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Growth of Meromorphic Solutions to Homogeneous Complex
Linear Delay Differential Equations

Hakima Lassal and Benharrat Beläıdi∗

Abstract. This paper is devoted to study the growth and oscillation of meromorphic solutions

of homogeneous complex linear delay differential equations of the form

L(z, f) =
n∑

s=0

m∑
j=0

Asj(z)f (j)(z + cs) = 0,

where cs, s = 0, ..., n are distinct complex numbers and Asj(z), s = 0, ..., n, j = 0, ...,m,

n,m ∈ N are entire or meromorphic functions with the same order. We extend some results
based on those of Lan-Chen and Wu-Zheng.
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1. Introduction

Throughout this paper, we assume that the readers are familiar with the standard
notations and the fundamental results of Nevanlinna value distribution theory of
meromorphic functions see ([9], [11], [12], [23]). We say that a meromorphic function
a (z) is a small function of f (z) if T (r, a) = o (T (r, f)) as r → +∞ outside of a
possible exceptional set of finite logarithmic measure. Let N = {1, 2, · · · } denote the
set of positive natural numbers. We recall the definitions of standard notations which
are use in this paper.

Definition 1.1. ([11], [23]) The order ρ(f) of a meromorphic function f is defined
by

ρ(f) = lim sup
r→+∞

log T (r, f)

log r
,

and the hyper-order of f is defined by

ρ2(f) = lim sup
r→+∞

log log T (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function of f.
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Definition 1.2. ([11], [23]) The exponent of convergence of the sequence of zeros of
a meromorphic function f is defined by

λ(f) = lim sup
r→+∞

logN(r, 1f )

log r
,

where N(r, 1f ) is the integrated counting function of zeros of f in {z : |z| ≤ r}.

Research into the properties of meromorphic solutions of complex difference equa-
tions have become a subject of great interest from the point of view of Nevanlinna’s
theory and its difference analogues. Several authors have examined the growth prop-
erties of meromorphic solutions of complex linear difference equations

An(z)f(z + cn) + · · ·+A1(z)f(z + c1) +A0(z)f(z) = 0, (1)

where n ∈ N, cj , j = 1, ..., n, are distinct non-zero complex numbers and Aj(z), j =
0, ..., n are entire or meromorphic functions. Chiang-Feng [7] studied the growth of
meromorphic solutions of homogeneous linear difference equations in the case where
there exists only one coefficient with the maximal order. Then, Laine-Yang [13]
showed that if the leading coefficient depends on the type but not on the order, then
they obtained the following result.

Theorem 1.1. ([13]) Let A0(z), ..., An(z) be entire functions of finite order such that
among those having the maximal order

ρ= max
0≤j≤n

{ρ(Aj)},

exactly one has its type strictly greater than the others. Then for any meromorphic
solution f of (1), we have

ρ (f) ≥ ρ+ 1.

Recently in [14], Lan-Chen have investigated the growth properties of meromor-
phic solutions of equation (1), imposing a few restrictions on the coefficients of the
difference equations when there is no dominant coefficient and achieved the following
result.

Theorem 1.2. ([14]) Let cj , j = 1, ..., n, be different complex constants and let

Aj(z) = Pj(z) exp{hj(z)}+Qj(z), j = 1, ..., n,

where hj(z) are polynomials of degree k ≥ 1, Pj(z) (6≡ 0) and Qj(z) are entire func-
tions whose order is lower than k. Among the leading coefficients of hj(z), j = 1, ..., n,
with the maximal modulus, there exists a term unequal to the other terms. If f(z)( 6≡ 0)
is a meromorphic solution of equation

An(z)f(z + cn) + · · ·+A1(z)f(z + c1) = 0,

then

ρ (f) ≥ k + 1.

