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1. Introduction

For all notions and properties, not explained in this paper we will refer to [R]. In
the beginning we will review the main notions and notations which will be used in
this paper.

A Klein surface is a pair (X, A) , where X is a surface and A is a maximal
dianalytic atlas on X, such that A does not contain any analytic subatlas. In this
paper, we will consider nonorientable Klein surfaces and without border, as such
is specified in N. Alling and N.Greenleaf

′
papers, which are nonorientable Riemann

surfaces in Teichmuller
′
s meaning, without specifying these characteristics all the time

.
Let O2 be a Riemann surface. A mapping k : O2 → O2 with property k ◦ k = Id,

where Id is the identity of O2, is an involution of O2.
A symmetric Riemann surface is a pair (O2,k), consisting of a Riemann ( ori-

entable) surface O2 and an antianalytic involution, k : O2 → O2 having no fixed
points.

2. Results

Let (X,A) be a Klein surface and (O2, k) the symmetric Riemann surface associ-
ated to X which is the double covering of X. Then (X,A) is dianalytic equivalent
with O2/H, where H is the group generated of k, with respect to the composition
of functions. Let B1 the maximal analytic atlas on O2 and B2 the maximal analytic
atlas on k(O2). k(O2) is O2 endowed with the second orientation. Then k : O2 →
k(O2) is an antianalytic isomorphism. So O2 = (O2,B1) and k(O2) = (O2,B2).

Thus the canonical projection q : O2 → X is a dianalytic mapping which mix the
two structures on O2. Indeed, if P ∈ O2, then its H- orbit consists of two elements
P and k(P ). Then, P̃ = P ∪ k(P ) and the mapping { P , k(P ) } → P̃ is a dianalytic
isomorphism between O2/H and X. Thus X can be identified with O2/H, up to a
dianalytic isomorphism.
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Let X be a Klein surface. Then there is a simply connected Riemann surface X̂

and a covering transformation π : X̂ → X (see [F], pg.32; [BG], pg. 7). Also X̂ satisfy
the universal property (see [F], pg.31], so π is the universal covering of X.

Let G be the covering transformations group of π. Because X is nonorientable, G
will contain analytic automorphisms of X̂ and antianalytic automorphisms of X̂. Let
G1 be the subgroup of the analytic automorphisms of G. Then G1 is a subgroup of G
and for every S ∈ G \ G1, G = G1 ∪SG1, G1 ∩SG1 = ∅, where SG1 = {S ◦ T | T ∈ G1}.
If P ∈ X̂, then we denote with P̃ (respectively P ) its G- orbit ( respectively its G1-
orbit ). So

P̃ = {G(P̂ ) | G ∈ G} and P = {T (P̂ ) | T ∈ G1}.
The quotient space X̂/G = {P̃ | P̂ ∈ X̂} has a Klein surface structure and the

covering projection π : X̂ → X̂/G, P̂
π→ P̃ is a dianalytic covering mapping, by the

definition of P̃ .
We can identify in a topological way X with X̂/G, by the homeomorphism α :

X → X̂/G, such that for every P̃ ∈ X, if P̂ ∈ π−1(P ) then α(P ) = P̃ .

Theorem 2.1. Let X a Klein surface, π : X̂ → X the universal covering of X and
G the covering transformations group of π. If O2 = X̂/G1, then O2 has a Riemann
surface structure.

Proof. Because k(P ) 6= P , for every P ∈ O2, then exists Ũa parametric disk of
X, small enough such that q−1(Ũ)= U1∪U2, where {Ui}i∈{1,2}are open sets of O2,
U1∩U2 =∅, because {S(P̂ )| S ∈ G \ G1}∩{T (P̂ ) | T ∈ G1} = ∅ and such that the
mappings q/Ui : Ui −→ Ũ , i ∈ {1, 2}are homeomorphisms and also U2 = k(U1),
because q = q ◦ k.

