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Fading Random Evolution on a Complex Plane

Igor Samoilenko

Abstract. The article explores a generalization of the Goldstein-Kac model, specifically a

model of random evolution on a complex plane, with the velocity that decreases over time.
This process simulates the motion of a particle in a force field, among other phenomena. Limit

theorems describing the distribution of the absorbing point for this process have been derived.

Additionally, nonlinear integral equations for functionals of the process have been obtained,
and the existence and uniqueness of their solutions have been proven.
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1. Introduction

In our recent work [19] we discussed a random evolution (random flight) on a complex
plane

γλ,vr,z (t) = x+ iy + v

t∫
0

(−1)ζ
λ
r (s)ds+ iv

t∫
0

(−1)ζ
λ
r (s)ds

= z + (i+ 1)v

t∫
0

(−1)ζ
λ
r (s)ds,

where x+ iy is the starting point, v > 0 is the constant velocity of movement, ζλr (s)
is the Markov chain that takes values in {0, 1} and has the infinitesimal matrix

Qλ = λ

(
−1 1
1 −1

)
and initial distribution P{ζλr (0) = 0} = p, P{ζλr (0) = 1} = q, r = p − q. We showed
that Uj(t, z) – the functionals from the process γλ,vr,z (t) of the form

Uj(t, z) = Ejf

(
z + (i+ 1)v

∫ t

0

(−1)ζ
λ
r (s)ds

)
,
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j ∈ {0, 1} is the state of the process ζλr (s) at the moment of time s = 0 satisfy a
Schrödinger-type equation

∂2U

∂t2
+ 2λ

∂U

∂t
= 2iv2

∂2U

∂z2
,

U(0, z) = f(z),
∂

∂t
U(t, z)|t=0 = rv(1 + i)f ′(z),

and proposed a method for solving such an equation for complex-analytic initial con-
ditions.

This model is a generalization of original model described in [4] by M.Kac and
is just one of many models exploring similar processes in multidimensional spaces.
Corresponding results are mostly devoted to discussion of convergence of the process
studied to the Wiener process, also description of corresponding equations and solving
them for some well posed models ([2], [5] – [8], [10] – [18] and many others).

The main problem is that the methods for solving equations proposed there can
not be applied for any model as soon as they are, as a rule, strictly connected with
the structure of the corresponding equation. In the article [20] we proposed to change
the approach, namely to solve a well posed Cauchy problem instead of a well posed
equation.

Moreover, we aim to focus on models grounded in physics. Specifically, the afore-
mentioned approach provides a pathway for creating simulations of physical processes
defined by the Schrödinger equation based on the Goldstein-Kac model, which is rel-
atively simple to implement. Additionally, our results make it possible to search for
solutions to Schrödinger-type equations in the form of series with any desired accu-
racy. Possible applications of such models in physics, including the methods presented
in [20], may be found in a recent article [3], published in Annals of Physics.

The model presented in this work builds on these ideas and specifically addresses
the behaviour of random evolution on a complex plane in the case where a physical
particle moves in a force field that ”attracts” the particle, reducing its speed at each
step. We can define the fading evolution as follows:

ζλ,vr,z (t) = z + vir
t∫

0

(ia)N
λ(s)ds, z ∈ C, a ∈ (0, 1).

Here Nλ(s) is the Poisson process with intensity λ that takes values {0, 1, 2, ...},
parameter r ∈ {0, 1, 2, 3} defines initial direction of the process. If r = 0 we start to
the positive direction of real line (Re+); r = 1 – positive direction of imaginary line
(Im+); r = 2 – negative direction of real line (Re−); r = 3 – negative direction of
imaginary line (Im−).

A key distinction of this model from all those mentioned above is the ability to
examine its behavior as time approaches infinity. The other models mentioned, with
probability 1, remain within a region (the shape of which is determined by the process
structure; see, for example, [2], [10] – [14]) whose boundary linearly depends on t and
therefore also tends toward infinity. In the case of our model, there exists a point
where the process ”freezes” and the position distribution of this point can be explicitly
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calculated if the process is represented as an infinite random series:

ζλ,vr,z (∞) = z + irv

∞∑
k=0

(ia)kτk,

where τk are random time intervals with identical exponential distribution. The
second section of the article is dedicated to this question.

The complexity of this model lies in the fact that we cannot apply the classical
approach to analysing functionals of the process, namely writing the backward Kol-
mogorov equations, deriving the corresponding higher-order equation, and finding its
solutions. Instead, it is proposed to use the relevant non-linear integral equations,
presented in the third section of the article.