In this case, Wu-Zheng [22] have investigated a more particular problem on the
coefficients Aj(z), j = 0, ..., n than the coefficients of Theorem 1.2, and they got the
following result, which extend and enhance the previous result for equation (1).
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Theorem 1.3. ([22]) Let n, k ∈ N and

Aj(z) = Bj(z) exp{Pj(z)}+Dj(z) exp{Qj(z)}+Rj(z), j = 0, 1, ..., n,

where Pj(z) = ajkz
k + · · · + aj0, Qj(z) = bjkz

k + · · · + bj0, j = 0, 1, ..., n are polyno-
mials with degree k and satisfy |ajk| ≥ |bjk| > 0, Bj(z), Dj(z), Rj(z), j = 0, ..., n, are
meromorphic functions and satisfy max0≤j≤n{ρ(Bj), ρ(Dj), ρ(Rj)} = σ < k,Aj(z)−
Rj(z) 6≡ 0, j = 0, 1, ..., n. Let cj , j = 1, ..., n be distinct non-zero complex constants. If
there exists an i ∈ {0, 1, ..., n} such that for all j 6= i, |aik| ≥ |ajk|and

arg(aik) 6= arg(ajk), or arg(aik) = arg(ajk), |aik| > |ajk|

and

arg(aik) 6= arg(bjk), or arg(aik) = arg(bjk), |aik| > |bjk|
hold simultaneously, then every meromorphic solution f(z)( 6≡ 0) of equation (1) satis-
fies ρ(f) ≥ k+ 1. Further, if ϕ(z)( 6≡ 0) is a meromorphic function with ρ(ϕ) < k+ 1,
then for every meromorphic solution f(z)( 6≡ 0) of equation (1) with ρ2(f) < 1, we
have λ(f − ϕ) = ρ(f) ≥ k + 1.

Historically, Naftalevič in [18], was used operator theory and the iteration method
to investigate meromorphic solutions to complex delay-differential equations. Fur-
ther, there have been few studies on complex delay-differential equation fields using
Nevanlinna. Lately, in their book [16], Liu, Laine and Yang presented developments
and new results on complex delay-differential equations, an area with important and
interesting applications that is also gaining attention (see [15], [17], [19], [20], [21]).

Recently, Wu-Zheng [21], Zhou-Zheng [24] and Chen-Zheng [6] have investigated
the growth of solutions of homogeneous and non-homogeneous linear delay differential
equations

L(z, f) =

n∑
s=0

m∑
j=0

Asj(z)f
(j)(z + cs) = 0 (2)

and

L(z, f) =

n∑
s=0

m∑
j=0

Asj(z)f
(j)(z + cs) = F (z), (3)

where Asj(z)(s = 0, ..., n, j = 0, ...,m), F (z) are entire or meromorphic functions
in the case when only one coefficient is a dominant coefficient, and they have esti-
mated the lower bound of the order of the meromorphic solutions. Later, Beläıdi [1],
Bellaama-Beläıdi [2], [3] and Dahmani-Beläıdi [8] focused then the study on the order
of growth of equations (2) and (3) if there exists a coefficient of maximal logarith-
mic order (lower order) or logarithmic type (lower type) than other coefficients and
obtained some valuable results.

2. Statement of Main Results

In this paper, by combining the complex difference and the complex differential equa-
tions, we expand the results according to the assumptions on the coefficients in The-
orem 1.2 and Theorem 1.3, for the equation (2), and we get two results for complex
linear delay differential equations.
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Theorem 2.1. Let n,m ∈ N and cs, s = 0, ..., n be distinct complex constants and
let

Asj(z) = Psj(z) exp{hsj(z)}+Qsj(z), s = 0, ..., n, j = 0, ...,m, (4)

where hsj(z) = asjkz
k + asjk−1z

k−1 + · · ·+ asj0, (asjk 6= 0) are polynomials of degree
k ≥ 1, Psj(z)( 6≡ 0) and Qsj(z) are entire functions whose order is lower than k.
Suppose that |al0k| > max{|asjk|, 0 ≤ s ≤ n, 0 ≤ j ≤ m, (s, j) 6= (l, 0)}. If f(z)( 6≡ 0)
is a meromorphic solution of equation (2), then

ρ(f) ≥ k + 1.

Example 2.1. The entire function f(z) = exp{z2} is a solution of the delay differ-
ential equation

A12(z)f ′′(z + i) +A02(z)f ′′(z) +A11(z)f ′(z + i) +A01(z)f ′(z)

+A10(z)f(z + i) +A00(z)f(z) = 0,

where

A00(z) = −2(2z2 + 4iz − 1) exp{(3 + 4i)z − 1},
A10(z) = 2(z + i) exp{4iz} − (2z3 + 2iz2 − 2z − 2i),

A01(z) = (2z2 + 1) exp{−iz + 1} − (2πz2 + π), A11(z) = −(exp{4iz} − (z2 − 1)),

A02(z) = −(z exp{−iz + 1} − πz), A12(z) = exp{(3 + 2i)z}.
In this equation, we have ρ(Psj(z)) = ρ(Qsj(z)) = 0, (s = 0, 1, j = 0, 1, 2) and

|a001| = |3 + 4i| = 5 > max{|asjk|, (s, j) 6= (0, 0)}
= max{|4i|, | − i|, |3 + 2i|} = 4.