We denote U1= U , so U2 = k(U).
Then p−1(U) = {Ûj}j∈J , where Ûjare open sets of X̂, for every j ∈ Jand the

mappings p/Ûj : Ûj −→ Uare homeomorphisms.
Let Ûbe a fixed element of {Ûj}j∈Jand (T (Û), ĥT,Û , VT,Û ), (S(Û), ĥS,Û , VS,Û )the

corresponding maps on X̂, where T ∈ G1and S ∈ G \G1. We will use the following no-
tations : pT,U = (p/T (Û))◦ĥ−1

T,Û
and pS,U=(p/S(Û))◦ĥ−1

S,Û
, with T ∈ G1and S ∈ G\G1.

If T ∈ G1, then (p/T (Û))(T (Û))= Uand if S ∈ G\G1, then (p/S(Û))(S(Û))=k(U).Therefore
(U , p−1

T,U , VT,Û )and (U , p−1
S,U◦(k/U), VS,Û ), where T ∈ G1and S ∈ G \ G1, are maps

on O2.
Thus

B∗1 =
{

(U,p−1
T,U , VT,Û ) | T ∈ G1, U ∈ U

}
and

B∗2 =
{

(U,p−1
S,U ◦ (k/U), VS,Û ) | S ∈ G \ G1, U ∈ U

}
,

where Ubelong to the family Uof sets Uof the previous type, are analytic atlases on
O2.

Indeed, let U ∈ Uand P̂ = T (P̂1), with T ∈ G1and P̂1 ∈ Û( a fixed element of the
family {Ûj}j∈J). Then, by the definition of P , P = P1and (p/T (Û))(P̂ )=(p/Û)(P̂1),by
the definition of p, for every P̂1 ∈ Ûand T ∈ G1with P̂ = T (P̂1). Therefore,
p/T (Û) = (p/Û) ◦ (T/Û)−1, for every T ∈ G1.
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For a fixed set U , it
′
is easy to check that the maps (U,p−1

T,U , VT,Û ), where T ∈ G1,are
analytically compatible..

For U1, U2of the previous type, with U1∩U2 6= ∅and T1, T2 ∈ G1, the maps (U1,
p−1

T1,U1
, VT1,Û1

)and (U2, p−1
T2,U2

, VT2,”Û2
)are analytically compatible, because if U is a

connected component of U1 ∩ U2, then we can apply, for U , the previous results. If
for an initial Ũwe fixed Ûthen we do all the other choices such that to remain on the
same analytic atlas on X̂.

Therefore, B∗1 is an analytic atlas on O2.
By analogy, B∗2 is also an analytic atlas on O2.
In the same way, we can verify that maps (U,p−1

T,U , VT,Û ) ∈ B∗1and (U,p−1
S,U ◦

(k/U), VS,Û ) ∈ B∗2are antianalytic compatible.
Let B1(respectively B2) the maximal analytic atlases on O2, which contains B∗1(

respectively B∗2). B1determine the analytic structure on O2and B2the analytic struc-
ture on k(O2). k(O2)is then the surface O2provided with its second orientation.
Then k :O2→k(O2)is an antianalytic isomorphism. Thus, q : O2 → Xis a dian-
alytic mapping, which mixed the structures of O2and k(O2). Then O2=(O2,B∗1),
k(O2)=(O2,B∗2).

We denote with Hthe group consists of kand Id, with respect of the composition
of functions. It is easy to see that

Theorem 2. O2/H is dianalytic equivalent with X.
For proof see[R].

Theorem 3. Let (O2,k) be a symmetric Riemann surface . Then the covering
projection q : O2 → O2/H induce o structură de suprafaţă Klein pe O2/H.

Proof. Let (O2,k) be a symmetric Riemann surface, then O2 is a Riemann surface
and k : O2 −→ O2 is an homeomorphism for which we have:k◦k = Id, k(P ) 6= P, for
every P ∈ O2 and ϕ1 ◦ k ◦ ϕ−1 is antianalytic, for every pair of maps (U,ϕ, V ) ∈ B,
(U1, ϕ1, V1) ∈ B of O2 which satisfy the condition k(U) ⊆ U1, where B = {(Ui, ϕi, Vi) |
i ∈ I} is an analytic atlas on O2.Let X = O2/{Id,k}, the orbits space of O2, with
respect to the group ({Id,k}, ◦) and q : O2 → O2/H the covering projection, such
that q(P ) = {P,k(P )}, for every P ∈ O2.

