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Local Dynamics and Bifurcation for a Two-Dimensional Cubic
Lotka-Volterra System (Part II)

Mihaela Sterpu and Raluca Efrem

Abstract. The local bifurcation and dynamics for a two-dimensional cubic Kolmogorov sys-

tem, depending on two small parameters, in certain hypotheses on the coefficients, are inves-

tigated. The paper continues the study performed in [4], by treating two non-generic cases,
corresponding to the hypotheses that one of the significant coefficients vanishes. In the first

non-generic case, the local dynamics is found to be similar to the one obtained in the generic

case treated in [4]. In the second non-generic case new possibilities of behavior are found.
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1. Introduction

Consider the two-dimensional cubic Kolmogorov system{
dx
dt = x

(
µ1 + p11x+ p12y + p13x

2 + p14xy + p15y
2
)

dy
dt = y

(
µ2 + p21x+ p22y + p23x

2 + p24xy + p25y
2
) (1.1)

where x, y are the state variables, pij = pij(µ) are smooth functions of the parameter
variable µ = (µ1, µ2) ∈ R2.

This class of Kolmogorov systems, which generalizes the Lotka-Volterra model, is
often used to model various real-life phenomena in population modelling, biology,
ecology, environment, engineering, economics or mechanics [1], [2], [5], [7], [8], [15],
[16].

The present work is concerned with the study of the behavior of the system (1.1)
when both |µ1| and |µ2| are infinitesimally small, i.e. |µ| � 1. The coefficients pij =
pij(µ) are assumed to be smooth functions on the open set

Vε =
{

(µ1, µ2) ∈ R2, |µ| =
√
µ2

1 + µ2
2 < ε� 1

}
. Also, assume that p12(0)p21(0) < 0.

As only the behavior of the system with nonnegative variables presents relevance
for practical applications, the study is restricted to the first quadrant of the phase
plane

D =
{

(x, y) ∈ R2, x ≥ 0, y ≥ 0
}
,

which is an invariant set for system (1.1).
The local dynamics of system (1.1) around the origin was analyzed in relation to

the double Hopf bifurcation in [3], [6], in the hypotheses (HH.1) p11 (0) 6= 0, (HH.2)
p12 (0) 6= 0, (HH.3) p21 (0) 6= 0, (HH.4) p22 (0) 6= 0, (HH.5) (p11p22 − p12p21) (0) 6= 0 .
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Several papers considered some non-generic cases, when at least one of the above
mentioned hypotheses is not satisfied. Thus, Tigan et al. analyzed the local dynamics
of system (1.1), with the assumption p12 (0) p22 (0) < 0, in two different cases (i)
p11 (0) p21 (0) 6= 0 [13] and (ii) either p11 (0) = 0 or p21 (0) = 0 [14]. In [10] the case
p12 (0) p22 (0) > 0 was treated when one of the hypotheses (HH.1) or (HH.3) is not
satisfied. In [9] the dynamics of system (1.1) was investigated when p12(0)p21(0) > 0,
and one of the hypotheses (HH.1) or (HH.4) is not fulfilled.

In this paper we finalize the study of the local dynamics of the system (1.1) in
the case when p12(0)p21(0) < 0 and one of the hypotheses (HH.1) or (HH.4) is not
satisfied. The first part of this study can be found in [4].

As p12(0)p21(0) < 0, assuming p12 (0) < 0 and p21 (0) > 0, the change of variables

ξ1 = −p12(µ)x, ξ2 = p21(µ)y

leaves D invariant and maps system (1.1) into{
dξ1
dt = ξ1

(
µ1 − θ(µ)ξ1 + γ(µ)ξ2 +N(µ)ξ2

1 −M(µ)ξ1ξ2 + L(µ)ξ2
2

)
,

dξ2
dt = ξ2

(
µ2 − 1

γ(µ)ξ1 + δ(µ)ξ2 +Q(µ)ξ2
1 − S(µ)ξ1ξ2 + P (µ)ξ2

2

)
.

(1.2)

Here the coefficients are given by θ(µ) = p11(µ)
p12(µ) , γ(µ) = p12(µ)

p21(µ) , N(µ) = p13(µ)
p212(µ)

, M(µ) =
p14(µ)

p12(µ)p21(µ) , L(µ) = p15(µ)
p221(µ)

, δ(µ) = p22(µ)
p21(µ) , Q (µ) = p23(µ)

p212(µ)
, S (µ) = p24(µ)

p21(µ)p12(µ) , and

P (µ) = p25
p221

(µ) .

As the coefficients are smooth functions of the µ ∈ Vε, in this study we use the
asymptotic expansions of these coefficients at µ = 0. Thus, one can write P (µ) =

P (0) + ∂P
∂µ1

(0)µ1 + ∂P
∂µ2

(0) + O
(
|µ|2

)
, and so on. Also, to simplify the wrinting, if

in an expression the argument of a coefficient is not explicit then it is assumed to be
its value in 0, that is θ = θ (0) , γ = γ (0) , δ = δ (0) , P = P (0) and so on.