Thus, the conditions of Theorem 2.1 are verified. We see that for s = 0, 1, j = 0, 1, 2,
we have

ρ(f) = 2 = ρ(Asj) + 1 = deg(hsj) + 1 = 1 + 1 = 2.

Theorem 2.2. Let k, n,m ∈ N and

Asj(z) = Psj(z) exp{hsj(z)}+Qsj(z), s = 0, ..., n, j = 0, ...,m,

where hsj(z) = asjkz
k + asjk−1z

k−1 + · · · + asj0, (asjk 6= 0), are polynomials with
degree k, and Psj(z)( 6≡ 0), Qsj(z) are meromorphic functions satisfying

max{ρ(Psj), ρ(Qsj), 0 ≤ s ≤ n, 0 ≤ j ≤ m} = σ < k,

let cs, s = 0, ..., n be distinct non-zero complex constants. Suppose that for (s, j) 6=
(l, 0), we have

arg(al0k) 6= arg(asjk), |al0k| ≥ |asjk|,
or

arg(al0k) = arg(asjk), |al0k| > |asjk|,
then every meromorphic solution f(z)( 6≡ 0) of equation (2) satisfies

ρ(f) ≥ k + 1.

Furthermore, if ϕ(z)(6≡ 0) is a meromorphic function with ρ(ϕ) < k + 1, then for
every meromorphic solution f(z) of equation (2), we have

λ(f − ϕ) = ρ(f) ≥ k + 1.
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Example 2.2. The entire function f(z) = exp{z2} is a solution of the delay differ-
ential equation

A12(z)f ′′(z − 2i) +A02(z)f ′′(z + 1 + 2i) +A11(z)f ′(z − 2i) +A01(z)f ′(z + 1 + 2i)

+A10(z)f(z − 2i) +A00(z)f(z + 1 + 2i) = 0,

where

A00(z) = 2
z2 − 1

z2 + 2iπz − 1
exp{−3iz + 3− 4i}+

2(z2 − 1)

iz2 − 4π
,

A10(z) = −
(

2z3

z2 − iπ
exp{(4 + 4i)z + 1}+

2iz3

z − 2i

)
,

A01(z) = −
(

z + iπ

z2 + (1 + 2i)z
exp{(−2− 4i)z − 4i}+

2(z2 − 1)

(iz2 − 4π)(z + 1 + 2i)

)
,

A11(z) = −
(

z2 − 1

(z − 2i)(z2 + 2iπz − 1)
exp{(2 + 5i)z + 4}+

2i

z2 − 4iz − 4

)
,

A02(z) =
z3

(z2 − iπ)(2z2 + (4 + 8i)z + 8i− 5)
exp{(2− 4i)z − 4i}

+
z2 − 1

(iz2 − 4π)(2z2 + (4 + 8i)z + 8i− 5)
,

A12(z) =
z + iπ

2z3 − 8iz2 − 7z
exp{4iz + 1}+

iz3 + 2i

(z − 2i)(2z2 − 8iz − 7)
.

We have

|a101| = |4 + 4i| = 4
√

2 > max{|asjk|, (s, j) 6= (1, 0)}
= max{| − 3i|, | − 2− 4i|, |2 + 5i|, |2− 4i|, |4i|}

= |2 + 5i| =
√

29,

and

arg (a101) 6= arg (asjk), (s, j) 6= (1, 0).

Moreover ρ(Psj(z)) = ρ(Qsj(z)) = 0, s = 0, 1, j = 0, 1, 2. Hence, the conditions of
Theorem 2.2 are satisfied, we see that

ρ(f) = 2 = ρ(Asj) + 1 = 1 + 1, 0 ≤ s ≤ 1, 0 ≤ j ≤ 2.

Set ϕ(z) = exp{z}+ 1, with ρ(ϕ) = 1 < 2. Then

λ(f − ϕ) = ρ(f) = 2.