Then O2/H has a dianalytic structure. We denote with Ũ = {q(Ui) | i ∈ I}.
Because q ◦ k = q, we can suppose that for every Ũi = q(Ui) ∈ Ũ , q−1(Ũi) =
Ui∪k(Ui), with Ui∩k(Ui) = ∅, because k doesn

′
t have fixed points and q/Ui : Ui → Ũi

and q/k(Ui) : k(Ui) → Ũi are homeomorphisms. We consider (Uj , ϕj , Vj) ∈ B and
(Ui, ϕi, Vi) ∈ B, i, j ∈ I with Ui enough small such that k(Ui) ⊆ Uj and we denote
the restriction at k(Ui), corresponding to ϕj with ϕk

ij and on ϕk
ij(k(Ui)) with V k

ij .
We define hi = ϕi ◦ (q/Ui)−1 : Ũi → Vi and gi = ϕk

ij◦ (q/k(Ui))−1 : Ũi → V k
ij , for

every i ∈ I .
Let A1 = { (Ũi, hi, Vi) | i ∈ I} and A2 = { (Ũi, gi, V

k
i ) | i ∈ I}, where V k

i = V k
ij ,

with j ∈ I a fixed element. Then A = A1 ∪ A2 is a dianalytic atlas on O2/H. Then
the following diagram is commutative :
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Ui
ϕi−→ Vi

q/Ui

↘ ↗
hi

k ↓ Ũi

↗
q/k(Ui)

gi↘
k(Ui) −→

ϕk
ij

V k
ij

If we consider B∗1 ,B∗2 the analytic atlases on O2, we can define a dianalytic structure
on O2/H, dianalytical equivalent with X :

Let Ũ = {q(U) | U ∈ U}. If Ũ ∈ Ũ , q−1(Ũ) = U ∪ k(U), with U ∩ k(U) = ∅ then
q/U : U → Ũ and q/k(U) : k(U) → Ũ are homeomorphisms.

For every T ∈ G1, we define hT,U = (q/U ◦ pT,U )−1 : Ũ → VT,Û , where the set Û

from the definition of pT,U is a fixed component of p−1(U), such that p/Û : Û → U
is an homeomorphism

For each S ∈ G\G1, we define gS,U = (q/k(U) ◦ pS,U )−1 : Ũ → VS,Û . Let

A′1 =
{

(Ũ , hT,U , VT,Û ) | Ũ ∈ Ũ , T ∈ G1

}

and
A′2 =

{
(Ũ , gS,U , VS,Û ) | Ũ ∈ Ũ , S ∈ G\G1

}

Then, A′ = A′1 ∪ A′2 is an antianalytic atlas on X.
For Ũi ∈ Ũ , i ∈ {1, 2} we used the notations q−1(Ũi) = Ui ∪ k(Ui) and p(Ûi) = Ui,

for every i ∈ {1, 2}.
For the notations and definitions about meromorphic quadratic differential Φ on

O2 see [R].
Let X be a Klein surface and A =

{
(Ũi, hi, Vi) | i ∈ I

}
the induce atlas on X and

Φ̃ is a N - meromorphic quadratic differential, respectively holomorphic, on X .

Let Q2(X) be the vectorial space of N - meromorphic quadratic differentials on X,
with respect with C.

Let V and f(V ) the images through the corresponding charts of the parametric
disks U , respectively k(U). Because k is an antianalytic involution it results that f is
an antianalytic involution. We will use z, like local parameter on U and w, like local
parameter on k(U).

Theorem 4. There is an isomorphism q̃, between Qs(O2) and Q2(X).
Proof. Let q : O2 → O2/H , q(P ) = P̃ , for every P ∈ O2 , the canonical

projection. The mapping q̃ : Qs(O2) → Q2(X) is defined by :

q̃(Φ + Φ ◦ k) = Φ̃, for every Φ ∈ Q2(O2),

where Φ̃∗/Ũ = Φ∗/U + (Φ ◦ k)∗/U and q−1(Ũ) = {U,k(U)}, for every parametric
disk Ũ of X.

