(dv1 , ..., dvn)(A,B) = maxi∈1,n{αidvi(A,B)}, p = ∞ are partially defined dis-

tance synthesis operators ∀p ∈ N∗ ∪ {∞}. The definition domain of these opera-
tors is represented by the all sets of distances (dv1 , ..., dvn) with the property that
ndv1

= ndv2
= ... = ndvn

= s (all distances have same codomain).
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Remark 2.2. The coefficient αi attached to a criterion vi, i ∈ 1, n can be used to
specify the relative degree of importance of the criterion. The relative importance
coefficients can be determined using methods from multi criteria decision theory like
Analitic Hierarchy Process (AHP) [6].

Example 2.5. Let us consider the vocabulary P = {p/2}, F = {a/0, b/0, f/1, g/2}
and the atoms p(f(f(a)), g(a, f(b))), p(f(f(b)), g(b, f(a))), p(a, g(a, f(b))). The de-
gree of similarity of these atoms will be evaluated regarding to three criteria V =
{str, a, b}, where str describes the structure of a set of atoms and the two criteria
a and b describe the positions of the associated constant symbols. By applying the
pseudo measures attached to the three criteria at the previous atoms we obtain the
following sets of sequences of labels:

f(str)({p(f(f(a)), g(a, f(b)))}) = {p1f1f1, p2g1, p2g2f1},
f(str)({p(f(f(b)), g(b, f(a)))}) = {p1f1f1, p2g1, p2g2f1},
f(str)({p(a, g(a, f(b)))}) = {p1, p2g1, p2g2f1},
f(a)({p(f(f(a)), g(a, f(b)))}) = {p1f1f1, p2g1},
f(a)({p(f(f(b)), g(b, f(a)))}) = {p2g2f1},
f(a)({p(a, g(a, f(b)))}) = {p1, p2g1},
f(b)({p(f(f(a)), g(a, f(b)))}) = {p2g2f1},
f(b)({p(f(f(b)), g(b, f(a)))}) = {p1f1f1, p2g1},
f(b)({p(a, g(a, f(b)))}) = {p2g2f1}.

The distance functions attached to the criteria are constructed using the distance dl

between sequences of labels and its extension at sets of sequences of labels using the
minimum distances sum:

dstr : Ag × Ag → R+

dstr(A,B) = dmd
l (f(str)(A), f(str)(B)),

da : Ag × Ag → R+

da(A,B) = dmd
l (f(a)(A), f(a)(B)),

db : Ag × Ag → R+

db(A,B) = dmd
l (f(b)(A), f(b)(B)).

Restricting at the three atoms that we want to be compared:

dstr({p(f(f(a)), g(a, f(b)))}, {p(f(f(b)), g(b, f(a)))})
= 1

6 (0 + 0 + 0 + 0 + 0 + 0) = 0,
dstr({p(f(f(a)), g(a, f(b)))}, {p(a, g(a, f(b)))})
= 1

6

(
2
3 + 0 + 0 + 2

3 + 0 + 0
)

= 2
9 = 0.2222,

da({p(f(f(a)), g(a, f(b)))}, {p(f(f(b)), g(b, f(a)))})
= 1

4

(
1 + 2

3 + 2
3

)
= 7

12 = 0.5833
da({p(f(f(a)), g(a, f(b)))}, {p(a, g(a, f(b)))})
= 1

4

(
2
3 + 0 + 2

3 + 0
)

= 1
3 = 0.3333,

db({p(f(f(a)), g(a, f(b)))}, {p(f(f(b)), g(b, f(a)))})
= 1

4

(
2
3 + 1 + 2

3

)
= 7

12 = 0.5833,
db({p(f(f(a)), g(a, f(b)))}, {p(a, g(a, f(b)))})
= 1

2 (0 + 0) = 0.

Let us suppose that, intuitively, the structural similarity criterion is more important
than the constant symbols positions criteria. The relative importance coefficients will
be computed using AHP [6].
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The matrix

S.S. C.P.S.
Structural similarity (S.S.) 1/1 5/1
Constants’ positions similarity (C.P.S.) 1/5 1/1

presents the relative importance of the criteria structural similarity and constants
positions similarity, where the value 5 has the meaning strongly preferred. The im-
portance coefficients attached to these two criteria are obtained by computing the
eigenvector of the relative importance matrix, which, in our case, is [0.8333 0.1667]T .