This raises the question of the existence and uniqueness of their solution, which is
examined in the last section. It is shown that the obtained equations can indeed be
solved, for instance, by using the method of successive approximations.

2. Distribution of absorbing point

First, we will prove an auxiliary result which, however, is of independent interest,
as it provides information about convolutions of functions that often arise in various
problems as distributions of random variables.

Lemma 2.1. If a distribution function satisfies the equation

F (x) = λ

∫ x

0

e−λuF
(
x−u
an

)
du, x ≥ 0 (1)

then the following expansion holds true:

F (x) = 1− s−1
e−λx +

∞∑
j=1

(−1)je
− λx

an
j

j∏
k=1

an
k

1− ank

 , (2)

here s = 1 +
∑∞
j=1(−1)j

∏j
k=1

an
k

1−ank
.

Remark 2.1. If we put c = 1
an , then

s = 1− 1
c−1 + 1

(c−1)(c2−1) − ...,

thus s =
∑∞
j=0(−1)n

(0)c,n
(c)c,n

= 1Φ0(0;−1; c), where (c)q,n := (1 − c)(1 − cq) . . . (1 −
cqn); rΦs(

α1,...,αr;z
β1,...,βs;q

) is a basic hypergeometric series [1].

Proof. Obviously, F (0) = 0. We are looking for F (x) in the form:

F (x) = 1 + a1e
−λx + a2e

− λxan + a3e
− λx

an
2 + · · ·+ ane

− λx

an
n−1 + . . . (3)
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Substituting this expression into the right-hand side of equation (1), we get

F (x) = λ

∫ x

0

e−λu
[
1 + a1e

−λ(x−u)an + a2e
−λ(x−u)

an
2 + · · ·+ ane

− λx

an
n−1 + . . .

]
du

= 1− e−λx +
a1a

ne−
λx
an

1− an
(
e

(1−an)λx
an − 1

)
+
a2a

n2

e
− λx

an
2

1− an2

(
e

(1−an
2
)λx

an
2 − 1

)

+ · · ·+ ana
nne−

λx

an
n

1− ann
(
e

(1−an
n

)λx

an
n − 1

)
+ . . .

Let’s replace F (x) in the left part with its expression (3) and equate the coefficients:

at e−λx: a1 = −1 + a1a
n

1−an + a2a
n2

1−an2 + . . . ,

at e−
λx
an : a2 = − a1a

n

1−an ,

at e
− λx

an
2 : a3 = − a2a

n2

1−an2 ,
. . . ,

at e
− λx

an
n−1 : an = −an−1a

nn−1

1−ann−1

. . .
Substituting ai, i > 1 into the first equality we get:

a1 = −1 +
a1a

n

1− an
− a1a

n+n2

(1− an)(1− an2)
+ . . . ,

thus

a1

[
1− an

1− an
+

an+n
2

(1− an)(1− an2)
− . . .

]
= −1.

We denote the sum of the convergent series in square brackets by s. Then

a1 = −1

s
;

a2 =
an

s(1− an)
;

a3 = − an+n
2

s(1− an)(1− an2)
;

. . . ;

an = − an+n
2+...+nn−1

s(1− an)(1− an2) . . . (1− ann−1)
.

Thus, the distribution function satisfying equation (1) has the form

F (x) = 1− s−1
[
e−λx − an

1− an
e−

λx
an +

an+n
2

(1− an)(1− an2)
e
− λx

an
2 − . . .

]
,

x ≥ 0. �

Now let us examine fading evolution ζλ,vr,z (∞) for the case r = 0, namely

ζ(∞) := z + v

∞∑
k=0

(ia)kτk.
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We may present ζ(∞) = x + iy + vτ0 + aivτ1 − a2vτ2 − a3ivτ3 + . . . in the form
ζ(∞) = Reζ(∞) + iImζ(∞), where

Reζ(∞) = x+ v

∞∑
k=0

(−1)ka2kτ2k,

Imζ(∞) = y + v

∞∑
k=0

(−1)ka2k+1τ2k+1.

Theorem 2.2.

