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Entropy solutions of a stationary problem associated to a
nonlinear parabolic strongly degenerate problem in one space
dimension

STANISLAS OUARO

ABSTRACT. We study a nonlinear elliptic degenerate equation with the form: b(u)—a(u, p(u)z)z =
f which is associated to the elliptic-parabolic-hyperbolic equation of the form: b(u)i—a(u, p(u)g)z =
f. We prove in this work without Alt and Luckhaus structure condition(1983) existence and
uniqueness of entropy solutions of the associated Dirichlet problem. We also define an operator
associated to the evolution problem and prove some useful properties of this operator .
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1. Introduction and notations

We consider the Dirichlet problem

b(u) —a(u,p(u)z), =f in I
(SP)
u=20 onI' =01,

associated to the Cauchy-Dirichlet problem:
b(u): — a(u,o(u)z)e = f in Q=]0,T[xI
(CP) b(u)(0,.) = vg on [
u=0 on I' =]0, T[x 01

with 7" > 0 and [ is an open bounded interval of R,
where

a:(z,€) € R x R—IRR is continuous, nondecreasing in £ € IR with a(0,0) = 0;
b: R—IR is continuous, nondecreasing and b surjective with b(0) = 0;
¢ : R—IR is continuous, nondecreasing with ¢(0) = 0;

and
feL>®(Q),vy € L®(I).
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SECOND ORDER ELLIPTIC-PARABOLIC EQUATION 109

We define the operators H+, Hy and H, by:

1if »>0
1 ifr>0
Hy(r) = s HT(r)=1¢ [0,1] ifr =0
0 otherwise
0if r <0,

rt
and H¢(r) = min(—,1).
€

Let v be a maximal monotone operator defined on IR. We recall the definition of

the main section g of ~.

the element of minimal absolute value of y(s) if v(s) # ()
Yo(s) =4 4ooif [s,+00) N D(y) =10

—o0 if (—o0, 8] N D(y) = 0.
H(k) = a(k,0) for k € R, h = a(u, p(u)g).

Whenever u takes a value such that b(u) is constant, (CP) degenerates into an elliptic
problem of the form:

_a(u7 @(u)w)w = f in Q :]O,T[XI
(CP) g b(u)(0,.) = vo on [
u=0 on I =0, T[x1.

Take b = id, on each part where u takes a value such that ¢(u) is constant, (CP)
degenerates to a scalar conservation law of the form:

up —a(u,0), = f in Q =]0, T[xI
(CPy) u(0,.) = ug on [

u=0 on I =]0, T[x 1.

It is clear that we include in (CP), some first order hyperbolic problems, for which
( even under assumptions of regularity on data) there is no hope of getting classical
global solutions.

Elliptic-parabolic-hyperbolic problems arise as a model in many applications, for ex-
ample as a model of flow through porous media (cf. [Bj], [DT]).

There already exist a vast literature on problems of this type. Several authors
have studied the degenerate parabolic equation of the type we consider here (see
e.g [AGW],[AL], [AW], [BT], [BW], [Ca], [CW], [DT], [Of],[OT}], [OT%], ...). Some
of these authors proved existence and uniqueness of weak solutions of the Dirichlet
boundary value problems under various additionnal conditions. Among these results,
the pioneering work of Alt and Luckhaus [AL] established existence and uniqueness
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of weak solutions under some energy condition provided u; € L'(Q) and under some
structure condition on the vector field a:
b(r) =b(s) = a(r,&) = a(s,§) forall r,s € R, £ € R,
which is equivalent to the condition:
a(r,€) =a(b(r),&) for all r e R, £ € R,

for some continuous vector field @ : R(b) x R — IR nondecreasing with respect to
the second variable.

In this paper, we study the stationary problem (SP) associated to the Cauchy-
Dirichlet problem (CP)( the study of (CP) which is based on the results of this
paper will be made in a forthcoming work [Os]). The paper is divided into three
sections: in the first section, we define the concepts of solutions used and study the
uniqueness of the entropy solution. In the second section of this article, using the
results of the first section, we show the existence of entropy solutions and finally in
the third and last section, we define an operator in L' associated with the evolution
problem (C'P) and show that this operator is T-accretive, with dense domain and
checks the image condition.

2. Uniqueness of entropy solutions

We consider the following stationary problem (SP) = (SP)(b,a,, f) defined by:
b(u) - a(u, @(u)l)l =f in I

u=0 on O1.
We begin by introducing the following notions of weak and entropy solutions for this
problem.
Definition 2.1. Let f € L>®(I); a weak solution of (SP) is a measurable function u
such that b(u) € L(I), ¢(u) € WL>°(I), h € L*(I) and
b(u) — a(u, p(u)e)s = f in D'(I),

or equivalent to
/{b(u)§ + h&}de = /f{dsc for any &€ € Hy(I) N L*(I).
I I

Remark 2.1. We easily check that if u is a weak solution of (SP)(b,a, e, f) then
—u is a weak solution of (SP)(b,a,p,—f) where b(s) = —b(—s), p = —p(—s), and
a(s, k) = —a(—s, —k).

It is well known that there is no uniqueness of weak solutions in general. In order

to get uniqueness, we may introduce entropy solutions following the notion of entropy
solution of S.N. Kruzkhov for conservation laws ( see e.g.[Ks], [ABK]).