Let Φ ∈ Q2(O2) with the local representation:

Φ∗/U ∪ k(U) =
{

ϕ(z)dz2, z ∈ V
ϕ̂(w)dw2, w ∈ f(V ) (1)
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where ϕ and ϕ̂ are meromorphic functions on V , respectively f(V ). If ϕ is not
holomorphic, that is it has at least a pole, by z ∈ V we means that z is not a pole of
ϕ.

Then, the symmetry k will induce the isomorphism K : Q2(O2) → Q2(O2) defined
as (see [R]):

K(Φ)∗/U ∪ k(U) = (Φ ◦ k)∗/U ∪ k(U) =
{

ϕ̂(f(z))df(z)2, dacă z ∈ V
ϕ(f(w))df(w)2, dacă w ∈ f(V ) (2)

Then
Φ̃∗/Ũ = ϕ(z)dz2 + ϕ̂(f(z))df(z)2,

where we consider a map from A′1, therefore z̃ = h(P̃ ) = z is the local parameter
corresponding to Ũ , q−1(P̃ ) = {P,k(P )} ; ϕ and ϕ̂ are meromorphic functions in
the local parameters z, respectively f(z).

q̃ is well defined.
Because the maps on X are of two types, we have to study the following maps :
a1) Let (Ũ , hT,U , VT,Û ) ∈ A′

1, then if V = VT,Û we define

ϕ̃1/Ũ = ϕ/V ◦ p−1
T,U ◦ (q/U)−1 and ϕ̃2/Ũ = ϕ̂/f(V ) ◦ p−1

S,U ◦ (q/k(U))−1 (3)

Φ̃∗1/Ũ = (ϕ̃1 ◦ h−1
T,U )(z̃)dz̃2 and Φ̃∗2/Ũ = (ϕ̃2 ◦ h−1

T,U )(z̃)df(z̃)2 . (4)

So Φ̃∗/Ũ = Φ∗/U + (Φ ◦ k)∗/U = ϕ(z) dz2 + ϕ̂(f(z))df(z)2 = Φ̃∗1/Ũ+ Φ̃∗2/Ũ , for
every P̃ ∈ Ũ with z̃ = hT,U (P̃ ) = p−1

T,U (P ) = z, T ∈ G1. because Φ ∈ Q2(O2), the
function ϕ̃1/Ũ◦ h−1

T,U = ϕ/V is a meromorphic function. By the invariant condition
for Φ, if z̃0 şi z̃ are parametric values corresponding to the same point of X through
two maps of A′1, we have ϕ(z)dz2 = ϕ0(z0)dz2

0 , where ϕ0 is the local representation
of Φ with respect to the parameter z0 and thus the parametric representations of Φ̃1

with respect to z̃ and z̃0 are the same on every connected component of the common
region. So , Φ̃1 ∈ Q2(O2). Analogous, ϕ̃2/Ũ◦ h−1

T,U = ϕ̂/f(V ) ◦ p−1
S,U ◦ k/U ◦

p−1
T,U = ϕ̂ ◦ f is an antimeromorphic function, therefore ϕ̂/f(V )◦ p−1

S,U◦ k/U is an
antimeromorphic mapping on (O2, B∗1). By theorem 2.1., if Φ ∈ Q2(O2), then Φ ◦ k
is an antimeromorphic quadratic differential on (O2, B∗1), therefore Φ̃2 ∈ Q2(O2).

a2) Let (Ũ , gS,U , VS,Û ) ∈ A′2, then if f(V ) = VS,Û we define

ϕ̃1/Ũ = ϕ̂/f(V ) ◦ p−1
S,U ◦ (q/k(U))−1and ϕ̃2/Ũ = ϕ/V ◦ p−1

T,U ◦ (q/U)−1 (5)

Φ̃∗1/Ũ = (ϕ̃1 ◦ g−1
S,U )(z̃)dz̃2 and Φ̃∗2/Ũ = (ϕ̃2 ◦ g−1

S,U )(z̃)df(z̃)2 (6)

Thus Φ̃∗/Ũ = Φ∗/k(U) + (Φ ◦ k)∗/k(U) = ϕ̂(w)dw2 +ϕ(f(w)) df(w)2 = Φ̃∗1/Ũ +
Φ̃∗2/Ũ , for every P̃ ∈ Ũ , where z̃ = gS,U (P̃ ) = p−1