FReζ(∞)(X) := P{Reζ(∞) ≤ X} =

∫ ∞
0

Fζ

(
X − x
v

+ a2u

)
dFζ(u),

FImζ(∞)(Y ) := P{Imζ(∞) ≤ Y } =

∫ ∞
0

Fζ

(
Y − y
av

+ a2u

)
dFζ(u),

where

Fζ(u) = 1− s−1
e−λu +

∞∑
j=1

(−1)je
− λu

a4
j

j∏
k=1

a4
k

1− a4k

 , u ≥ 0,

and equals 0 otherwise. Here s = 1 +
∑∞
j=1(−1)j

∏j
k=1

a4
k

1−a4k
.

Proof. We are looking for the distribution of

P{Reζ(∞) ≤ X} = P

{ ∞∑
k=0

a4kτ4k − a2
∞∑
k=0

a4kτ4k+2 ≤
X − x
v

}
.

Let us denote the following random series by ζ:

ζ :=

∞∑
k=0

a4kτ4k.

Then, Fζ(t) = P{ζ ≤ t} = P{τ0 + a4
∑∞
k=0 a

4kτ4k+4 ≤ t} = P{τ0 + a4ζ∗ ≤ t},
where ζ∗ has the same distribution function Fζ(t).

Given that τi has an exponential distribution, we have

Fζ(t) = λ

∫ ∞
0

e−λuP{u+ a4ζ∗ ≤ t}du = λ

∫ t

0

e−λuP{ζ∗ ≤ t− u
a4
}du,

and finally

Fζ(t) = λ

∫ t

0

e−λuFζ

(
t− u
a4

)
du.

Note, that by the Lemma 2.1 Fζ(t) may be presented obviously as a series:

Fζ(t) = 1− s−1
e−λt +

∞∑
j=1

(−1)je
− λt

a4
j

j∏
k=1

a4
k

1− a4k

 .
Having this in hand, we may now regard P{Reζ(∞) ≤ X} = P{ζ − a2ζ∗ ≤ X−x

v },
which means that

FReζ(∞)(X) =

∫ ∞
0

Fζ

(
X − x
v

+ a2u

)
dFζ(u).
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Similar considerations regarding P{Imζ(∞) ≤ X} = P{aζ − a3ζ∗ ≤ Y−y
v } lead to

the equality

FImζ(∞)(Y ) =

∫ ∞
0

Fζ

(
Y − y
av

+ a2u

)
dFζ(u).

�

Remark 2.2. We proved the previous result for the case when the initial direction of
the evolution is the positive direction of the real line. Easy to see, that if the evolution
starts, for instance, at the negative direction of the real line, then

F−Reζ(∞)(X) := P{2x−Reζ(∞) ≤ X} = 1− FReζ(∞)(2x−X).

Common rules are the following: if the evolution starts at the negative direction
of the real line, then we should change Reζ(∞) by 2x − Reζ(∞) and Imζ(∞) by
2y − Imζ(∞) to obtain corresponding distribution functions; if the evolution starts
at the positive direction of the complex line, then we should change Reζ(∞) by
2x−Imζ(∞) and Imζ(∞) by Reζ(∞); if the evolution starts at the negative direction
of the complex line, then we should change Reζ(∞) by Imζ(∞) and Imζ(∞) by
2y −Reζ(∞).

Thus, having the distribution functions for all initial directions, we may find the
distribution of the general process in the form

FReζ(∞)(X) = p1P{Reζ(∞) ≤ X}+ p2P{2x−Reζ(∞) ≤ X}
+ p3P{2x− Imζ(∞) ≤ X}+ p4P{Imζ(∞) ≤ X},

where p = (p1, p2, p3, p4) is the distribution of initial directions in the following order:
(Re+, Re−, Im+, Im−).

The same for the distribution of Imζ(∞).

The obtained results regarding the distribution of the absorption point allow us
to evaluate the probabilities of process attenuation in various regions of a complex
plane. As an example, the following theorem presents probability that the absorption
point lies within a circle of radius R centred at the starting point.

Theorem 2.3. The probability that ζ(∞) is inside a circle of radius R and center
z = x+ iy equals∫ R

−R

[
FReζ(∞)(x+

√
R2 − (u− y)2)− FReζ(∞)(x−

√
R2 − (u− y)2)

]
dFImζ(∞)(u)

and does not depend on initial direction.