Definition 2.2. Let f € L>®(I); an entropy solution of (SP) is a weak solution u
satisfying:

(i) there exists h € C(I) such that h = a(u, p(u),;) a.e on I

(i) the following entropy inequality

(a) / Ho(u — k) {(H(K) — W)és + €(f — b(u))} dir > 0
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for any (k,&) € IR x (H3(I) N L*>=(I)) such that &

, > 0, and for any (k,€) €
R x (HY(I) N L>=(I)) such that & > 0 and such that k > 0;

b) [ Holl =) {(HE) = )&, +€(f = bw) b < 0

for any (k,€) € IR x (HE(I) N L*°(I)) such that & > 0 , and for any (k,£) € IR x
(HY(I) N L>=(1)) such that & > 0 and such that k < 0.

Remark 2.2. [t is easy to see that if u is an entropy solution of (SP)(b,a, v, f)
then (—u) is an entropy solution of (SP)(b,a,p, f) where b(r) = —b(—r), a(r,k) =
—a(=r,—k), o(r) = —p(=r) and f = —f.

For a ¢, we define: E = {r € Im(p)/; (¢~ ')o is discontinuous at r}.
Since (¢~1) is a monotone function, E is a countable subset of IR, then we have:

o(u)y; =0a.ein O ={z e I/;p(u(x)) € E}.
If p(s) ¢ E then we have that Ho(u — s) = Ho(p(u) — ¢(s)) a.e in RR.

Our main assumption is the coerciveness of a with respect to &, for £ bounded; more
precisely:

H lim inf |a(k =400 VR > 0.
(B Jim ot Ja(ig) |

In this part (uniqueness), we make the following additional assumption

(a(r,&) — a(s,m)).(€ = n) + M(r,s)(L+ [¢]" + |n*) [o(r) — o(5)] =

D(p(r), ¢(s))-£ + T (g(r), o(s))n
for all 7, s, &, n € R, where M : R xR — R™, T, IR xR — R are continuous.

(Hz)

Remark 2.3. (i) Assumption (Hsy) implies T(o(r), o(r)) = T(o(r),o(r)) = 0 for
all ¥ € R. Indeed, choosingr = s, n=0,& =tv,t >0, v e R in (Hs), we get
tvfa(r,tv) — a(r,0)] > T(e(r), o(r))tv. Dividing by t and passing to the limit with
t — 0, we find T(p(r),p(r))v <0 for allv € R; hence T'(p(r),o(r)) = 0. Using the
same arguments we obtain the corresponding result for L.

(i) (Hz) implies that a is monotone with respect to the second variable (see [CW]-
Remark 2.2 for the proof).

For the proof of uniqueness, we need the following result, which we present as
lemma:

Lemma 2.1. Let f € L*™(I) and u be a weak solution of (SP), then:
[ o= R 6 (0) = ) + 07 = b)) o =

lim / (h— H(K)) () H! () — p(k))Eda

e—0 J;
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for any (k,&) € R x (HY(I) N L>®(I)) such that ¢
(k,&) € R x (HY(I) N L>(I)) such that p(k) ¢ E, £ >

/l Hok — u) {&a (H (k) — h) + €(f — b(u))} da =

—~
>~
~

, and for any
oreover,

=)
3
o
=
v
o
= o

(2)
= lim [ (h— H(K))p(u)oH(o(k) — o(u))édx

e—0 I

for any (k,&) € R x (HY(I) N L>®(I)) such that p(k) ¢ E and & > 0, and for any
(k, &) € Rx (HY(I)N L>(I)) such that p(k) ¢ E, £ >0 and k < 0.

Proof. Let (k,£) be as in lemma 6 for (1). Then the function H(¢(u) — ¢(k))¢ €
H3(I) N L>°(I) and since u is weak solution of (SP), we have

[0 = Do) — e + [ Bl (o) - p(h)€lade = 0

1 I
Note that ’ H(k)[H(p(u) — o(k))€]zdx =0 since H (k) is constant and (H(p(u) —
p(k)E)lor = 0.

Then, we have
[0 = D (ot) = et)eds + | (= HE)H(o(w) - plk)eldo = 0
which is equivalent after passing to the limit when € — 0 (since (k) ¢ E) to:

/I Ho(u— k) (€ (H (k) — h) + £(f — b(u))} da =

i, [ (h = ) ) () — o).

e—0 J;

By the same method of proof, we can prove the second equality.
We can now establish the so called Kato’s inequality (cf.[AB]), for two entropy solu-
tions of the stationary problem.

Theorem 2.1. Let f1 € L>®°(I), fo € L*>°(I). Let uy, us be entropy solutions with
respect to (SP)(b,a,p, f1), (SP)(b,a,p, f2) respectively. Then:

/1 Ho(uy — uz) {(hy — ha)€s + (b(ur) — b(un))€} di <

/1 Hy(uy — u2)(f1 — fo)édz

for all € € HY(I) N L>(I) and & > 0.