Analyzing the criteria related on the constants positions we obtain the relative im-
portance matrix

”a” ”b”
Position ”a” 1/1 3/1
Position ”b” 1/3 1/1

with the eigenvector [0.75 0.25]T , where the value 3 has the meaning moderate im-
portance. Following these computations, the resulting importance coefficients are:

αstr = 0.8333,
αa = 0.1667 · 0.75 = 0.125,
αb = 0.1667 · 0.25 = 0.0417.

Replacing these coefficients in the formula 11, we obtain the distances:

d2
a(dstr, da, db)

({p(f(f(a)), g(a, f(b)))}, {p(f(f(b)), g(b, f(a)))}) =
=
√

0.83332 · 0 + 0.1252 · 0.58332 + 0.04172 · 0.58332

= 0.0762,
d2

a(dstr, da, db)
({p(f(f(a)), g(a, f(b)))}, {p(a, g(a, f(b)))}) =
=
√

0.83332 · 0.22222 + 0.1252 · 0.33332 + 0.04172 · 0
= 0.1895.

Due to our preference for the structural similarity criterion, the atom p(f(f(a)), g(a, f(b)))
is considered closer to the atom p(f(f(b)), g(b, f(a))) than to the atom p(a, g(a, f(b))).

Let us reverse now our preferences and consider that the positions of the constants
are more important than the structural similarity criterion. The relative importance
matrix is

S.S. C.P.S.
Structural similarity (S.S.) 1/1 1/5
Constants’ positions similarity (C.P.S.) 5/1 1/1

with the eigenvector [0.1667 0.8333]T . The relative importance coefficients are now:

αstr = 0.1667,
αa = 0.8333 · 0.75 = 0.6249,
αb = 0.8333 · 0.25 = 0.2084.
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The new values for the distances are:

d2
a(dstr, da, db)

({p(f(f(a)), g(a, f(b)))}, {p(f(f(b)), g(b, f(a)))}) =
=
√

0.16672 · 0 + 0.62492 · 0.58332 + 0.20842 · 0.58332

= 0.3841,
d2

a(dstr, da, db)
({p(f(f(a)), g(a, f(b)))}, {p(a, g(a, f(b)))}) =
=
√

0.16672 · 0.22222 + 0.62492 · 0.33332 + 0.20842 · 0
= 0.2112.

The new distances show that the atom p(f(f(a)), g(a, f(b))) is considered closer to
the atom p(a, g(a, f(b))) than to the atom p(f(f(b)), g(b, f(a))).

2.3. Comparative study. In this section we will compare the performances of the
proposed similarities measuring method with a metric with same objectives presented
in [2] and described in the following definition.

Definition 2.7. Let us define dc : Ag ×Ag → R by:
(1) dc(a, a) = 0,∀a ∈ Ag;
(2) If p 6= q then dc(p(s1, ..., sn), q(t1, ..., tm)) = 1;
(3) dc(p(s1, ..., sn), p(t1, ..., tn)) = 1

2n

∑n
i=1 dc(si, ti).

The distance between two subsets of Ag is defined by the Hausdorff metric induced by
dc.

Example 2.6. dc(g(f(a), g(a, b)), g(f(b), b)) = 3
8 ≈ 0.375. In the example 2.3, the

degree of similarity between the same two atoms was 0.25 and 0.7805, function of
the employed similarity criteria. These values show that the sensitivity of the new
proposed method can be adjusted by changing the similarity criteria that are used.