Proof. The following condition provides the Theorem:

(Reζ(∞)− x)2 + (Imζ(∞)− y)2 < R2, (4)

thus we have to find

P{(Reζ(∞)− x)2 + (Imζ(∞)− y)2 < R2}
= P{(Reζ(∞)− x)2 < R2 − (Imζ(∞)− y)2}

= P{x−
√
R2 − (Imζ(∞)− y)2 < Reζ(∞) < x+

√
R2 − (Imζ(∞)− y)2}

=

∫ R

−R

[
FReζ(∞)(x+

√
R2 − (u− y)2)− FReζ(∞)(x−

√
R2 − (u− y)2)

]
dFImζ(∞)(u).
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As soon as inequality (4) is invariant with respect to substitutions of processes
described in Remark 2.2 (for example, (Reζ(∞) − x)2 = (2x − Reζ(∞) − x)2), the
probability found does not depend on the initial direction. �

3. Integral equation for a function from fading random evolution on a
complex plane

In the case of the fading random evolution, it is not possible to obtain a system
of backward Kolmogorov differential equations and use the classical technique, pre-
sented, for example, in [10] – [18]. However, it turns out that it is possible to write
down corresponding integral equations. Thus, we’ll have nonlinear integral equations
that describe the movement of a particle under the action of an external force when
the speed of movement decreases over time.

Let £ be the space of functions of the form

φ(v, z, t) = φ0(v, z, t) + c,

c = const, φ0(v, z, t)→ 0, v, z, t→ 0. (5)

In the book [9], it was proven that this space is a Banach space with respect to the
sup-norm

||φ(v, z, t)||£ = sup
v,z,t

φ(v, z, t).

Let f ∈ £. Consider the functionals that describe the studied process on a complex
plane in the following form:

uRe+(v, z, t) = Ef(z + v

∫ t

0

(ia)N
λ(s)ds), uIm+(v, x, t) = Ef(z + iv

∫ t

0

(ia)N
λ(s)ds),

uRe−(v, x, t) = Ef(z − v
∫ t

0

(ia)N
λ(s)ds) = uRe+(−v, z, t),

uIm−(v, x, t) = Ef(z − iv
∫ t

0

(ia)N
λ(s)ds) = uIm+(−v, x, t)

the first of which is a function from the evolution that starts at the point z in positive
direction of real line; the second – from evolution starting at the same point in positive
direction of imaginary line, etc.

Let us derive the integral equations for these functionals. Denote by τ the time
at which the first jump of the Poisson process Nλ occurs, that is, Nλ(τ) = 1 and
Nλ(s) = 0 for s ∈ [0, τ) almost surely. Note that τ follows an exponential distribution
with a mean of 1/λ. The random variable τ is a stopping time with respect to the
filtration generated by the process Nλ.

Due to the strong Markov property of the Poisson process, the process (Nλ(u +
τ)−Nλ(τ))u≥0 is itself a Poisson process with intensity λ, independent of τ . Therefore,
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uRe+(v, z, t) = Ef

(
z + v

∫ t

0

(ia)N
λ(u)du

)
= Ef

(
z + v

∫ t

0

(ia)N
λ(u)du

)
1{τ>t} + f

(
z + v

∫ τ

0

(ia)N
λ(u)du+ v

∫ t

τ

(ia)N
λ(u)du

)
1{τ≤t}

= P (Nλ(t) = 0)Ef(z + vt) + f

(
z + vτ + v(ia)N

λ(τ)

∫ t−τ

0

(ia)N
λ(u+τ)−Nλ(τ)du

)
1{τ≤t}

= e−λtf(z + vt) +

∫ t

0

λe−λsEf

(
z + vs+ iav

∫ t−s

0

(ia)N
λ(u)du

)
ds

= e−λtf(z + vt) +

∫ t

0

λe−λsuIm+(av, z + vs, t− s)ds.

The same for other functions:

uIm+(v, z, t) = Ef

(
z + iv

∫ t

0

(ia)N
λ(u)du

)
= P (Nλ(t) = 0)Ef(z + ivt) +

∫ t

0

λe−λsEf

(
z + ivs− av

∫ t−s

0

(ia)N
λ(u)du

)
ds

= e−λtf(z + ivt) +

∫ t

0

λe−λsuRe−(av, z + ivs, t− s)ds

= e−λtf(z + ivt) +

∫ t

0

λe−λsuRe+(−av, z + ivs, t− s)ds.

uRe−(v, z, t) = e−λtf(z − vt) +

∫ t

0

λe−λsuIm−(av, z − vs, t− s)ds.

uIm−(v, z, t) = e−λtf(z − ivt) +

∫ t

0

λe−λsuRe+(av, z − ivs, t− s)ds.