Proof: We consider two different variables « and y of IR and define 9, = % and
8y =2.
We denote uy = ui (), f1 = fi(z), and uy = uz(y), f2 = f2(y).
Let £ be a positive test function of D(I x I), then for all x € I, y € I:

yr— &(xz,y) e DY(I) forall z € I 4
x— &(z,y) € DT(I) for all y € I. (4)
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Let:
O ={z€I/;p(ui(x)) € E} (5)
and
02 ={y € I/;¢p(u2(y)) € E}. (6)
We deduce that
1 oebtuats) <0 om 00 g

Then
Ho(uy —uz) = Ho(p(u1) — ¢(uz)) in [I x (I'\ O1)]U[(I\ O2) x I].

We replace in (1), u by u; and k by us and integrate on I \ Os; in (a), u by uy
and k by us and integrate on Oy. Then, one adds the two relations which gives:

; IHo(ul —ug) {(h1 — a(ug,0))&: + (b(u1) — f1)§} drvdy <

— lim (h1 = aluz,0)) p(u1)s H(p(u1) — p(uz))édzdy.
e—0J(1\Os)xT

In the same way, we replace in (2), k by u; and u by ug and integrate on I\ Oyq; in
(b), k by u; and u by us and integrate on O;1. Then, one adds the two relations which
gives:

- Ho(ur — uz) {(h2 — a(u1,0))&y + (b(uz) — f2){} dovdy >

9)
tim [ (s = aun,0)) lus), B () — p(ua))clady.
e—0 1% (1\Oy)
From (8), we deduce that :
Ho(ur —uz2) {h1(& + &) + (b(u1) — f1)&} dzdy <
IxI
Ho(ur — uz)a(uz, 0)§,drdy + Ho(uy — ug)hi&ydady (10)
IxI IxI
- lim0 (h1 — a(uz,0)) p(ur) . H.(p(u1) — p(us))édxdy.
€0 J(1\0s)x1I
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From (9), we deduce that

Ho(u1 — ug) {ha(&e +&y) + (b(u2) — f2)€} dedy >
IxI
Ho(ur — ug)a(uq,0)§,dedy + Ho(uy — ug)hodrdy (11)
IxI IxI
+ lim (hz — a(u1,0)) p(uz)y H(p(ur) — p(uz))édzdy.
eV JIx(I1\Oy)

Making the subtraction (10)-(11), one has:

o Ho(uy —u2) {(h1 — h2)(&x + &) + (b(ur) — b(u2))§ + (f2 — f1)§} dady <

Ho(ur — uz)a(uz, 0)§,dxdy + Ho(uy — ug)hi&ydady

IxI IxI
— lim (h1 — a(uz,0)) p(u1)a H (p(u1) — p(uz))édrdy
e—0 J(1\0,)x1
- Hy(u1 — ug)a(ug, 0)€,dxdy — Hy(uy — ug)ho&pdady
IxI IxI
— lim (ha — a(u1,0)) p(uz)y H (p(u1) — (uz))édwdy.

0 rx(1\01)

Which is equivalent to

Ho(u1 —u2) {(h1 — h2)(§e + &) + (b(ur) — b(u2))§ + (f2 — f1)€} dady <

IxI

— Ho(ui — u2)he — a(uz, 0)]dxdy + Ho(ur — uz2)[h1 — a(u1, 0)]&ydxdy

IxI IxI

(12)

— lim, (h1 = a(u2,0)) @(ur)a He(p(ur) — p(u2))édzdy
TS (1\02)xT

— lim, (ha — a(u1,0)) (u2)y H (p(ur) — p(u2))Edzdy.
T JIX(I\OY)
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One has:
Ho(ur — u2)[h1 — a(us, 0)]§ydady = / Ho(ur — u2)[h1 — a(us, 0)]§ydady
IxI Ix(I\O1)
= lim He(p(ur) — p(u2))[h1 — a(ur,0)]§ydady = (13)
0 rxm\oy)
— lim [h1 — a(u1, 0)]He(p(u1) — p(uz))ydady.
e—0Jrx(1\01)
In the same way, we have also
Ho(u1 — uz)lhe — a(ug, 0)]&dzdy = / Ho(u1 — uz)[h2 — a(uz, 0)]&dzdy
IXI (I\O32)x I
~ lim He(p(un) — p(u2))l2 — a(us, 0))éxdrdy = (14)
e—0 /(102 xTI
— lim [ha — a(uz, 0)]He(p(u1) — p(u2))-Edrdy.
e—0J(1\O2)xTI

Using (13) and (14) in (12), we obtain

Ho(u1r —u2) {(h1 — h2) (& + &) + (b(u1) — b(u2))§ + (f2 — f1)€} dady <

JIXIT

lim [h2 — a(uz, 0)|He(p(u1) — p(u2))Edzdy—

0 (o) xT

lim [h1 — a(u1, 0)]He(p(u1) — ¢(u2))yédzdy

e—0Jrx1\01)

— lim (h1 — a(uz,0)) p(u1)e He((ur) — @(uz2))Edady
0 S (102 xT

— lim (h2 — a(u1,0)) p(uz)y H (p(u1) — ¢ (uz))édzdy,
e—0 Jrx1\01)

which is equivalent to

Ho(u1 —u2) {(h1 — h2) (& + &) + (b(u1) — b(u2))§ + (f2 — f1)€} dady <

IxI
lim hodivgy He (p(u1) — p(u2))édzdy— (15)
<0/ (1\02)x (1\01)
lim hidivgy He(p(u1) — o(u2))édzdy.
0J(1\02)x (1\O1)
Let us put
I= lim [he — hi]divgy He(o(u1) — @(ug))édxdy.