Remark 1.1. 1) As p12(0)p21(0) < 0 it follows γ (0) < 0; we may consider ε such
that γ (µ) < 0 for µ ∈ Vε.

2) With these notations, condition (HH.1) is equivalent to θ (0) 6= 0, while condition
(HH.4) with δ (0) 6= 0.

The paper is organized as it follows. In Section 2 we analyze local dynamics and
bifurcations of system (1.2) in the non-generic case δ = 0 in Vε, and θ (0) 6= 0. We
found four different cases, determined by θ(0) and P , each of them equivalent to
one found in the nongeneric case in [4]. In Section 3 we investigate the non-generic
case δ (0) = 0, θ (0) 6= 0, i.e the hypotheses (HH.1) is valid and (HH.4) is not
satisfied. The existence of fold bifurcation of equilibria leads to new local phase
portraits nonequivalent to the ones obtained in Section 2 and in [4], or in [9] for the
case γ > 0. For each of the eight nonequivalent identified cases, detailed bifurcation
diagrams are given. In Section 4 we prove that the local dynamics in the non-generic
case δ (0) 6= 0, θ (0) = 0, i.e the hypotheses (HH.4) is valid and (HH.1) is not satisfied,
can obtained from the non-generic case δ (0) = 0, θ (0) 6= 0. Finally, some conclusions
are formulated.
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2. Local dynamics and bifurcation when δ ≡ 0, θ 6= 0

In this section we analyze local dynamics and bifurcations of system (1.2) in the
non-generic case δ = 0 for all µ ∈ Vε, and θ (0) 6= 0. Thus, the system (1.2) reads{

dξ1
dt = ξ1

(
µ1 − θ (µ) ξ1 + γ (µ) ξ2 +N (µ) ξ2

1 −M (µ) ξ1ξ2 + L (µ) ξ2
2

)
dξ2
dt = ξ2

(
µ2 − 1

γ(µ)ξ1 +Q (µ) ξ2
1 − S (µ) ξ1ξ2 + P (µ) ξ2

2

) . (2.1)

System (2.1) has the trivial equilibrium E0 = (0, 0) , and two other equilibria

E1 =
(
ξ̂1, 0

)
and E2 =

(
0, ξ̂2

)
, close to E0. The existence of these two equilibria is

ensured by the Implicit Function Theorem (IFT) applied to equations µ1 − θ(µ)ξ1 +
L(µ)ξ2

1 = 0, and µ2 + P (µ)ξ2
2 = 0, respectively. As θ(0) 6= 0, we find the solutions

ξ̂1 = 1
θµ1 (1 +O (|µ|)) , ξ̂2 =

√
− 1
P µ2 (1 +O (|µ|)) , close to 0, with |µ| sufficiently

small, in the hypothesis P (0) 6= 0.
The existence of a third equilibrium E3 = (ξ∗1 , ξ

∗
2) close to E0 for |µ| small is also

ensured by the IFT, applied to the system{
µ1 − θ (µ) ξ1 + γ (µ) ξ2 +N(µ)ξ2

1 −M(µ)ξ1ξ2 + L(µ)ξ2
2 = 0,

µ2 − 1
γ(µ)ξ1 +Q(µ)ξ2

1 − S(µ)ξ1ξ2 + P (µ)ξ2
2 = 0.

The coordinates of E3 are found as

ξ∗1 =

(
γµ2 +

Pµ2
1

γ

)
(1 +O (|µ|)) , ξ∗2 =

(
−µ1

γ
+ θµ2

)
(1 +O (|µ|)) .

The equilibrium E1 is in D only if θµ1 ≥ 0, E2 is in D if µ2P (0) ≤ 0, while E3 is
in D when the parameter (µ1, µ2) lies inside the region

R1 =

{
(µ1, µ2) , µ1 − θγµ2 < 0, γµ2 +

Pµ2
1

γ
> 0

}
. (2.2)

Denote by T1, T2 the parameter sets

T1 =
{

(µ1, µ2) , µ1 = θγµ2 +O
(
µ2

2

)
, µ2 < 0

}
, (2.3)

T2 =

{
(µ1, µ2) , µ2 = − P

γ2
µ2

1 +O
(
µ3

1

)
, µ1 > 0

}
, (2.4)

If (µ1, µ2) ∈ T1 then E3 collides with E1, while if (µ1, µ2) ∈ T2 then E3 collides
with E2. Note that only the lowest terms in (µ1, µ2) are used to describe the above
parameter sets.

The following results concerning the topological type of equilibria E0,E1, E2, E3

can be easily obtained.

Lemma 2.1. The trivial equlibrium point E0 is:
((i) a saddle if µ1µ2 < 0,
(ii) a repeller if µ1 > 0, µ2 > 0,
(iii) an attractor if µ1 < 0, µ2 < 0, or
(iv) nonhyperbolic of fold type if µ1 = 0 or µ2 = 0.