After substitution of uIm+(v, z, t) (with uRe+ in the right-hand side) into uRe+(v, z, t)
we have:

uRe+(v, x, t) = e−λtf(z + vt) +

∫ t

0

λe−λse−λ(t−s)f(z + vs+ i(av)(t− s))ds+∫ t

0

λe−λs
∫ t−s

0

λe−λτuRe+(−a(av), z + vs+ i(av)τ, t− s− τ)dτds

= (s+ τ = θ) = e−λtf(z + vt) + λe−λt
∫ t

0

f(z + vs+ iav(t− s))ds

+ λ2
∫ t

0

∫ t−s

0

e−λθuRe+(−a2v, z + vs+ iav(θ − s), t− θ)dτds (6)

Another, more complicated way also exists. We may substitute uIm+(v, z, t) with
uRe− in the right-hand side:

uRe+(v, x, t) = e−λtf(z + vt) +

∫ t

0

λe−λse−λ(t−s)f(z + vs+ i(av)(t− s))ds

+

∫ t

0

λe−λs
∫ t−s

0

λe−λτuRe−(a(av), z + vs+ i(av)τ, t− s− τ)dτds
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= (s+ τ = θ) = e−λtf(z + vt) + λe−λt
∫ t

0

f(z + vs+ iav(t− s))ds

+ λ2
∫ t

0

∫ t

s

e−λθuRe−(a2v, z + vs− iavθ + iavs, t− θ)dθds. (7)

Similar equality for uRe−(v, z, t) may be found after substitution of uIm−(v, z, t):

uRe−(v, x, t) = e−λtf(z − vt) + λe−λt
∫ t

0

f(z − vs− iav(t− s))ds

+ λ2
∫ t

0

∫ t

s

e−λθuRe+(a2v, z − vs− iavθ + iavs, t− θ)dθds. (8)

Combining equations (7) and (8) we finally have integral equation for uRe+(v, z, t):

uRe+(v, x, t) = e−λtf(z + vt) + λe−λt
∫ t

0

f(z + vs+ iav(t− s))ds+

λ2e−λt
∫ t

0

∫ t

s

f(z + vs− iav(θ − s)− a2v(t− θ))dθds+ λ3e−λt
∫ t

0

∫ t

s

∫ t

θ

f(z+

vs− iav(θ − s)− a2v(τ − θ)− ia3v(t− τ))dτdθds+ λ4
∫ t

0

∫ t

s

∫ t

θ

∫ t

τ

e−λζ×

uRe+(a4v, z + vs− iav(θ − s)− a2v(τ − θ)− ia3v(ζ − τ), t− ζ)dζdτdθds. (9)

Thus, we see that equations (6) and (9) are equivalent.
Equations of similar forms may be found for the functions uIm+(v, z, t), uRe−(v, z, t),

uIm−(v, z, t) in the same way.

4. Existing and uniqueness of solution

Let us consider the question of the existence and uniqueness of a solution to nonlinear
integral equations (6), (9) in the space £, defined by formula (5). Since the space is
a Banach space, the contraction mapping principle holds in this space. We illustrate
the proof for the more complicated equation (9).

Let’s rewrite equation (9) in the form u(v, z, t) = Au(v, z, t), where Au(v, z, t) –
the right-hand part of equation (9). Let f(z), φ(v, z, t) ∈ £. For the functions from
the space £ the action of A is the following:

Aφ(v, z, t) = e−λtf(z + vt) + λe−λt
∫ t

0

f(z + vs+ iav(t− s))ds+

λ2e−λt
∫ t

0

∫ t

s

f(z + vs− iav(θ − s)− a2v(t− θ))dθds+ λ3e−λt
∫ t

0

∫ t

s

∫ t

θ

f(z+

vs− iav(θ − s)− a2v(τ − θ)− ia3v(t− τ))dτdθds+ λ4
∫ t

0

∫ t

s

∫ t

θ

∫ t

τ

e−λζ×

φ(a4v, z + vs− iav(θ − s)− a2v(τ − θ)− ia3v(ζ − τ), t− ζ)dζdτdθds ≤

sup
z
f(z + vt)e−λt + λe−λt

∫ t

0

sup
z
f(z + vs+ iav(t− s))ds+ λ2e−λt

∫ t

0

∫ t

s

sup
z
f(z+

vs− iav(θ − s)− ia2v(t− θ))dθds+ λ3e−λt
∫ t

0

∫ t

s

∫ t

θ

sup
z
f(z+
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vs− iav(θ − s)− a2v(τ − θ)− ia3v(t− τ))dτdθds+ λ4
∫ t