—0J(1\02)x(1\01)
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According to (Hz),

I=— lim [a(ur, p(u1)z) = aluz, p(uz)y)](p(ur)e — p(uz)y) H(p(u1) — p(uz))€
TP J(I\O2)x (I\O1)
< lim, M (ur, u2)(1+ [o(ur)a|* + |o(ua)y|?) (1) — @(u2)| H(p(ur) — p(u2))§
(I\O2) x(I\O1)
— lim T(p(u), p(u2))p(ur)e He(p(ur) — p(uz))é

c—0J(1\02)x(1\01)

— lim, (), p(u2))p(ua)y He(p(ur) — p(us))é =
(1\02)x(1\01)

lim Il — lim Iz — lim 13

e—0 e—0 e—0

One shows easily that 1im0 I, =0.
€E—

Set

R@)=[fﬂn¢@ﬁﬂﬂﬁ—w@ﬂwﬂ
‘We have then:

I, = / divg Fe(p(uy))édady = —/ F.(p(u1))épdady.
(I\O2) % (I\O1) (I\O2) X (I\O1)

One has

1 pmin(ze(uz)+e)
F.(z) = 7/ T(r, p(uz))dr.

€ Jmin(sp(uz))
The function I € C (lRZ), and acheave his maximum and minimum on any compact
set of R; in particular on [p(us2), ¢(u2)+¢] since [lua]|, is finite (see lemma 13 below).
There exists m,. and M, such that:

1 min(z,p(usz)+e)
me < f/ D(r, p(ug))dr < M..

€ Jmin(z,p(uz))
According to the intermediate value theorem , there exists r1(€) and ro(€) in
[o(ug), p(uz) + €] such that:

me = D(ri(e), o(uz))

and

[(ra(e), p(ug))-

Since r1(e) and r2(€) € [p(uz), ( ) €], there exists 61 and 63 €]0, 1] such that:

r1(e) = 01 (p(u2)) + (1 — 1) (p(uz) + €)
and
ra(€) = O2(p(u2)) + (1 — 02)(p(uz) +€).
Consequently:
Tim r1(6) = p(u2) and lim ra(e) = o(us)

One obtains then:

lim me = T(p(us), (uz)) = 0 and lim Mc = T(p(uz), ¢(u2)) = 0.

€E—
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Finally, one has F, — 0 when ¢ — 0, and then, one gets:
lim0 I =0 and lim0 I5 = 0 ( the limit of I5 is shown by a similar way). Consequently,

I <0 and then, from (15), one deduces the following inequality:

- Ho(u1 —u2) {(h1 — h2)(& + &) + (b(ur) — b(u2))&} dady <

- Ho(uy —u2)(f1 — f2)édxdy

for any nonnegative £ € D(I x I).
Now, let £ € DT(I); let (p,,) be classical sequence of mollifiers in IR such that p,(s) =

P (=s).
One defines
T+y r—y
&nl@,y) = (5" )pu(—57 )
then &, € DT (I x I) for n large enough.
Let (X,Y) = T(z,9) = (2, 220,

using (16), we deduce that

/ (b(ur) = b(u2)) EprdXdY + / Ho(ur — u2)(h1 — h2)éx prndXdY <
T(IxI) T(IxI)

/ Ho(ur —u2)(f1 — f2)€pndXdY.
T(Ix1)

Passing to the limit when n — +oc in the inequality above, we then obtain the Kato’s
inequality (3).

Moreover, the inequality (3) is still true for any nonnegative ¢ belonging to H*(I) N
Lo (D).

Theorem 2.2. Let f1 € L>®(I), fo € L*>°(I). Let uy, us be entropy solutions with
respect to (SP)(b,a, ¢, f1), (SP)(b,a, ¢, f2) respectively. Then:

/I Ho(uy — ua) {(hn — ha)Es + (b(uwr) — b(uz))édar} <

/IHo(ul —u9)(f1 — fo)édx

for all ¢ € HY(I)N L*>°(I) and £ > 0.

Proof: We consider two different variables  and y of IR and we assume that
up = up(x), f1 = fi(z), and ug = uz(y), fo = f2(y). We use the same notation as
that in the proof of theorem 7.

From (a) and (1), we deduce that inequality (10) is still true for any nonnegative
¢ € D(IR x R) when we replacing us by any measurable function v = v(y) satisfying

x— H(p(ur) — p(v)€ € HY(I) for ae. y € 1,

and Oz by {y € I/;(v(y)) € E}. In particular, let £ € D(I x I), £ > 0, let us replace
us by uj and Oy by O3 ={y € I/;¢(uf (y)) € E}. Then we get from (10),
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Ho(uf —uf) {h (& + &) + (b)) — f1)&} dady <

IxI
Ho(uf —ug)a(ug,0)¢dody + Ho(uf —ug)hi&,dzdy (18)
IxI IxI
= lim (A = a(uz,0)) p(uf ) Hi(p(uf) = o(uf))édzdy.

e—0Jmof)x1

where h™ = a(u™, p(u™),).