S,U (k(P )) = f(z) = w, S ∈ G\G1. The
function ϕ̃1/Ũ ◦ g−1

S,U = ϕ̂/f(V ) is a meromorphic function and because Φ ∈ Q2(O2),
it results that if w̃0 and w̃ are parametric values corresponding to the same point of X,
through two maps of A′2 then ϕ̂(w)dw2 = ϕ̂0(w0) dw2

0, where ϕ̂0 is the representation
of Φ with respect to the parameter w0 and thus the parametric representations of Φ̃1

with respect to w̃ and w̃0 are the same on every connected component of the common
region. , So, Φ̃1 doesn

′
t change with the conform parameter, therefore Φ̃1 ∈ Q2(O2)

and we have Φ̃2 ∈ Q2(O2). Thus a) condition is satisfied.
To prove b) we study the two cases in which the transition function is analytical.
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1) Let (Ũ1, hT1,U1 , VT1,Û1
), (Ũ2, hT2,U2 , VT2,Û2

) be two maps of A′1, such that Ũ1 ∩
Ũ2 6= ∅ and Ũ ⊆ Ũ1∩ Ũ2, Ũ is a connected component. Then, if VT1,Û1

= V1, VT2,Û2
=

V2 and Φ̃∗/Ũ1 = (Φ̃′1)
∗/Ũ1 + (Φ̃′2)

∗/Ũ1 and Φ̃∗/Ũ2 = ( Φ̃′′1)∗/Ũ2 + ( Φ̃′′2)∗/Ũ2 are the
local representations of Φ̃ corresponding to the two maps, by using the same kind of
maps like in (3) and (4), we have ϕ̃′1/Ũ = ϕ ◦ p−1

T,U ◦ (q/U)−1 = ϕ̃′′1/Ũ and ϕ̃′2/Ũ = ϕ̂

◦ p−1
S,U ◦ (q/k(U))−1 = ϕ̃′′2/Ũ , where U ⊂ O2, q(U) = Ũ , ϕ and ϕ̂ are meromorphic

functions in the parameter z, respectively f(z), so b1) is satisfied.
2) Let (Ũ1, gS1,U1 , VS1,Û1

), (Ũ2, gS2,U2 , VS2,Û2
) be two maps of A′2, such that Ũ1 ∩

Ũ2 6= ∅ and Ũ ⊆ Ũ1 ∩ Ũ2, Ũ a connected component. Then, if VS1,Û1
= V1, VS2,Û2

=

V2 by using the same kind of maps like in (5) and (6), we have ϕ̃′1/Ũ = ϕ̂ ◦ p−1
S,U ◦

(q/k(U))−1 = ϕ̃′′1/Ũ and ϕ̃′2/Ũ = ϕ ◦ p−1
T,U ◦ (q/U)−1 = ϕ̃′2/Ũ , where U ⊂ O2 and

q(U) = Ũ , so b1) is satisfied.
The transition mapping is antianalytical if we consider the maps (Ũ1, hT1,U1 , VT,Û )

∈ A′1 and (Ũ2, gS2,U2 , VS,Û ) ∈ A′′2 , such that Ũ1 ∩ Ũ2 6= ∅. Let Ũ ⊆ Ũ1 ∩ Ũ2, Ũ

is a connected component then, using the same notations like in (2), (3), (4) and
(5) it results that ϕ̃′1/Ũ = ϕ ◦ p−1

T,U ◦(q/U)−1 = ϕ̃′′2/Ũ and analogous ϕ̃′2/Ũ =
ϕ̂ ◦ p−1

S,U ◦ (q/k(U))−1 = ϕ̃′′1/Ũ . So b2) is satisfied.
q̃ is a morphism of vectorial spaces .

By (3), (4), (5) and (6) it results that the local components of q̃[(Φ + Ψ) + (Φ+
Ψ) ◦ k] and q̃(Φ + Φ ◦ k) + q̃(Ψ + Ψ ◦ k) are the same, for every Φ,Ψ ∈ Q2(O2), so q̃
[(Φ + Φ ◦ k) + (Ψ + Ψ ◦ k)] = q̃(Φ + Φ ◦ k) + q̃(Ψ + Ψ ◦ k).