0

∫ t

s

∫ t

θ

∫ t

τ

e−λζ×

sup
v,z,t

φ(a4v, z + vs− iav(θ − s)− a2v(τ − θ)− ia3v(ζ − τ), t− ζ)dζdτdθds ≤

K

(
e−λt + λte−λt +

(λt)2

2!
e−λt +

(λt)3

3!
e−λt + λ4

∫ t

0

∫ t

s

∫ t

θ

∫ t

τ

e−λζdζdτdθds

)
=

K

{
e−λt + λte−λt +

(λt)2

2!
e−λt +

(λt)3

3!
e−λt + λ4

(
− 1

λ
e−λt

t3

3!
− 1

λ2
e−λt

t2

2!
−

1

λ3
e−λtt− 1

λ4
(e−λt − 1)

)}
= K

where K = max{sup
z
f(z), sup

v,z,t
φ(v, z, t)}, thus Aφ(v, z, t) is a bounded function.

Let us show that A is a compression. We have

ρ(Aφ1, Aφ2) = sup
v,z,t
|λ4
∫ t

0

∫ t

s

∫ t

θ

∫ t

τ

e−λζφ1(a4v, z + vs− iav(θ − s)−

a2v(τ − θ)− ia3v(ζ − τ), t− ζ)dζdτdθds− λ4
∫ t

0

∫ t

s

∫ t

θ

∫ t

τ

e−λζ×

φ2(a4v, z + vs− iav(θ − s)− a2v(τ − θ)− ia3v(ζ − τ), t− ζ)dζdτdθds| ≤

λ4
∫ t

0

∫ t

s

∫ t

θ

∫ t

τ

e−λζ sup
v,z,t
|φ1(a4v, z + vs− iav(θ − s)− a2v(τ − θ)− ia3v(ζ−

τ), t− ζ)− φ2(a4v, z + vs− iav(θ − s)− a2v(τ − θ)− ia3v(ζ − τ), t− ζ)|dlds =

ρ(φ1, φ2)[− (λt)3

3!
e−λt − (λt)2

2!
e−λt − λte−λt − e−λt + 1],

where − (λt)3

3! e−λt − (λt)2

2! e−λt − λte−λt − e−λt + 1 < 1. Thus, the solution of equation
(9) exists and is unique.

Similarly, we may obtain the same result for the equations of the form (6) and for
the functions uIm+(v, z, t), uRe−(v, z, t), uIm−(v, z, t), thus we have:

Theorem 4.1. For any f(z) from the space £, equations for the functions uRe+(v, z, t),
uIm+(v, z, t), uRe−(v, z, t), uIm−(v, z, t) of the forms (6), (9) have a unique solution
in this space.

This theorem enables us to find solutions to the obtained integral equations of the
forms (6), (9) using the method of successive approximations, as a limit lim

n→∞
un(v, z, t),

where u0(v, z, t) – any function from £.
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5. Conclusion

By employing random series in the second section of the article, we successfully iden-
tified the absorbing point for a model that generalizes the Goldstein-Kac model to
the case where the velocity is not constant but decreases with each change in the
particle’s direction of motion. Combined with the space where the evolution takes
place (complex plane), this model appears intriguing from the perspective of physical
applications, as it is associated with Schrödinger-type equations and processes related
to particle attraction or ”freezing.”

The main result of the second section is presented in Theorem 2.2, which provides a
method for determining the distribution of the absorbing point for the studied model
and calculating the probability of this point falling into regions of various shapes and
complexities. It should be noted that Theorem 2.3 merely demonstrates one possible
variant of such a problem. By applying similar calculations, it is possible to obtain
results for other regions, depending on the physical basis of the model.

The last two sections of the work also present only general methods that allow
deriving nonlinear integral equations, as their form is quite extensive, and providing
variants of the equations for all functions would significantly increase the length of
the article. Results for other functions can be obtained by applying the described
methods.

Unfortunately, it is challenging to compare the equations describing non-fading evo-
lution (Schrödinger-type differential equations from the work [19]) with the nonlinear
integral equations derived here. Nevertheless, certain high-order nonlinear differential
equations, equivalent, for instance, to equation (6), may be obtained by differentiating
the latter with respect to z and t.
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