Lemma 2.2. For |µ| sufficiently small, whenever E1 lies in D, the equilibrium point
E1 is either:
(i) a saddle if θµ2 − 1

γµ1 > 0,
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(ii) a repeller if µ2 − 1
θγµ1 > 0, θ < 0,

(iii) a stable node if µ2 − 1
θγµ1 < 0, θ > 0, or

(iv) nonhyperbolic of fold type if µ1 = 0 or θγµ2 − µ1 = 0 (µ ∈ T1).

Lemma 2.3. For |µ| sufficiently small, if the equilibrium point E2 lies in D, then E2

is either:

(i) a saddle if
(
µ2 + P

γ2µ
2
1

)
P < 0,

(ii) a stable node if µ2 + P
γ2µ

2
1 < 0, P < 0,

(iii) a repeller node if µ2 + P
γ2µ

2
1 > 0, P > 0,or

(iv) nonhyperbolic of fold type if µ2 = 0 or µ2 + P
γ2µ

2
1 = 0.

The topological type of the nontrivial equilibrium E3 is established bellow.

Proposition 2.4. If the equilibrium point E3 is in D, then the following assertions
are true.
1) If µ ∈ R1, then E3 is

(i) an attractor, if either θ > 0, P < 0 or θ > 0, P > 0, µ2 <
P (2−θγ)
θγ3 µ2

1 +O
(
µ3

1

)
, or

θ < 0, P < 0, µ2 >
P (2−θγ)
θγ3 µ2

1 +O
(
µ3

1

)
;

(ii) a repeller if either θ < 0, P > 0 or θ > 0, P > 0, µ2 >
P (2−θγ)
θγ3 µ2

1 + O
(
µ3

1

)
, or

θ < 0, P < 0, µ2 <
P (2−θγ)
θγ3 µ2

1 +O
(
µ3

1

)
;

(iii) nohyperbolic of Hopf type if µ2 = P (2−θγ)
θγ3 µ2

1 +O
(
µ3

1

)
. .

2) If µ ∈ T1 ∪ T2, then E3 is a nonhyperbolic equilibrium of fold type.

Proof. First, note that E3 collides with E1 on T1, respectively, with E2 on T2, for |µ|
small, hence 2) is proved.

The eigenvalues λ1,2 of E3 satisfy the relations

λ1λ2 = ξ∗1ξ
∗
2 (1 +O(|µ|)) ,

λ1 + λ2 =

[
−θ
(
γµ2 +

P
γ
µ2

1

)
+

2P

γ
µ2

1

]
(1 +O(|µ|)) .

As λ1λ2 > 0 in region R1, E3 cannot be a saddle.
Denote p(µ) = λ1+λ2 and H = {(µ1, µ2) , p(µ) = 0} . Applying IFT to the equation

p (µ) = 0, it follows

H =

{
(µ1, µ2) , µ2 =

P (2− θγ)

θγ3
µ2

1 +O
(
µ3

1

)}
.

This curve intersect region R1, iff Pθ > 0, while R1 ∩ H = ∅ if Pθ < 0. Thus, the
topological type of E3 does not change for µ ∈ R1 if Pθ < 0. Namely, E3 is an
attractor if θ > 0, P < 0 and a repeller if θ < 0, P > 0.

If P > 0, θ > 0 and µ ∈ R1, the p(µ) < 0 for µ2 < P (2−θγ)
θγ3 µ2

1 + O
(
µ3

1

)
, and

p(µ) > 0 for µ2 >
P (2−θγ)
θγ3 µ2

1 +O
(
µ3

1

)
.

If P < 0, θ < 0 and µ ∈ R1, then p(µ) < 0 for µ2 > P (2−θγ)
θγ3 µ2

1 + O
(
µ3

1

)
, and

p(µ) > 0 for µ2 <
P (2−θγ)
θγ3 µ2

1 +O
(
µ3

1

)
.

As E3 is an attractor if p(µ) < 0 and a repeller if p(µ) > 0, the results are
proved. �
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Denote by

X+ = {(µ1, µ2) , µ2 = 0, µ1 > 0} , X− = {(µ1, µ2) , µ2 = 0, µ1 < 0} ,

Y+ = {(µ1, µ2) , µ1 = 0, µ2 > 0} , Y− = {(µ1, µ2) , µ1 = 0, µ2 < 0} ,
the four semiaxes of the (µ1, µ2) parameter plane.

Proposition 2.5. The following transcritical bifurcations occur for system (2.1):
(i) at the point E0 as the parameter crosses the curves Y+ or Y− (when E0 = E1);
(ii) at the point E0 as the parameter crosses the curves X+ or X− (when E0 = E2);
(iii) at the point E1 as the parameter (µ1, µ2) crosses the curve T1 (when E1 = E3);
(iv) at the point E2 as the parameter (µ1, µ2) crosses the curve T2 (when E2 = E3).