Example 2.3. The function f(z) = exp{exp z} is a solution of the delay differential
equation

A11(z)f ′(z + 2i) +A01(z)f ′(z − i) +A10(z)f(z + 2i) +A00(z)f(z − i) = 0,

where

A00(z) =
z

iz2 − 12z + 6i
exp{(4 + 4i)z}, A10(z) = −2z3 + 2iz

4z4 + iπ
exp{3z + 2i},

A01(z) = − z

iz2 − 12z + 6i
exp{(3 + 4i)z + i}, A11(z) =

2z3 + 2iz

4z4 + iπ
exp{2z}.



624 H. LASSAL AND B. BELAÏDI

We have ρ(Psj(z)) = 0, s = 0, 1, j = 0, 1 and

|a001| = |4 + 4i| = 4
√

2 > max{|asjk|, (s, j) 6= (0, 0)}
= max{|3 + 2i|, |3 + 4i|, |2|} = 5,

and

arg (a001) 6= arg (asjk), (s, j) 6= (0, 0).

Hence, the conditions of Theorem 2.2 are satisfied, we see that

ρ(f) = +∞ > ρ(Asj) + 1 = 1 + 1 = 2, 0 ≤ s ≤ 1, 0 ≤ j ≤ 1.

Set ϕ(z) = cos(2z), with ρ(ϕ) = 1 < 2. Then

λ(f − ϕ) = ρ(f) = +∞.

3. Some Auxiliary Lemmas

Lemma 3.1. ([5]) Let f be a meromorphic function with ρ(f) = ρ < ∞. Then for
any given ε > 0, there is a set E ⊂ (1,+∞) of finite logarithmic measure, such that

|f(z)| ≤ exp{rρ+ε}

holds for all z satisfying |z| = r 6∈ [0, 1] ∪ E, r → +∞.

Lemma 3.2. ([7]) Let η1 and η2 be two arbitrary complex numbers and let f be
a meromorphic function of finite order ρ. For given ε > 0, there exists a subset
E ⊂ (0,+∞) of finite logarithmic measure such that, for all z satisfying the relation
|z| = r /∈ [0, 1] ∪ E, the following double inequality is holds

exp{−rρ−1+ε} ≤
∣∣∣∣f(z + η1)

f(z + η2)

∣∣∣∣ ≤ exp{rρ−1+ε}.

Lemma 3.3. ([10]) Let f be a meromorphic function of finite order ρ, and let ε > 0
be a given constant. Then there exists a set E ⊂ (1,+∞) that has finite logarithmic
measure, such that for all z satisfying |z| = r /∈ [0, 1] ∪E, and for all k, j, 0 ≤ j < k,
we have ∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ r(k−j)(ρ−1+ε).
Lemma 3.4. ([4]) Suppose that P (z) = (α+ iβ)zk + · · · (α, β are real numbers such
that |α| + |β| 6= 0) is a polynomial with degree k(≥ 1), and ω(z)( 6≡ 0) is a mero-
morphic function with ρ(ω) < k. Set g(z) = ω(z) exp{P (z)}, z = r exp{iθ}, δ(P, θ) =
α cos(nθ) − β sin(nθ). Then for any given ε > 0, there exists a set H0 ⊂ [0, 2π)
with linear measure zero, such that for any θ ∈ [0, 2π) \ (H0 ∪ H1),there exists
r0 = r0(θ, ε)(> 0) such that for |z| = r > r0, we have
(i) If δ(P, θ) > 0, then

exp{(1− ε)δ(P, θ)rk} < |g(r exp{iθ})| < exp{(1 + ε)δ(P, θ)rk}.

(ii) If δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rk} < |g(r exp{iθ})| < exp{(1− ε)δ(P, θ)rk},

where H1 = {θ ∈ [0, 2π) : δ(P, θ) = 0} is a finite set.
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Remark 3.1. ([4]) Let P (z) = akz
k + · · ·+ a0 (ak 6= 0) be a polynomial with degree

k(≥ 1) and z = r exp{iθ}, we denote

δ(P, θ) = |ak| cos(arg ak + kθ).