Analogous, q̃[λ(Φ + Φ ◦ k)] = λ q̃(Φ + Φ ◦ k), for every λ ∈ C and Φ ∈ Q2(O2).
q̃ is bijective.
Let Φ + Φ ◦ k ∈ Qs(O2), such that q̃(Φ + Φ ◦ k) = Φ̃ = 0. By definition of Φ̃ it

results Φ̃1/Ũ = Φ̃2/Ũ = 0, for every (Ũ , h, V ) ∈ Ã. So by (3), (4), (5) and (6) it
results that Φ/U = 0 and (Φ ◦ k)/U = 0, for every parametric disk U of O2. Thus
Φ + Φ ◦ k = 0.

Let Φ̃ ∈ Q2(X) and U ⊂ O2 be a parametric disk such that q(U) = Ũ . Let Φ̃∗1/Ũ

= ϕ1(z)dz2 and Φ̃∗2/Ũ = ϕ2(f(z))df(z)2 the local components of Φ̃ with respect to
the map (Ũ , hT,U , VT,Û = V ) ∈ A′1. We define

Φ∗/U ∪ k(U) =
{

ϕ1(z)dz2, z ∈ V
ϕ2(w)dw2, w ∈ f(V ) , (7)

for every U ⊂ O2. By condition a) of a N -meromorphic quadratic differential def-
inition, it results that Φ ∈ Q2(O2) and by definitions of Φ and q̃ we have q̃(Φ +
Φ ◦ k) =Φ̃.

Corollary. By analogy exists an isomorphism between the vectoarial spaces Qa(O2)
and Q2(O2).

We can associate to a meromorphic quadratic differential on O2 a meromorphic
quadratic differential on X̂.

Let Φ ∈ Q2(O2). We denote with Φ̂ , the meromorphic quadratic differential on
X̂ associated with Φ. By definition Φ̂ is a family of meromorphic functions (ϕ̂i)i∈I

in local parameters ẑi of the analytical structure on X̂ such that if Pi = p(P̂i), then
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we have :
ϕ̂i(ẑi)dẑ2

i = ϕ̂j(ẑj)dẑ2
j = ϕi(zi)dz2

i , (8)

for every parametric values ẑi and ẑj which correspond to the same point P̂ of X̂,
where ϕ̂i and ϕ̂j are the local representations of Φ̂ in parameter ẑi, respectively ẑj ,
and ϕi is the local representation of Φ in zi, the image of Pi by the associated map.

Let Q2(X̂) be the vectorial space of the meromorphic quadratic differentials on X̂,
over C.

Theorem 6.There is an isomorphism p̃, between the vectorial spaces Q2(O2) and
Q2(X̂).

Proof. Let Φ ∈ Q2(O2), P̂ ∈ X̂ and (Û , ĥ, V ) a map of X̂ such that P̂ ∈ Û and
ĥ(P̂ ) = ẑ. We consider U = p(Û). Then p/Û : Û −→ U is an analytical homeomor-
phism and if T ∈ G1, (p/T (Û))(T (Û)) = U and if S ∈ G\G1, (p/S(Û))(S(Û)) = k(U).
Let P = p(P̂ ) = p(T (P̂ )). Then we can define Φ̂ ∈ Q2(X̂) with Φ̂∗/Û = ϕ̂(ẑ)dẑ2

the local representation of Φ̂ on Û , such that ϕ̂/V ◦ ĥ ◦ (p/Û)−1 = ϕ/V ◦ p−1
T,U .

Because Φ ∈ Q2(O2), it results that ϕ̂/V is a meromorphic function and by (6) we
obtain that ϕ̂(ẑ)dẑ2 = ϕ(z)dz2 = ϕ̂0(ẑ0))dẑ2

0 , for every ẑ0 and ẑ parametric values
associated to the same point of X̂ , where ϕ̂0 is the local representation of Φ̂ in the
parameter ẑ0. Therefore p̃ : Q2(O2) → Q2(X̂), p̃(Φ) = Φ̂ is well define. Evident p̃ is
an isomorphism.