Now from (b) and (2), we deduce that for any nonnegative & € D(I x I), (9) and then
(11) is still true when u; is replaced by u{ and Oy by Of = {z € I/;¢(u{ (z)) € E}.
Then we get

- Ho(ui —uz) {ha(& + &) + (b(u2) — f2)€} dady >
Ho(uf — ug)a(uf,0)¢,dvdy + Ho(uf — ug)hoé,dady (19)
IxI IxI
+ lim (h2 — a(uy’,0)) (uz)y H(p(ui) — ¢(us))édady.
0/ Ix1\of)

And since

Ho(uf —uz) = Ho(u —ug) (1~ Ho(uy)) + Ho(uy ),
we get from (19)
Ho(uf —u3) {h3 (& + &) + (b(uz ) — (1 = Ho(uy)) f2)é} dxdy >

IxI

[ Holuz) {ha(Ee + €) + (b(us) — f2)€} dxdy + / Ho(ug Ja(uf ,0)&,dzdy
IxI IxI

+ Ho(ui —u3)(1 — Ho(uz))a(ui, 0)¢,dudy + Ho(ui — ug )h3 Exdady

IxI IxI

+ | Ho(ug )h2€edady + lim (h2 = a(uf,0)) p(uz)y H(p(ui) — p(uz))édady
IxI e—0Jrx\of)

where ht = a(u™, o(u™),).

‘We know that

lim (ha — a(uf,0)) p(uz), H.(p(u]) — p(ug))édxdy =
e—0Jrx1\07)

limO Ho(uy ) (h2 — a(u7 ,0)) o(uz)y H.(p(ui) — @(uz))édzdy (21)
e—0JrIx\of)

lim (hy —a(uf,0)) p(uz )y H(p(ul) — p(us))édzdy,
e—0Jrx1\07)

(20)
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since 1 = (1 — Ho(uy )) + Ho(uy ) and 1 — Ho(uy ) = 0 when up < 0.
Using (21) in (20), we get

Ho(ui —ug ) {hy (& + &) + (b(u3) — (1 — Ho(uz ) f2)¢} dady >

IxI

- Ho(us ) {ha(&e + &) + (b(uz) — f2)€} dady + Ho(uy )a(ui, 0)¢,dxdy

IxI IxI

+ [ Ho(ul —u3)(1— Ho(us))a(ui,0)¢,dzdy + Ho(uf — ug )hj Eadady

IxI IxI

IxI c—0Jrx\of)

+ lim Ho(uz ) (h2 — a(uf,0)) @(uz), H.(p(ui) — p(us))edady.
0 Jrx\o7)

Making now the subtraction (18)-(22),we obtain

IxI

< Ho(ui —u3)a(ug , 0)¢xdxdy + Ho(ui — ug )hi & dxdy

IxI IxI

~ lim (A = a(u3,0)) p(ui ) Hi(p(uf) — p(u3))édady
e—0Jof)xr1

+ Ho(uy) {h2(§x + &) + (b(u2) — f2)€} dady — Ho(uy )a(uy, 0)¢, dedy

IxI IxI

- Ho(ui —u3 ) (1 — Ho(uy ))a(uf, 0)&ydxdy — Ho(ui — ug )hi &udady

IxI IxI

IxI e—0Jrx\of)

- lim, Ho(uy) (h2 — a(uf,0)) p(uz)y, H(p(ui) — p(uz))édady.
e—0Jrxmoh)
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+ [ Ho(uy )hobedrdy + lim (h3 —a(ui,0)) o(uz )y H.(p(ui) — (ug ))édudy

Ho(ui —uz) {(hf = hi)(& + &) + (b(ul) — b(us )¢ — (f1 — (1 — Ho(uz)) f2)¢}

(23)

- Ho(uy )hoéadrdy — lim (h3 —a(ui,0)) e(uz )y H. (o(ui) — (ug ))édady



120 STANISLAS OUARO

From (23), we have
Ho(ui —uz) {(hi" = h)(& + &) + (b(ur) —

IxI

<— [ Ho(uf —u3)hi —a(ug,0)]édady +

c—0J(nof)xr

— lim (k' = a(uz,0)) p(ui ) H (p(uf) -

b(ug))é — (fr — (1 = Ho(uz)) f2)€}

Ho(ui —ug )[hi —

IxI IxI

¢(uz))édwdy

a(uf, 0)J,dudy

~lim. / (hf — a(uf,0) p(ud )y HL (o(ul) — p(uf))édady (24)
Ix(1\O7)
+ Ho(uy ) {h2(& + &) + (b(uz) — f2)€} dxdy — Ho(u3 )a(uy,0)¢,dxdy
IxI IxI
+ | Ho(uf —uy)Ho(uy )a(ui,0)éydady — [ Ho(uy )hoedady
IxI IxI
— lim Ho(us ) (ha — a(uy’, 0)) ¢(ua)y H((uf) — ¢(u2))édady.
e—0Jrxm\ofh)
Note the term
— | Ho(u! —uf)hi —a(u3,0)éedady + [ Ho(ui —u)[hi — a(uf,0)]¢,dzdy
IxI IxI
J={ - lim (hi = a(uz,0) p(u )z H(p(ul) = p(us))Edwdy
e—0Jmof)xrI
— lim (h3 = a(uf,0)) p(uz )y He(p(ul) — p(uf))édzdy
e—0Jrxm\of)
and
K =~ lim Ho(uy) (ha — a(uf,0)) @(uz), H. (o (uf) — p(us))¢dady.
c—0Jrxmof)
As in the proof of theorem 7 for I < 0, we prove that J < 0 and K < 0. Consider
now the term
L= [ Ho(uf —u3)Ho(uy)a(ui,0)édxdy — | Ho(uz)a(uf,0)E,dzdy.
IxI IxI
It is easy to show that L = 0. Then, we obtain from (24)
Ho(ui —uz) {(h = h3) (& + &) + (b(ul) = b(uz )€ — (fr — (1 = Ho(uy)) f2)€}
JIXI
(25)