Proof. These statements are easily obtained by applying a Sotomayor Theorem ([11],
p. 338). �

The above results determine four different cases with respect to θ and P , namely:
C1: θ > 0, P > 0; C2: θ < 0, P > 0; C3: θ < 0, P < 0; C4: θ > 0, P < 0.

For each case, in the parametric portraits in the (µ1, µ2)- plane, the parameter
strata are determined by the origin and the bifurcation curves X−, X+, Y−, Y+, T1,
T2, and H. From Proposition 2.4 it follows that system (2.1) may exhibit a Hopf
bifurcation only in the hypothesis Pθ > 0, thus the curve H is present only in cases
C1 and C3.

Gathering all of the above information, we can formulate the following.

Theorem 2.6. For all γ < 0, and θ, P in cases C2 and C4, the parameter portraits
in the (µ1, µ2)− plane consist of

O ∪ T1 ∪ T2 ∪X− ∪X+ ∪ Y− ∪ Y+.

In addition, the parameter portraits and the corresponding generic phase portraits
for case C2 are equivalent to the ones in case A4 obtained in part I of the study in
[4], while those for case C4 to the ones in the case A3 in [4].

For cases C1 and C3, a Hopf bifurcation occurs when parameters cross H, if the
first Lyapunov coefficient is nonzero. As the parameters move away from H, the limit
cycle born through this bifurcation may disappear, either through saddle homoclinic
bifurcation for parameters on a curve L, originating at µ = 0, or it may exit the
visible neighborhood of origin in D. The same phenomenon was also encountered in
[4]. As a consequence, we can formulate the following result.

Theorem 2.7. For all γ < 0, and θ, P in cases C1 and C3, the parameter portrait
consists of

O ∪ T1 ∪ T2 ∪X− ∪X+ ∪ Y− ∪ Y+ ∪H ∪ L.

The parameter portraits and the corresponding generic phase portraits for case C1

are equivalent to the ones in case A5 obtained in part I of the study in [4], while those
for case C3 to the ones in the case A6(iii) in [4].

3. Local dynamics and bifurcation when θ (0) 6= 0 and δ (0) = 0

In this section we analyze local dynamics and bifurcations of system (1.2) in the non-
generic case δ(0) = 0 and θ (0) 6= 0. As δ (0) = 0, near the value (µ1, µ2) = 0, the
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asympthotic expansion of δ as a function of µ reads: δ(µ) = δ1µ1 + δ2µ2 +O
(
|µ|2

)
,

where δ1 = ∂δ
∂µ1

(0) , δ2 = ∂δ
∂µ2

(0) , thus system (1.2) has the form
dξ1
dt = ξ1

(
µ1 − θ(µ)ξ1 + γ (µ) ξ2 +N (µ) ξ2

1 −M(µ)ξ1ξ2 + L(µ)ξ2
2

)
dξ2
dt = ξ2

(
µ2 − 1

γ(µ)ξ1 +
(
δ1µ1 + δ2µ2 +O

(
|µ|2

))
ξ2

+Q(µ)ξ2
1 − S (µ) ξ1ξ2 + P (µ) ξ2

2

) . (3.1)

where, θ = θ (0) 6= 0, γ = γ (0) < 0, and so on.
System (3.1) has the equilibria E0 = (0, 0) , E1 =

(
1
θµ1(1 +O(|µ|), 0

)
, as in the

case θδ 6= 0 in part I [4]. In contrast to the θδ 6= 0 case, system (3.1) may possess
at most two equilibria on the Oξ2 axis, both close to E0 for small |µ|, namely E21 =
(0, ξ21) , E22 = (0, ξ22) , where

ξ21 =
− (δ1µ1 + δ2µ2)−

√
∆ (µ)

2P
, ξ22 =

− (δ1µ1 + δ2µ2) +
√

∆ (µ)

2P
, with ξ21 ≤ ξ22,

if P 6= 0, and ∆ (µ) = (δ1µ1 +δ2µ2)2−4Pµ2 ≥ 0. As ∆ (µ) < 0, there are no equilibria
on the Oξ2 axis.

Both equilibria E21, E22 are in D, for |µ| sufficiently small, in the region

R21 = {(µ1, µ2) ∈ Vε |∆ (µ) > 0, δ1µ1P < 0, µ2P > 0} ,

while only E22 is in D for parameters in

R22 = {(µ1, µ2) ∈ Vε |∆ (µ) > 0, µ2P < 0} .

Obviously, as ∆ (µ) = 0, we have ξ21 = ξ22.

Remark 3.1. As µ1 = 0, we have E21 = E0 if µ2P > 0, while E22 = E0 if µ2P < 0.