Example 2.7. Let us consider the vocabulary P = {p/2} şi F = {a/0, b/0, c/0, d/0}
and the atoms e = p(a, b), e′ = p(a, c) and e′′ = p(c, d). We have dc(e, e′) = 1

4 şi
dc(e, e′′) = 1

2 .
For the our similarities measuring method we use the family of criteria V =

{{a, b, c, d}}. The pseudo measures f(a), f(b), f(c), f(d) will be defined as in the
example 2.1:

f(a)({e}) = {p1} f(b)({e}) = {p2}
f(a)({e′}) = {p1} f(b)({e′}) = ∅
f(a)({e′′}) = ∅ f(b)({e′′}) = ∅

f(c)({e}) = ∅ f(d)({e}) = ∅
f(c)({e′}) = {p2} f(d)({e′}) = ∅
f(c)({e′′}) = {p1} f(d)({e′′}) = {p2}

d2
a can be defined using minimum distances sum metric or the Hausdorff metric:

d2
a({e}, {e′}) =

√
02 + 12 + 12 + 02 =

√
2,

d2
a({e}, {e′′}) =

√
12 + 12 + 12 + 12 = 2.

The both similarities measuring methods are able to conclude that the atom e is
more closer to e′ than to e′′.
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Example 2.8. Let us consider the vocabulary from the previous example and the
atoms e = p(a, a), e′ = p(b, b) and e′′ = p(c, d). The metric dc considers the pairs
(e, e′) and (e, e′′) as having the same degree of similarity. The distances are dc(e, e′) =
1
4 (1 + 1) = 1

2 = dc(e, e′′).
The family of criteria V = {{a, b, c, d}, {n}} is used, where Xn = (2N, ∅,∪,⊆) and

f(n) : Ag → 2N, f(n)(A) is the greatest set with the property that ∀m ∈ f(n)(A)
exists a graph attached to an atom from A that contains exactly m nodes.

f(n)({e}) = f(n)({e′}) = {2} f(n)({e′′}) = {3}.
The pseudo measures f(a), f(b), f(c), f(d) are defined using the model from the
example 2.1.

f(a)({e}) = {p1, p2} f(b)({e}) = ∅
f(a)({e′}) = ∅ f(b)({e′}) = {p1, p2}
f(a)({e′′}) = ∅ f(b)({e′′}) = ∅

f(c)({e}) = ∅ f(d)({e}) = ∅
f(c)({e′}) = ∅ f(d)({e′}) = ∅
f(c)({e′′}) = {p1} f(d)({e′′}) = {p2}

The distances d(a), d(b), d(c), d(d), d(n) can be defined using the Hausdorff metric
or the minimum distances sum metric.

d2
a({e}, {e′}) = (

√
12 + 12 + 02 + 02,

√
0) = (

√
2, 0),

d2
a({e}, {e′′}) = (

√
12 + 02 + 12 + 12,

√
1) = (

√
3, 1).

Contrastingly with dc, the similarity measure d2
a considers that the atom e is closer

to e′ than to e′′. Intuitively, this corresponds with the human reasoning model.

Example 2.9. Let us consider the vocabulary P = {p/2, q/2}, F = {a/0, b/0, c/0, d/0}
and the atoms e = p(a, b), e′ = q(a, c) and e′′ = q(c, d). dc(e, e′) = dc(e, e′′) = 1 and
the atoms e′ and e′′ are at the same distance from e regarding the metric dc.
V = {{a, b, c, d}} is a set of criteria and the pseudo measures f(a), f(b), f(c), f(d)

are defined by the formula 1 and the distances d(a), d(b), d(c), d(d) are defined by 7.

f(a)({e}) = 1 f(b)({e}) = 1
f(a)({e′}) = 1 f(b)({e′}) = 0
f(a)({e′′}) = 0 f(b)({e′′}) = 0

f(c)({e}) = 0 f(d)({e}) = 0
f(c)({e′}) = 1 f(d)({e′}) = 0
f(c)({e′′}) = 1 f(d)({e′′}) = 1

d2
a({e}, {e′}) =

√
02 + 12 + 12 + 02 =

√
2 and

d2
a({e}, {e′′}) =

√
12 + 12 + 12 + 12 = 2.

The new metric considers that e is closer to e′ than to e′′. This conclusion is natural,
e and e′ include same constant symbol a and do not use the symbol d.

3. Conclusion

The information systems that use entities described by logic programs need to know
when two entities have numerous characteristics in common in order to perform the
knowledge transfer from one entity to a second one similar to the first. A framework
for constructing distances between logic programs was defined, the distances being
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defined regarding several user specified criteria. Each criterion was described by a
pseudo measure and the pseudo measures were combined to obtain a distance. Several
examples show that the framework can provide intuitive results.
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