Lemma 3.5. Let n,m ∈ N and F (z), Asj(z), s = 0, ..., n, j = 0, ...,m, be meromorphic
functions of finite order such that Anm(z)F (z) 6≡ 0 and let cs, s = 0, ..., n be distinct
non-zero complex constants. Suppose that f(z)( 6≡ 0) is a meromorphic solution of
equation (3). If

ρ(f) > max{ρ(F ), ρ(Asj), s = 0, ..., n, j = 0, ...,m}, (5)

then we have λ(f) = ρ(f).

Proof. Suppose that λ(f) < ρ(f). From Hadamard’s theorem, we can write f in the
form

f(z) =
H1(z)

H2(z)
exp{h(z)}, (6)

where H1, H2(6≡ 0) are the canonical product formed by zeros (poles) of f such that

λ(H1) = ρ(H1) = λ(f) < ρ(f), (7)

λ(H2) = ρ(H2) = λ(
1

f
) < ρ(f). (8)

In addition, we have
h(z) = apz

p + · · ·+ a1z + a0,

is a polynomial with deg h(z) = p ≥ 1, where ap, ap−1, ..., a0 are complex constants

such that ap 6= 0. Furthermore, from (6) we can rewrite f (j)(z), j = 1, ...,m in the
following form

f (j)(z) =

(
H1(z)

H2(z)
exp{h(z)}

)(j)

= ψj(z) exp{h(z)}, (9)

where ψj(z)(j = 1, ...,m) are meromorphic functions formed by H1, H2, h(z) and their
derivatives. Substituting (9) into (3), we obtain

n∑
s=0

m∑
j=0

Asj(z)ψj(z + cs) exp{h(z + cs)} = F (z). (10)

By dividing both sides of (10) by exp{apzp}, we get
n∑
s=0

m∑
j=0

Asj(z)ψj(z + cs) exp{(papcs + ap−1)zp−1 + · · · } = F (z) exp{−apzp}. (11)

From (5), (7) and (8), from the left side of (11), we obtain

ρ

 n∑
s=0

m∑
j=0

Asj(z)ψj(z + cs) exp{(papcs + ap−1)zp−1 + · · · }


≤ max

0≤s≤n,0≤j≤m
{ρ(Asj), ρ(H1), ρ(H2), ρ(exp (papcs + ap−1)zp−1 + · · ·)}

= deg((papcs + ap−1)zp−1 + · · · ) = p− 1, 0 ≤ s ≤ n,
and on the other hand, from the right side of (11), we have

ρ (F (z) exp{−apzp}) = p.
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This is a contradiction, hence
λ(f) = ρ(f).

�

Example 3.1. We consider the entire function f(z) = exp{z2}−1 which is a solution
to the following delay-differential equation

A11(z)f ′(z + i) +A01(z)f ′(z + 1) +A10(z)f(z + i) +A00(z)f(z + 1) = F (z),

where

A00(z) =
z3 − π
z + 1

, A01(z) = − z3 − π
2(z + 1)2

, A10(z) = − 2iz2

z + i
exp{−2iz},

A11(z) =
iz2

(z + i)2
exp{−2iz}, F (z) =

2iz2

z + i
exp{−2iz} − z3 − π

z + 1
,

and
max

0≤s≤1,0≤j≤1
{ρ(Asj), ρ(F )} = 1 < ρ(f) = 2.

Hence, the conditions of Lemma 3.5 are satisfied. We see that

λ(f) = ρ(f) = 2.

4. Proofs of Theorems

Proof of Theorem 2.1.

Proof. Contrary to our assertion, we assume that ρ = ρ(f) < k + 1. Let

hsj(z) = asjkz
k + h∗sj(z), (12)

where asjk 6= 0 are complex constants and h∗sj(z) are polynomials with deg(h∗sj) ≤
k − 1, s = 0, ..., n, j = 0, ...,m. We set

|al0k| > |asjk|, θl0 6= θsj , θsj = arg(asjk) ∈ [0, 2π), 0 ≤ s ≤ n, 0 ≤ j ≤ m, (s, j) 6= (l, 0).

We now choose θ such that
cos(kθ + θl0) = 1. (13)

Thus, by θsj 6= θl0, (s, j) 6= (l, 0), we find

cos(kθ + θsj) < 1, 0 ≤ s ≤ n, 0 ≤ j ≤ m, (s, j) 6= (l, 0). (14)

Denote

a = |al0k|, b = max
(s,j) 6=(l,0)

{|asjk|}, c = max
(s,j) 6=(l,0)

{b cos(kθ + θsj)} < a, (15)

and
β = max

0≤s≤n,0≤j≤m
{ρ(Psj), ρ(Qsj)} < k.