System (3.1) possesses also the equilibrium E3 = (ξ∗1 , ξ
∗
2) , close to the origin O for

|µ| small, with

ξ∗1 =

(
γµ2 +

P − δ1γ
γ

µ2
1

)
(1 +O(|µ|), ξ∗2 =

−µ1 + θγµ2

γ
(1 +O(|µ|),

obtained using the Implicit Functions Theorem applied to the system{
µ1 − θξ1 + γξ2 + Lξ2

2 −Mξ1ξ2 +Nξ2
1 = 0,

µ2 − 1
γ ξ1 + (δ1µ1 + δ2µ2 +O

(
|µ|2

)
)ξ2 +Qξ2

1 − Sξ1ξ2 + Pξ2
2 = 0.

(3.2)

The equilibrium E3 is in D when the parameter (µ1, µ2) lies inside the region

R3 =

{
(µ1, µ2) , µ1 − θγµ2 > 0, γµ2 +

P − δ1γ
γ

µ2
1 > 0

}
(3.3)

This equilibrium exits D when (µ1, µ2) crosses the bifurcation curves

T1 =
{

(µ1, µ2) , µ1 = θγµ2 +O
(
µ2

2

)
, µ2 < 0

}
(3.4)

or

T3 =

{
(µ1, µ2) , µ2 =

δ1γ − P
γ2

µ2
1 +O

(
µ2

1

)
, µ1 > 0

}
. (3.5)

Remark 3.2. Note that E3 collides with E1 for parameters in T1, respectively, with
E21 or E22 for parameters in T3.
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The topological type of equilibria E0 and E1 are the same as in the case δ ≡ 0,
given in Lemmas 2.1, 2.2.

Lemma 3.1. Assume P > 0 and ∆ > 0. For |µ| sufficiently small, the following hold:

(i) E21 and E22 are saddles if µ2 <
δ1γ−P
γ2 µ2

1;

(ii) E21 is a saddle, and E22 is a repeller if µ2 >
δ1γ−P
γ2 µ2

1 and (2P − δ1γ)µ1 > 0;

(iii) E21 is an attractor, and E22 is a saddle if µ2 >
δ1γ−P
γ2 µ2

1 and (2P − δ1γ)µ1 < 0.

Proof. The eigenvalues of E21 are λE21
1 = −ξ21

√
∆ < 0, and λE21

2 = Lξ2
21 + γξ21 +µ1,

while for E22 we have λE22
1 = ξ22

√
∆ > 0, and λE22

2 = Lξ2
22 + γξ22 + µ1. Taking into

account that

λE21
2 λE22

2 =
γ2

P

(
µ2 −

δ1γ − P
γ2

µ2
1

)
,

if µ ∈ T3, there are two cases:

(i) if (2P − δ1γ)µ1 > 0, then E3 = E22 =
(

0,−µ1

γ

)
, with λE22

2 = 0, and E21 =(
0,− δ1γ−Pγ2 µ2

1

)
is a saddle node;

(ii) if (2P − δ1γ)µ1 < 0, then E3 = E21 =
(

0,−µ1

γ

)
, with λE21

2 = 0, and E22 =(
0,− δ1γ−Pγ2 µ2

1

)
is a saddle node;

As λE21
2 λE22

2 = 0 iff µ ∈ T3, the eigenvalues λE21
2 , λE22

2 do not change the sign if µ
is outside T3. Consequently, the results. �

For |µ| sufficiently small, denote by

∆+ =

{
(µ1, µ2) , µ2 =

δ2
1

4P
µ2

1, (2P − δ1γ)µ1 > 0

}
,

∆− =

{
(µ1, µ2) , µ2 =

δ2
1

4P
µ2

1, (2P − δ1γ)µ1 < 0

}
.

the parameter strata where ∆(µ) = 0.

Proposition 3.2. Assume P > 0. As the parameter µ crosses ∆+ or ∆− a saddle-
node bifurcation takes place, involving equilibria E21 and E22.

Proof. Consider µ0 ∈ ∆+ ∪ ∆−. Then ξ21 = ξ22, and the eigenvalues of equilib-

rium E11 are λ1 = 0, λ2 = 2P−δ1γ
2P µ1. The Jacobian matrix Df(E21, µ0), has for

the zero eigenvalue the right eigenvector v = (0, 1)
T

and the left eigenvector w =

(δ1, γ(δ1γ − 2P ))
T

, in its lowest terms. It follows

wT fµ2
(E21, µ0) = −δ1µ1γ(δ1γ − 2P )

2P
(1 +O (|µ|)) 6= 0,

wT [D2f(E21, µ0)(v, v)] = −δ1µ1γ(δ1γ − 2P ) (1 +O (|µ|)) 6= 0,

for sufficiently small ‖µ‖ . Thus, according to Sotomayor Theorem, a saddle-node
bifurcation takes place. �

The topological type of the nontrivial equilibrium E3 is established bellow.