Let Q2(G) = {Φ̂ + Φ̂ ◦ S | Φ̂ ∈ Q2(X̂), S ∈ G\G1} the vectorial space of the
meromorphic quadratic differential on X̂ associated to the group G, with respect to
addition and multiplication with scalars, where Φ̂ ◦ S is the meromorphic quadratic
differential , that is the family (ϕ̂S)S∈G\G1 of meromorphic functions, where ϕ̂S is the
representation of Φ̂ in parameter ẑS = (ĥS,Û ◦ S ◦ ĥ−1)(ẑ) and S ∈ G\G1.

Remark.The definition of Φ̂+ Φ̂ ◦ S does not depend of S ∈ G\G1.
Proof. Let Φ̂ ∈ Q2(X̂), Q̂ = S(P̂ ), P̂ ∈ Û , ϕ̂(ŵ)dŵ2 be the local representation of

Φ̂ in S(Û) and S′ ∈ G\G1, S′ 6= S such that Q̂ = S′(P̂ ). Then Q̂′ = (S′ ◦ S−1) (Q̂)
and because S′ ◦ S−1 ∈ G1 it results that

ϕ̂(ŵ)dŵ2 = ϕ̂′(ĥ′(ŵ))dĥ′(ŵ)2 = ϕ̂′(ŵ′)dŵ′2,

where ϕ̂′ is the local representation of Φ̂ in S′(Û) and ĥ′ = ĥS′ ,Û ◦ S′ ◦ S−1 ◦ ĥ−1

S,Û
.

Proposition 2.1. The elements of Q2(G) are automorphic with respect to G.

The elements of Q2(G) are automorphic with respect to G.
Proof. Let Φ̂ + Φ̂ ◦ S ∈ Q2(G). By the previous remark Φ̂ + Φ̂ ◦ S doesn

′
t depend

on choosing S. If T ∈ G1, using analogue notations with the above one it results that
Φ̂∗/Û + (Φ̂ ◦ S)∗/Û = ϕ̂(ẑ)dẑ2 + ϕ̂S(ẑS))dẑ2

S = ϕ̂T (ẑT )dẑT
2 + ϕ̂S◦T (ẑST )dẑST

2 =
(Φ̂ ◦ T )∗/Û + (Φ̂ ◦ S ◦ T )∗/Û . If S′ ∈ G\G1, then Φ̂∗/Û + (Φ̂ ◦ S)∗/Û = ϕ̂(ẑ)dẑ2 +
ϕ̂S(ẑS)dẑS

2 = ϕ̂S◦S′(ẑS◦S′)dẑ2
S◦S′ + ϕ̂S′(ẑS′)dẑ2

S′ = (Φ̂ ◦ (S ◦ S′)∗/Û+ (Φ̂ ◦ S′)∗/Û .
We used the local representations of Φ̂ and the fact that S′◦S−1 ∈ G1 and S ◦S′ ∈ G1.
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Theorem 2.2. There is an isomorphism between the vectorial spaces Q2(X̂) and
Q2(G).

There is an isomorphism between the vectorial spaces Q2(X̂) and Q2(G).

Proof. et F̃ : Q2(X̂) −→ Q2(G) be such that : F̃ (Φ̂) = Φ̂ + Φ̂ ◦ S, for every Φ̂ ∈
Q2(X̂). By the above remark , we deduce that F̃ is well defined. Evident F̃ is an
isomorphism. ¤

Remark 2.1. By the previous isomorphisms, there is an isomorphism Π̃ between the
vectorial spaces Q2(G) and Q2(X) such that the following diagram is commutative..

Q2(X̂) F̃−→ Q2(G)
p̃ ↑ ↓ Π̃

Q2(O2)
K̃−→ Qs(O2)

q̃−→ Q2(X)

By the previous isomorphisms, there is an isomorphism Π̃ between the vectorial
spaces Q2(G) and Q2(X) such that the following diagram is comutative.

Q2(X̂) F̃−→ Q2(G)
p̃ ↑ ↓ Π̃

Q2(O2)
K̃−→ Qs(O2)

q̃−→ Q2(X)
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