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A New Sequence Related to the Constant e
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Abstract. The aim of this work is to introduce a new sequence related to the constant e.
Some properties of this sequence are given.
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1. Introduction

In mathematics, certain constants stand out due to their fundamental importance
and pervasive presence across various fields. Among these, the number e = 2.71828...
holds a distinguished position. Often referred to as Euler’s number, after the Swiss
mathematician Leonhard Euler (1707-1783), e is a transcendental number that arises
naturally in the context of growth and decay processes, complex analysis, and calculus.

It was first defined in connection with the problem of compound interest, where it
arises naturally as the limit of a particular sequence.

The first formula defining e can be expressed as:

e = lim
n→∞

(
1 +

1

n

)n

.

Ever since, other approximating sequences were introduced and we mention here the
family

en (a) =

(
1 +

1

n

)n+a

, n ≥ 1,

where a ∈ [0, 1] is a real parameter. Note that (en (a))n≥1 is increasing, or decreasing,

as a ∈ [0, 1/2] , or a ∈ (1/2, 1], respectively.
The number e can be written in terms of logarithmic mean:

L (x, y) =
x− y

lnx− ln y
, x > y > 0,

namely:

e =

(
1 +

1

n

)L(n,n+1)

.

We define in this work a new sequence (an)n≥1 by the formula:(
1 +

an
n

)an

= e, n ≥ 1.
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We prove that such a sequence does uniquely exist and we establish some of its
properties. Note that if we replace an by

√
n, we obtain the sequence:(

1 +

√
n

n

)√n

=

(
1 +

1√
n

)√n

,

that converges to e. This remark anticipates our result according to which the sequence
(an)n≥1 has the order

√
n, as n tends to infinity.

2. The results

Let us consider the relation: (
1 +

an
n

)an

= e, n ≥ 1. (1)

We show that for every integer n ≥ 1, there exist an > 0 such that (1) holds true.
First we pass to a continuous variable, to prove the following:

Theorem 2.1. There exists a function f : (0,∞) → (0,∞) such that for every
x ∈ (0,∞) , we have: (

1 +
f (x)

x

)f(x)

= e. (2)

Proof. By taking the logarithm, we deduce:

f (x) ln

(
1 +

f (x)

x

)
= 1,

then

ln

(
1 +

f (x)

x

)
=

1

f (x)
.

Further,
f (x)

x
= e

1
f(x) − 1,

or
f (x)

e
1

f(x) − 1
= x. (3)

Now let us introduce the function g : (0,∞)→ (0,∞) , by the formula:

g (x) =
x

e
1
x − 1

, x ∈ (0,∞) . (4)

We have:

g (x) =
1

h
(
1
x

) , (5)

where h (x) = x (ex − 1) , x ∈ (0,∞) . But h′ (x) = xex + (ex − 1) > 0, so h is strictly
increasing. It follows by (5) that g is strictly increasing, too. Moreover, g is inversable,
with an increasing inverse g−1, since limx→0+ g (x) = 0 and limx→∞ g (x) =∞.
Now, (3) can be rewritten as:

g (f (x)) = x.

We deduce that:

f (x) = g−1 (x) ,
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so the requested function f satisfying (2) is the function g−1. The proof is completed.
�

As a direct consequence, we give the following:

Theorem 2.2. There exists a strictly increasing sequence (an)n≥1 such that the equal-

ity (1) holds true, for every n ∈ N∗.

Proof. By taking x = n ∈ N∗ in (2), we obtain the sequence an = f (n) satisfying (1).
As g is strictly increasing, so it is its inverse f. Thus f (n) < f (n+ 1) , for every
integer n ≥ 1, that is an < an+1. �

Next we concentrate to evaluate the size of the function f and consequently, of the
sequence (an)n≥1 . To do this, we study the function g.