568 M. STERPU AND R. EFREM

Proposition 3.3. Assume E3 is in D. The following assertions are true.
(i) If θ > 0, δ1γ − 2P > 0 then E3 is an attractor;
(ii) If θ < 0, δ1γ − 2P < 0 then E3 is a repellor;

(iii) If θ > 0, δ1γ − 2P < 0 then E3 is an attractor as µ2 <
θγ(δ1γ−P )−(δ1γ−2P )

θγ3 µ2
1

and a repellor as µ2 >
θγ(δ1γ−P )−(δ1γ−2P )

θγ3 µ2
1 ;

(iv) If θ < 0, δ1γ − 2P > 0 then E3 is an attractor as µ2 >
θγ(δ1γ−P )−(δ1γ−2P )

θγ3 µ2
1

and a repellor as µ2 <
θγ(δ1γ−P )−(δ1γ−2P )

θγ3 µ2
1;

(v) If µ2 = θγ(δ1γ−P )−(δ1γ−2P )
θγ3 µ2

1 then E3 is a a nonhyperbolic equilibrium of Hopf
type.

Proof. The eigenvalues λ1,2 of E3 satisfy the relations

λ1λ2 = ξ∗1ξ
∗
2 (1 +O(|µ|)) ,

λ1 + λ2 = −θξ∗1 − (δ1γ − 2P ) (ξ∗2)
2

+O(‖µ‖2)

=

(
−γθµ2 +

θγ (δ1γ − P )− (δ1γ − 2P )

γ2
µ2

1

)
(1 +O(|µ|)) .

Denote by p (µ) = λ1 + λ2, for small |µ|, and by H1 = {(µ1, µ2) , p (µ) = 0}. Using
IFT applied to the equation p(µ1, µ2) = 0, it follows

H1 =

{
(µ1, µ2) , µ2 =

θγ (δ1γ − P )− (δ1γ − 2P )

θγ3
µ2

1 +O
(
µ2

1

)}
(3.6)

provided that θγ 6= 0. This curve intersect region R3 only if θ(δ1γ − 2P ) < 0. It is
easy to see that p(µ) < 0 if θ > 0, δ1γ − 2P > 0 (thus E3 is an attractor) and that
p(µ) > 0 if θ < 0, δ1γ − 2P < 0 (thus, E3 is a repellor).

As θ(δ1γ − 2P ) > 0, the topological type of the equilibrium E3 does not change
for parameters inside region R3; thus, E3 is an attractor if θ > 0, δ1γ − 2P > 0; and
E3 is a repellor if θ < 0, δ1γ − 2P < 0. �

Several transcritical bifurcations take place when two equilibria collide.

Proposition 3.4. The following transcritical bifurcations occur for system (3.1):
(i) at the point E0 as the parameter crosses the curves Y+ or Y− (when E0 = E1);
(ii) at the point E0 as the parameter crosses the curves X+ (when E0 = E22) or X−
(when E0 = E21);
(iii) at the point E1 as the parameter (µ1, µ2) crosses the curve T1 (when E1 = E3);
(iv) at the point E22 as the parameter (µ1, µ2) crosses the curve T3 (when E3 = E22),

if, in addition ∂γ
∂µ2
6= 0.

Proof. A Sotomayor Theorem ([11], p. 338) is used in order to prove these statements.
(i) The Jacobian matrix Df(E0, µ0) at µ0 = (0, µ2) , µ2 6= 0, has a zero eigenvalue

with the right eigenvector v = (1, 0)
T

and the left eigenvector w = (1, 0)
T
. It follows

wT fµ1
(E0, µ0) = 0, wTDfµ1

(E0, µ0) = 1 6= 0, wT [D2f(E0, µ0)(v, v)] = −2θ 6= 0,

thus the transcritical bifurcation conditions are satisfied.
(ii) The Jacobian matrix Df(E0, µ0) at µ0 = (µ1, 0) , µ1 6= 0, has a zero eigenvalue

with the right eigenvector v = (0, 1)
T

and the left eigenvector w = (0, 1)
T
. It follows

wT fµ2
(E0, µ0) = 0, wTDfµ2

(E0, µ0) = 1 6= 0, wT [D2f(E0, µ0)(v, v)] = 2δ1µ1 6= 0,
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ensuring the existence of a transcritical bifurcation.
(iii) Consider µ0 = (µ1, µ2) ∈ T1, µ1 6= 0, and µ2 as a bifurcation parameter,

µ0 =
(
µ1,

µ1

θγ

)
. Then v = (γ, θ)T , in its lowest terms, and w = (0, 1)T are right and

left eigenvectors of the Jacobian matrix Df(E1, µ0), respectively, corresponding to
the zero eigenvalue, and

wT fµ2
(E1, µ0) = 0, wTDfµ2

(E1, µ0) = θ +O (µ1) 6= 0,

wT [D2f(E1, µ0)(v, v)] = −2θ +O (µ1) 6= 0,

consequently, for sufficiently small |µ| , the conditions are satisfied.
(iv) Finally, consider µ0 = (µ1, µ2) ∈ T3, µ1 6= 0, and µ2 as a bifurcation parameter,

thus µ0 = (µ1,
δ1γ−P
γ2 µ2

1 + O
(
µ2

1

)
). We find the eigenvectors v = ((δ1γ − 2P )µ1, 1)T ,

in its lowest terms, and w = (1, 0)T , and

wT fµ2
(E3, µ0) = 0, wTDfµ2

(E3, µ0) = − ∂γ

∂µ2

(δ1γ − 2P )