Clearly ρ
(
Psj

Pl0

)
≤ max{ρ(Psj), ρ(Pl0)} = β, 0 ≤ s ≤ n, 0 ≤ j ≤ m, (s, j) 6= (l, 0) and

ρ

(
Qsj
Pl0

)
≤ max {ρ(Qsj), ρ(Pl0)} = β, 0 ≤ s ≤ n, 0 ≤ j ≤ m.

By Lemma 3.1, for any given ε, with

0 < 2ε < min{1, k + 1− ρ, k − β, a− c},
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there is a set E1 ⊂ (1,+∞) with a finite logarithmic measure such that, for all z
satisfying |z| = r /∈ E1 ∪ [0, 1], we obtain∣∣∣∣Psj(z)Pl0(z)

∣∣∣∣ ≤ exp{rβ+ε}, (s, j) 6= (l, 0),

∣∣∣∣Qsj(z)Pl0(z)

∣∣∣∣ ≤ exp{rβ+ε}, 0 ≤ s ≤ n, 0 ≤ j ≤ m.

(16)
It is clear that the functions exp{−h∗l0(z)} and exp{h∗sj(z)}, 0 ≤ s ≤ n, 0 ≤ j ≤
m, (s, j) 6= (l, 0), are of regular order whose degree is lower than k − 1 respectively.
Thus, for all large z, |z| = r, we get

|exp{−h∗l0(z)}| ≤ exp{rk−1+ε},
∣∣exp{h∗sj(z)}

∣∣ ≤ exp{rk−1+ε}, (s, j) 6= (l, 0). (17)

Applying Lemma 3.2 and Lemma 3.3 to f , we conclude that there is a set E2 ⊂
(1,+∞) with finite logarithmic measure such that, for all z satisfying |z| = r /∈
E2 ∪ [0, 1], we can write for (s, j) ∈ {0, ..., n} × {0, ...,m}∣∣∣∣f (j)(z + cs)

f(z + cl)

∣∣∣∣ =

∣∣∣∣f (j)(z + cs)

f(z + cs)

∣∣∣∣ ∣∣∣∣f(z + cs)

f(z + cl)

∣∣∣∣ ≤
{

rj(ρ−1+ε) exp{rρ−1+ε}, s 6= l,

rj(ρ−1+ε), s = l.
(18)

Equation (2) gives

−Al0(z) =

n∑
s=0,s 6=l

m∑
j=0

Asj(z)
f (j)(z + cs)

f(z + cl)
+

m∑
j=1

Alj(z)
f (j)(z + cl)

f(z + cl)
. (19)

By substituting (4) into equation (19), we obtain

− exp{al0kzk} =

n∑
s=0,s6=l

m∑
j=0

f (j)(z + cs)

f(z + cl)
exp{−h∗l0(z)}

×
(
Psj(z)

Pl0(z)
exp{asjkzk + h∗sj(z)}+

Qsj(z)

Pl0(z)

)
+

m∑
j=1

f (j)(z + cl)

f(z + cl)

× exp{−h∗l0(z)}
(
Plj(z)

Pl0(z)
exp{aljkzk + h∗lj(z)}+

Qlj(z)

Pl0(z)

)
+ exp{−h∗l0(z)}Ql0(z)

Pl0(z)
. (20)

Let z = r exp{iθ}, where r /∈ [0, 1]∪E1∪E2. Substituting (13)-(18) into (20), we find

exp{|al0k|rk} ≤
n∑

s=0,s6=l

m∑
j=0

rj(ρ−1+ε) exp{rk−1+ε + rρ−1+ε + rβ+ε}

×
(
exp{b cos(kθ + θsj)r

k + rk−1+ε}+ 1
)

+

m∑
j=1

rj(ρ−1+ε) exp{rk−1+ε + rβ+ε}
(
exp{b cos(kθ + θlj)r

k + rk−1+ε}+ 1
)

+ exp{rk−1+ε + rβ+ε}.
Thus

exp{ark} ≤ (n+ 1)(m+ 1)rm(ρ−1+ε) exp{crk + 2rk−1+ε + rρ−1+ε + rβ+ε}

≤ (n+ 1)(m+ 1)rm(ρ−1+ε) exp{(c+ 2ε)rk}. (21)
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Dividing both sides of (21) by (n + 1)(m + 1)rm(ρ−1+ε) exp{(c + 2ε)rk} and letting
r → +∞, we get +∞ ≤ 1. Thus, this is a contradiction, hence ρ(f) ≥ k + 1. �

Proof of Theorem 2.2.