< Ho(uy) {h2&y + (b(u2) — f2)€} ddy

IxI

for any nonnegative £ € D(I x I).

Now let £ € D(IR), £ > 0 such that supp(§) C B where B is an interval satisfying the

property:
either BNAIl =0

or B CC B'NJlI is a part of the graph
of a Lipschitz continuous function .

(26)
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Then there exists a sequence of mollifiers p,, defined in R such that, for n large
enough,

v pa(57) € D) Vae B, (27)

Xn(y) = /pn(%)dl’ is an increasing sequence for y € B, (28)
1

Xn(y) =1 for any y € B such that d(y, R\ I) > ¢/n (29)

where ¢ is a positive constant depending on B. Then we can define the nonnegative
function

Enl,y) = E)pn(*=Y) € DT x 1.

2
By substituting &, into (25), we obtain since (9, + ay)pn(%) =0
Ho(uf —uz) {(h = h3)(8z + 8y)€ + (b(u) — b(uz )€ — (fr — (1 = Ho(uz)) f2)€} pn

IxI

< Ho(uy ) {h2(Epn)y + (b(uz) — f2)(Epn)} dxdy

IxXI
and therefore
Ho(ui —uy) {(h = h3)(8z + 8,)& + (b(ui) = b(uz )€ — (fr = (1 = Ho(uz)) f2)€} pn

IxI

(30)

< / Ho(uz ) {ha(€xn)y + (b(uz) — f2)(€xn)} dy

where £ = £(y). When n — 400, the integral at the left side of (30) converges to

/Ho —ug ) {(hf —h3)& + (b(u]) —b(uz))E — (fi — (1 — Ho(uy ) f2)€} da (31)

and then, any function in the integrand of this integral is now considered as a function
of the variable z.

The integral of the right of (30) is nonnegative: In fact, ug is an entropy solution and
therefore, from (b) we deduce that M : D(I) — R defined by

€ M(€) = [ Ho(w) (hate + (blus) ~ f2)¢} d
I
is monotone. In particular, since £y, is an increasing sequence satisfying

0 <&xn <§,

we deduce that M (£x,) is a bounded and increasing sequence and, therefore it con-
verges. Then, from (30) and (31) we deduce that

/I Ho(ut — ) {(hF — h)ew + (but) — bud )E — (fi — (1 — Ho(up)) f2)€} da
(32)
< lim HO(Uz {h2(&xn)e + (b(u2) — f2)(Exn)} do

n~>+oo

for any nonnegatlve &€ D(B).
Now in view of remark 2 and remark 4, inequality (32) is still true when u; is replaced
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by —us, us by —u1, f1 by —fa, fo by —f1, b by g, ¢ by ¢ and a by a. Then we have

/ Ho((—uy) = (—uz)) {(hr —ha)&e + (b(—uy) = b(—uz )€ — (1 = Ho(ui)) fr — f2)¢}
' (33)
< — lim IHo(uT){hT(sxn)er(b(uf)—fl)(Exn)}df

n—-+oo

where hy = a(—uy,o(—uj )z) and hy = a(—ug, (—uy )sz)-
It is easy to check that:

Ho((—uy) = (—uz))(1 = Ho(u{))Ho(uy ) + Ho(ui —uz)Ho(uy) = Ho(ur —uz), ~ (34)
Ho((—uy) = (—uy ) Ho(uy ) + Ho(uy — ug )(1 — Ho(uy ) Ho(uy) = Ho(ur — uz),  (35)
Ho(uf —ug) = Ho(uf —ug)Ho(uf), (36)
Ho((—uy) = (=ug)) = Ho((—uy) = (=uy ) Ho(uy), (37)

Ho(ui —uz)(hf —h3) + Ho((—uy) — (—uy))(hy — hy) = Ho(uy — ug)(hy — ha)  (38)
and
{ Ho(uf —ug)(b(ui) — b(uz)) + Ho((—uy) — (—ug ) (b(—uy ) — b(—uy))

= Ho(u1 — uz2)(b(u1) — b(uz)).

(39)
Then adding (32) and (33) by using (34), (35), (36), (37), (38) and (39), we obtain
/IHO(UI = uz) {(h1 — h2)& + (b(u1) — b(u2))§ — (f1 — f2)&} du

< lim / Ho(ug) {ha(Exn)e + (b(uz) — fo) (Exn)} da (40)

n—-+oo

~ lim / Ho(ub) {hf (Exn)e + (b(ui) — f1)(Exn) } da

n—-+oo
for any nonnegative £ € D(B).