γ
µ2

1 +O(µ3
1) 6= 0,

wT [D2f(E3, µ0)(v, v)] = 2γ(δ1γ − 2P )µ1 +O(µ2
1) 6= 0,

for sufficiently small |µ|. �

From Proposition 3.3 it follows that system (3.1) may exhibit a Hopf bifurcation
only in the hypothesis θ(δ1γ − 2P ) < 0.

Theorem 3.5. For all γ < 0, and θ(δ1γ−2P ) < 0, a nondegenerated Hopf bifurcation
takes place at E3, when the parameters (µ1, µ2) transversally cross the curve H1, for
sufficiently small |µ| , if the the following condition is satisfied:

V (µ) := µ1 (5P + L− δ1γ − γθ(δ1γ − 2P )(1 + γθ)) 6= 0, (3.7)

for µ ∈ H1. In addition,
1) if V (µ) < 0 for µ ∈ H1, then the Hopf bifurcation is supercritical;
2) if V (µ) > 0 for µ ∈ H1, then the Hopf bifurcation is subcritical.

Proof. To simplify the computation, we chose to cross curve H1 in the direction of
the Oµ2 axis, thus µ1 6= 0, is fixed, and µ2 is the bifurcation parameter. Similar
computations can be performed for other transversal directions.

The first condition for the Hopf bifurcation is satisfied, as
Re(λ1)
dµ2 |H1

= − θγ2 (1 +O (µ1)) 6= 0, for sufficiently small |µ|. Applying the usual

algorithm to compute the Lyapunov coefficient L1 (see [6]), we obtain sign(L1(µ)) =
sign(V (µ)), for µ in H1, hence the result follows from the Andronov-Hopf Theo-
rem. �

We may now combine all the above results in order to derive the bifurcation dia-
grams.

For a fixed γ < 0, and P > 0, the curves δ1γ − 2P = 0, δ1γ −P = 0, θ = 0, δ1 = 0,
determine eight regions in the (θ, δ1)− plane, corresponding to the following cases:
B1: θ > 0, δ1 > 0;
B2: δ1γ − P < 0, θ > 0, δ1 < 0;
B3: δ1γ − P > 0, δ1γ − 2P < 0, θ > 0, δ1 < 0;
B4: δ1γ − 2P > 0, θ > 0, δ1 < 0;
B5: θ < 0, δ1 > 0;
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B6: δ1γ − P < 0, θ < 0, δ1 < 0;
B7: δ1γ − P > 0, δ1γ − 2P < 0, θ < 0, δ1 < 0;
B8: δ1γ − 2P > 0, θ < 0, δ1 < 0;

� �

�1

��

��

��

��

��

��

��

��

Figure 1. Eight regions in the (θ, δ1) plane, γ < 0, for system(3.1).

For each region (see Fig. 1), in the parametric portraits in the (µ1, µ2)- plane, the
parameter strata are determined by the origin and the bifurcation curves X−, X+,
Y−, Y+, T1, T2, and H1. As a consequence of Proposition 3.3, the curve H1 is present
only in regions B1, B2, B3 and B8.

Theorem 3.6. For all γ < 0, and θ, δ, θ(δ1γ − 2P ) > 0 (in regions B4, B5, B6, B7

of the (θ, δ1)− plane), the parameter portraits consist of

O ∪ T1 ∪ T3 ∪X− ∪X+ ∪ Y− ∪ Y+.

The four parameter portraits and the corresponding generic phase portraits are shown
in Fig. 2, 3, 4, 5.

Remark 3.3. In regions B1, B2, B3, and B8 a Hopf bifurcation occurs when pa-
rameter cross H1 and the first Lyapunov coefficient is nonzero. As well as in the
nondegenerate case in [4], as the parameters move away from H1, the limit cycle
born through this bifurcation may encounter a saddle equilibrium, transforming into
a homoclinic loop, or it may exist the visible neighborhood of origin in D, thus it dis-
appears. In such cases there should exist o bifurcation curve L originating at µ = 0,
along which system (3.1) exhibits either a saddle homoclinic bifurcation or the limit
cycle ”blows up”.

The following result is obtained.

Theorem 3.7. For all γ < 0, and θ, δ, with θ(δ1γ− 2P ) < 0 (in regions B1, B2, B3,
and B8 of the (θ, δ1)− plane), the parameter portrait consists of

O ∪ T1 ∪ T3 ∪X− ∪X+ ∪ Y− ∪ Y+ ∪H1 ∪ L.
The parameter portraits and the generic phase portraits are shown in Fig. 6, 7, 8, 9.