Proof. If ρ(f) = +∞, then the theorem holds. We suppose ρ(f) = ρ < +∞. Set

I1 = {(s, j) 6= (l, 0), arg al0k 6= arg asjk, |al0k| ≥ |asjk|},

I2 = {(s, j) 6= (l, 0), arg al0k = arg asjk, |al0k| > |asjk|}.
It is clear that I1, I2 do not intersect with each other and I = I1 ∪ I2 = {0, ..., n} ×
{0, ...,m}\{(l, 0)}. Now, we may choose θ0 ∈ (0, 2π) such that cos(arg al0k +kθ0) = 1
(if k = 1 and arg al0k = 0, then we replace [0, 2π) in Lemma 3.4 by [−π2 ,

3π
2 ), if k ≥ 2

this kind of θ0 can always be chosen). Set z = reiθ, θ ∈ [0, 2π).
For (s, j) ∈ I1, there exists sufficiently small ε1 > 0 such that for all θ ∈ (θ0− ε1, θ0 +
ε1) ⊂ (0, 2π), we have

cos(arg al0k + kθ) > max
(s,j)∈I1

{cos(arg asjk + kθ), 0}.

Since |al0k| ≥ |asjk| > 0, (s, j) 6= (l, 0), then we see that

δ(hl0, θ) > max
(s,j)∈I1

{δ(hsj , θ), 0}.

For (s, j) ∈ I2, there exists sufficiently small ε2 > 0 such that for all θ ∈ (θ0− ε2, θ0 +
ε2) ⊂ (0, 2π), we have

cos(arg (al0k) + kθ) = cos(arg (asjk) + kθ) > 0, 0 ≤ s ≤ n, 0 ≤ j ≤ m, (s, j) 6= (l, 0).

Since |al0k| > |asjk|, (s, j) 6= (l, 0), we see that

δ(hl0, θ) > max
(s,j)∈I2

{δ(hsj , θ)} > 0.

Let ε0 = min{ε1, ε2}. Then for any θ ∈ (θ0 − ε0, θ0 + ε0) ⊂ (0, 2π), we have

δ(hl0, θ) = δ1 > max
(s,j)∈I

{δ(hsj , θ), 0} = δ2. (22)

By Lemma 3.1, for any given ε(0 < ε < min{1, ρ−1−k2 , k−σ2 , δ1−δ22δ1+δ2
}), there exists a

set E3 ⊂ (1,+∞) with a finite linear measure, such that for all z satisfying |z| = r /∈
[0, 1] ∪ E3 and r → +∞, we have

|Psj(z)| ≤ exp{rσ+ε}, |Qsj(z)| ≤ exp{rσ+ε}, s = 0, ..., n, j = 0, ...,m. (23)

By Lemma 3.4, (22) and (23), for the above ε, there exists E4 ⊂ [0, 2π) with linear
measure zero and a finite set E5 = {θ ∈ [0, 2π) : δ(hl0, θ) = 0}, such that for all
θ ∈ (θ0 − ε0, θ0 + ε0) \ (E4 ∪ E5), there exists r0 = r0(θ, ε) > 0, such that for
r > r0 = r0(θ, ε) and 0 ≤ s ≤ n, 0 ≤ j ≤ m, (s, j) 6= (l, 0) we have

|Asj(z)| ≤ |Psj(z) exp{hsj(z)}|+ |Qsj(z)|

≤ exp{(1 + ε)δ2r
k}+ exp{rσ+ε}

≤ 2 exp{(1 + ε)δ2r
k + rσ+ε}, (24)

and

|Al0(z)| ≥ |Pl0(z) exp{hl0(z)}| − |Ql0(z)|
≥ exp{(1− ε)δ1rk} − exp{rσ+ε}. (25)
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By applying Lemma 3.2 and Lemma 3.3 to f , for the above ε, we conclude that there
is a set E6 ⊂ (1,+∞) with finite logarithmic measure such that, for all z satisfying
|z| = r /∈ [0, 1] ∪ E6, we can write for 0 ≤ s ≤ n, 0 ≤ j ≤ m,∣∣∣∣f (j)(z + cs)

f(z + cl)