If we look carefully at (4), we see that g is closely related to the generating series
of Bernoulli’s numbers Bn, n ∈ N. These numbers are defined by the relation:

t

et − 1
=

∞∑
n=0

Bn
tn

n!
, |t| < 2π. (6)

The first few Bernoulli’s numbers are B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30,
B6 = 1/42, ..., while B2k+1 = 0, for every integer k ≥ 1. For further properties, please
see [1, p. 804].

By replacing t by 1/x in (6), we get:

1
x

e
1
x − 1

=

∞∑
n=0

Bn

n!xn
,

then, by multiplying by x2, we get

g (x) =

∞∑
n=0

Bn

n!xn−2
.

The first few terms of this series are:

g (x) = x2 − 1

2
x+

1

12
− 1

720x2
+

1

30 240x4
− 1

1209 600x6
+ ... . (7)

In general, by truncation of series (6), under- and upper-approximations for t/ (et − 1)
are obtained. This fact and (7) motivates us to give the following:

Theorem 2.3. The following inequalities hold true, for every x > 1/2:

x2 − 1

2
x < g (x) < x2 − 1

2
x+

1

12
. (8)

Proof. First, let us replace x by 1/x :

1

x2
− 1

2x
<

1

x (ex − 1)
<

1

x2
− 1

2x
+

1

12

(from now we have 0 < x < 2). We equivalently have:

1

x
(

1
x2 − 1

2x + 1
12

) < ex − 1 <
1

x
(

1
x2 − 1

2x

) ,
or

1 +
1

x
(

1
x2 − 1

2x + 1
12

) < ex < 1 +
1

x
(

1
x2 − 1

2x

) .
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By taking the logarithm, we obtain:

ln

(
1 +

1

x
(

1
x2 − 1

2x + 1
12

)) < x < ln

(
1 +

1

x
(

1
x2 − 1

2x

)) .
Hence we have to prove that u (x) > 0 and v (x) < 0, x ∈ (0, 2) , where:

u (x) = x− ln

(
1 +

1

x
(

1
x2 − 1

2x + 1
12

))
and

v (x) = x− ln

(
1 +

1

x
(

1
x2 − 1

2x

)) .
We have:

u′ (x) =
x4

(x2 − 6x+ 12) (x2 + 6x+ 12)
> 0

and

v′ (x) = − x2

4− x2
< 0.

It follows that u is strictly increasing, while v is strictly decreasing on (0, 2) . As
limx→0+ u (x) = limx→0+ v (x) = 0, it results that u > 0 and v < 0, on (0, 2) . The
proof is completed. �

Now, we use the monotonicity of g (and g−1 = f). By applying g−1 = f in (8), we
obtain:

f

(
x2 − 1

2
x

)
< x < f

(
x2 − 1

2
x+

1

12

)
. (9)

By replacing x by 1
4 +

√
x+ 1

16 (the inverse function of x 7→ x2− 1
2x) in the left-hand

side inequality (9), we get:

f (x) <
1

4
+

√
x+

1

16
.

Analogously, by replacing x by 1
4 +
√
x− 3

144 (the inverse function of x 7→ x2− 1
2x+ 1

12 )

in the right-hand side inequality (9), we get:

f (x) >
1

4
+

√
x− 3

144
.

We obtained the following:

Theorem 2.4. For every x > 1/2, we have:

1

4
+

√
x− 3

144
< f (x) <

1

4
+

√
x+

1

16
.

Now, we can give the following estimate for the sequence (an)n≥1 :

Theorem 2.5. There exists an unique sequence (an)n≥1 ⊂ (0,∞) such that for every
integer n ≥ 1, we have: (

1 +
an
n

)an

= e.
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Moreover, (an)n≥1 is strictly increasing and

1

4
+

√
n− 3

144
< an <

1

4
+

√
n+

1

16
, n ≥ 1.

Finally, the sequence (an)n≥1 is of the form:

an =
1

4
+
√
n+ θn,

where (θn)n≥1 converges to zero.
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