Remark that in cases B1 and B2 we found only one possible position for the Hopf
bifurcation curve. Fig. 6, 7 we represented both cases when the Hopf bifurcation is
supercrirical or subcritical. In cases B3 and B8 (fig. 8, 9) only the situations when
the Hopf bifurcation is subcritical are considered. We found two different positions
for the curve H1, in each of the cases B3 and B8, represented in Fig. 8, 9.
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Figure 2. Parametric portrait and generic phase portraits in the
case γ < 0, region B4.
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Figure 3. Parametric portrait and generic phase portraits in the
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Figure 4. Parametric portrait and generic phase portraits in the
case γ < 0, region B6.
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Figure 5. Parametric portrait and generic phase portraits in the
case γ < 0, region B7.

4. Analysis of the system when θ (0) = 0 and δ (0) 6= 0

The local dynamics and bifurcation of system (1.2) in the non-generic case θ (0) = 0,
δ (0) 6= 0 can be obtained from the ones in the case θ (0) 6= 0, δ (0) = 0, studied in
Sections 2, 3. Indeed, by performing the changes of variables y2 = ξ1, y1 = ξ2, and by
reversing the time τ = −t, system (1.2) transforms into{

dy1
dτ = y1

(
−µ2 − δ(µ)y1 + 1

γ(µ)y2 − P (µ)y2
1 + S(µ)y1y2 −Q(µ)y2

2

)
dy2
dτ = y2

(
−µ1 − γ(µ)y1 + θ(µ)y2 − L(µ)y2

1 +M(µ)y1y2 −N(µ)y2
2

) . (4.1)
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Figure 6. Parametric portrait and generic phase portraits in the
case γ < 0, region B1: (i) L1 < 0, (ii) L1 > 0.

Next, by changing the parameters µ̄1 = −µ2, µ̄2 = −µ1, and denoting θ̄ = δ, δ̄ = θ,
γ̄ = 1

γ , N̄ = −P, M̄ = −S, L̄ = −Q, Q̄ = −L, S̄ = −M, P̄ = −N, system (4.1) reads{
dy1
dτ = y1

(
µ̄1 − θ̄ (µ̄) y1 + γ̄ (µ̄) y2 + N̄ (µ̄) y2

1 − M̄ (µ̄) y1y2 + L̄ (µ̄) y2
2

)
,

dy2
dτ = y2

(
µ̄2 − 1

γ̄(µ̄)y1 + δ̄ (µ̄) y2 + Q̄ (µ̄) y2
1 − S̄ (µ̄) y1y2 + P̄ (µ̄) y2

2

)
,

(4.2)

and it is obviously equivalent with (1.2).
The hypotheses θ (0) = 0, δ (0) 6= 0 for system (1.2) lead to the hypotheses δ̄ (0) =

0, θ̄ (0) 6= 0 for system (4.2). Note that in this case the coefficient N plays an
important role in describing the local dynamics (1.2).

5. Conclusions

In this paper we studied local dynamics and bifurcation for the cubic Kolmogorov
system (1.1), with coefficients depending on two parameters, in the hypothesis p12(0) ·
p21(0) < 0. This study completes the one done in [9], where the case p12(0)·p21(0) > 0
was investigated. Compared to the situation treated in [9] (called ”the simple case”),
we have obtained similar dynamics for certain parameter strata, but also bifurcations
that are not present in the simple case. Such bifurcations arose mainly due to the
presence of Hopf singularities. Two non-generic cases were analyzed for the equivalent
system (1.2), corresponding to the situation when the hypothesis (HH.4): p22(0) 6= 0
is not satisfied. In both cases the coefficient P plays a significant role, compared to
the non-generic case treated in the first part of the study in [4]. The non-generic
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Figure 9. Parametric portrait and generic phase portraits in the
case γ < 0, region B8.

case for system (1.2), corresponding to the situation when the hypothesis (HH.1):
p11(0) 6= 0 is not satisfied, is reduced to the case when (HH.4) is not satisfied by using
appropriate changes of variables, parameters and by reversing the time. In this case
the coefficient N plays a significant role.

For the case δ ≡ 0, θ(0) 6= 0, we found four different situations, determined by the
signatures of θ and P , each of them equivalent to one found in the generic case in [4].
For the case δ (0) = 0, θ (0) 6= 0, there where found eight nonequivalent situations,
also determined by θ and P , that were not found in the generic case [4], or in [9] for
the case γ > 0.

System (1.1) also appears as the truncated 2D amplitude system in the double Hopf
bifurcation [3], [6]. This paper completes the study of the double Hopf bifurcation
with the non-generic case when one of the conditions (HH.1) or (HH.4) is not fulfilled.
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