∣∣∣∣ =

∣∣∣∣f (j)(z + cs)

f(z + cs)

∣∣∣∣ ∣∣∣∣f(z + cs)

f(z + cl)

∣∣∣∣ ≤
{

rj(ρ−1+ε) exp{rρ−1+ε}, s 6= l,

rj(ρ−1+ε), s = l.
(26)

Equation (2) gives

|Al0(z)| ≤
n∑

s=0,s6=l

m∑
j=0

|Asj(z)|
∣∣∣∣f (j)(z + cs)

f(z + cl)

∣∣∣∣+

m∑
j=1

|Alj(z)|
∣∣∣∣f (j)(z + cl)

f(z + cl)

∣∣∣∣ . (27)

Let z = r exp{iθ}, where arg z = θ ∈ (θ0 − ε0, θ0 + ε0) \ (E4 ∪ E5), |z| = r 6∈
[0, 1] ∪ E3 ∪ E6. Substituting (24)-(26) into (27), for sufficiently large r, we have

exp{(1− ε)δ1rk} − exp{rσ+ε}

≤ 2n(m+ 1)rm(ρ−1+ε) exp{(1 + ε)δ2r
k + rσ+ε + rρ−1+ε}

+ 2mrm(ρ−1+ε) exp{(1 + ε)δ2r
k + rσ+ε}

≤ (2n(m+ 1) + 2m)rm(ρ−1+ε) exp{(1 + ε)δ2r
k + rσ+ε + rρ−1+ε}. (28)

Since (0 < ε < min{1, ρ−1−k2 , k−σ2 , δ1−δ22δ1+δ2
}), then we get

(1 + ε)δ2 < (1− 2ε)δ1, σ + ε < k − ε,

and
exp{rσ+ε}

exp{(1− ε)δ1rk}
→ 0, r 6∈ [0, 1] ∪ E3 ∪ E6, r → +∞.

Then, from (28) for sufficiently large r, we obtain

1

2
exp

{
(1− ε)δ1rk

}
≤ (2n(m+ 1) + 2m)rm(ρ−1+ε) exp{(1 + ε)δ2r

k + rσ+ε + rρ−1+ε},

i.e.,

exp
{

(1− ε)δ1rk − (1 + ε)δ2r
k − rσ+ε

}
≤ 2(2n(m+ 1) + 2m)rm(ρ−1+ε) exp{rρ−1+ε},

which gives

exp{ε
2
δ1r

k} ≤ 2(2n(m+ 1) + 2m)rm(ρ−1+ε) exp{rρ−1+ε} ≤ exp{rρ−1+2ε}. (29)

Thus, (29) implies k ≤ ρ− 1 + 2ε, and by ε > 0 is arbitrary, we obtain

ρ(f) ≥ k + 1.

Set g(z) = f(z)−ϕ(z), by substituting g into equation (2), then g solve the equation

n∑
s=0

m∑
j=0

Asj(z)g
(j)(z + cs) = −

n∑
s=0

m∑
j=0

Asj(z)ϕ
(j)(z + cs).

Since ρ(ϕ) < k + 1, then ϕ(z)(6≡ 0) does not solve (2), that is,

n∑
s=0

m∑
j=0

Asj(z)ϕ
(j)(z + cs) 6≡ 0,
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and

ρ

− n∑
s=0

m∑
j=0

Asj(z)ϕ
(j)(z + cs)

 ≤ max{ρ(Asj), 0 ≤ s ≤ n, 0 ≤ j ≤ m, ρ(ϕ)},

< k + 1 ≤ ρ(f).

Therefore, by Lemma 3.5, we obtain λ(g) = ρ(g). Hence

λ(g) = λ(f − ϕ) = ρ(f).

�

5. Conclusion

Throughout this article, by combining the complex difference and complex differential
equations, we have investigated the properties of growth and oscillation of solutions of
some homogeneous complex linear delay differential equations. We obtained two re-
sults which give estimates of the lower bound of the order of growth and the exponent
of convergence of the difference between the solution and a meromorphic function of
small growth of such homogeneous complex linear delay differential equations.
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