Let ¢ be nonnegative function of D(B). Then £x,,» € DF(B) for n’ large enough, and
from inequality (3) we have

/I Ho(uy — uz) {(hn — ha)(€x ) + (b(usy) — b(usz) )} dir—

_/IHO(Ul —u2)(f1 = fo)éxndr <0
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and therefore

/, Ho(uy — uz) {(hy — ha)Es + (b(ur) — b(uz))€} da—

*/IHO(Ul —ug)(fi — f2)édx <

41
| Haltr =) (1 = )01 = )+ () — buz))§(1 )} o= .
— [ ol =) (= )€1 = )i
and since £(1 — yn) is nonnegative function of D(B), from (40) we have
] ol = ua) (s = Ba) (€01 = x0)) + (our) — blaa)) €01 = o)} =
- [ Hala = ua)(fy ~ )€1~ xor)do <
(12)

lim / Ho(uz ) {ha(€(1 — xa)xn)e + (b(uz) — F2) (E(1 — X))} dt

n—-+oo

— lim /IHO(UT) {1 (€ = X )xn)e + (b(uf") = f1) (€1 = Xnr)Xn) } de.

n—-4o0o
Now since Supp(§xn’) C I N B, from (29) we deduce that for n large enough we have

an’Xn = an/'

Then we have

lim / Ho(uz) {(ha(E(L — Xu)Xn)s + (b(u2) — f2)(€(L — xo)xn)} dt

n—-+o0o

— lim \/[HO(UT) {hi‘—(g(l - Xn’)Xn)z + (b(uf—) - fl)(g(]- - Xn/)Xn)} dr =
Jim [ o) (el + Ous) - (€60} da

(43)
~ lim / Ho(ut) {hf (6xa)e + (b(uf) = £1)(€xn) } da—

n—-+oo

/, Ho(uz ) {ha(€xm)e + (bluz) — fo)(Ex)} it

/I Houd) Thf (Exar)e + (bud) — f1)(Ex) ) da.
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From (41), (42) and (43), we deduce that

/I Ho(uy — uz) {(hy — ha)Es + (b(ur) — b(uz))€} dar — / Holwr — us)(fr — fo)éde <

Jim / Ho(uy ) {ha(Exn)e + (b(uz) — fo)(Exn)} da
I

n—-+o0o

* lim / Ho(uh) {h} (6xn)e + (b(uf) — f1)(Exn) } da—

n—-—+oo

/I Ho(uz) {(ha(Exm)a + (buz) — fo)(Exm)} dit

/I Ho(ub) {hF (€xw)e + (b(u) — f1)(Exar) } der

We check easily that the right and side of this inequality converges to 0 when n’ —
400, and therefore

/IHO(UI —ug) {(h1 — h2)& + (b(u1) — b(ug))E} dx
(44)
< /I Ho(ur — us)(f1 — fo)éde

for any nonnegative £ € D(B). B
Finally, let £ be a nonnegative function of D(I), let Iy CC I be such that

IClyu (U, B))

where the B; are intervals satisfying (26), let (wj)?:o be a partition of unity related
to the above covering of I, and let §; = £ for 0 < j < k. Then by applying (3) for
j=0 and (44) for 1 < j < k, we have

/1 Ho(uy — uz) {(hy — ha)(€)a + (b(u) — b(ug) )€;} dax

< /I Ho(uy — ) (fr — fo);da

for 0 < j < k and therefore

/IHO(Ul —u2) {(h1 — h2)&e + (b(ur) — b(ug))E} do

< /HO(ul —u2)(f1 — f2)ldx
I

for any nonnegative £ € D(I), which achieves the proof.
As a consequence of (17) we have

Corollary 2.1. Let f; € L>(I), fo € L>®°(I). Let uy, us be entropy solutions with
respect to (SP)(b,a,p, f1), (SP)(b,a,p, f2) respectively. Then

/(b(u1) — b(’ILQ))J'_d.’L‘ S /IHo(’LLl — U2)<f1 — fg)d.’ﬂ S z(fl — f2)+d$, (45)

I



SECOND ORDER ELLIPTIC-PARABOLIC EQUATION 125

and

16Cur) = b(u2)ll L1 ry < W1 = FallLay - (46)

Moreover, if f1 < fo almost everywhere in I, then

b(uy) < b(ug) a.e. in I. (47)

and if f1 = fo almost everywhere in I, then

b(uy) = b(ug) a.e. in I. (48)
Proof. Let £ =1 in the inequality (17). Then we get (45). From (45) we deduce
(46), (47) and (48).

Remark 2.4. The notion of uniqueness of solutions is the uniqueness of b(u) due
to possible degeneracy of b. On the other hand if b is strictly increasing, then the
uniqueness of the solution u is equivalent to the uniqueness of the function b(u).

3. Existence of entropy solutions

In this part, we study the existence of entropy solution of the stationary problem
(SP)(b;a, ¢, f).
Theorem 3.1. (Existence of entropy solution). For all f € L*(I), the stationary
problem (SP)(b,a, ¢, f) has at least one entropy solution.

Proof:
Step 1. We consider the following stationary problem (SP)m=(SP)(bn,m,a, ¢, f)

bn,m(un,m) - a(un,mv Lp(un,m)x)x = f on [

Un,m = 0 on 01

where by m(0) = b(o) + %J+ — %07 for all 0 € R, n,m € N*, f+ = sup(f,0),
f~ =sup(—f,0).

Remark 3.1. Since the functions v — vt and v — v~ are continuous, then by, , is
continuous. However by, n, is strictly increasing for m,n fized.

We establish now some preliminary results.
Lemma 3.1. Let f € L>=(I), then:
i) [[Bn )|, < 11F1, for all 1 < p < +o0,
it) [[tn,mll oo < CO, 1 fllo0);
where C' is a positive constant.

Proof. Let p : R — R a continuous function with p’ > 0, p(0) = 0, p lipschitz
function with compact support i.e p € Py.
We multiply (SP)n,m by p(bpn,m(tn,m)) and integrate on I:

/p(bn,m(un,M))bn,m(unﬂn)dx+/a(unmu@(un,m)w)p(bn,m(umm))wdx
I I

(49)
= /I fp<bn,m (un,m))dx-
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Consider the term

/Ia(un,ma‘P(Un,m)z)p(bn,m(“n,m))md$~ (50)

By regularisation, one can always suppose that by, and u, ,, are regular, and then
we obtain from (50),

_/Ib/n,m(un-,m)pl(bn,m(Un,m))a(un,mvW(un,m)m)(un,m)xdw (51)
/I\E b;,m(un,m)p/(bn’m(un,m))[a(unﬂm P(tn,m)z) = altin,m, 0)](Un,m)xdz

+ / b/n,m (tn,m )p/ (bn,m (tn,m))a(tn,m,0) (un,m)zdx-
I

We know that p’ > 0, b;,,, > 0, ¢’ > 0 on I\ E (by regularisation) and a is
nondecreasing with respect to the second variable, then

/I\E b;z,m(un’m)p%bn,m(un,m))[a(un,m» @(Un,m)x> - a(un’m» 0)](un,m)md$ >0
and by divergence theorem

/ by ()0 (b (1))@t 0) (e = / div Py () = 0
I I

where F), m(2) :/ P’ (bn,m (5))], 1 (s)a(s, 0)ds.
0
Consequently, one has from (49):
[ 2nan s ) < [ (b))
I I

By approximation of p, one can takes p(u) = \u|pi2 u (1 < p < o0), then we obtain
from inequality above:

/ B ()P~ (B (1t 2l < / £ bt )17 =2 (b (1))
I I

: (/I('bnvmwn,m)“)w); ( [ dx);

where % + % = 1; this inequality implies that

Since f € L°°(I), then by the preceding relation, we have also ||bnn (unm)H
| fll; from where the proof of i).

b, (un,m>Hp < ||f||p for all 1 < p < +oc.

oo
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For the proof of ii), we multiply by, m (tn,m) by p(b(tn,m)) where p € Py and integrate
on I, one has:

/ Dbt 1) (1 ) = / (bt 1)) b(tt )+

I I

%/(Un,m)er(b(un,m))dI - % (un,m)ip(b(un,m))dx'
I I

Now,

1 1

E /(Un,m)er(b(un,m))dx - E (un,m)ip(b(un,m))dx =
I I

1 1 _
7/ (tn,m) (bt m))dz + — (= (tn,m) " )p(b(tin,m))dz = 0.
N JInfun,m>0} M J10{un,m<0}

This inequality implies that

/p(b(un,m))bn,m(un,m)dx > /p(b(un,m))b(un,m)dl'

I I
By approximation of p, we can take p(u) = |u[’ > u (1 < p < +00), then we obtain
from inequality above:

16, m)ll,, < 1o, (tn,m)|l,, for all 1 < p < +o0.

Thanks to i) and the fact that b is surjective, we obtain ii).

Lemma 3.2. The sequence (Up,m) converge when n,m — +00.

Proof. (SP)nm < b(tn,m) — a(tn,m, ¢(Unm)z)s = [

where f™™ = f — L(up )T + L (upm)”. f™™ is uniformely bounded on I due to

lemma 13, then using comparison result (corollary 9), one has

/HO(un,m - un,m’)(b(un,m) - b(un,m'))dx S /HO(un,m - un,m’)(fnvm - fn7ml)dx7
I I

for m,m’ € IN and for fixed n € IN. Inequality above is equivalent to

\/IHO(un,m - un,m’)(b(un,m) - b(un,m’))dm é

J ot =) [ () = o)) = () = )" )|

m

which is equivalent to

/I(bn’m(un’m) — byms (Un,m/)) T dx < 0. (52)

From (52), we deduce that

b’n,m(un,m) - bn,m’ (un’m/) S O
From the inequality above, we deduce when m’ < m that

b(tunm) = blttmm) + % ((nm)™ = () ™) + % ((nm)™ = (tn,m) ™) <0.
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It is easy to see that the three terms of the inequality above have the same sign, then
they are negatives, which implies that wy, m < Upm for m’ < m and n fixed.

Then (n,m)m is nonincreasing. By the same method, we show that (wy m ), is non-
increasing.

Since (Uy,m,) is uniformly bounded then we deduce that

Un,m | Un when m — +o00 and w,, | v when n — +o0.

Step 2. One has hy, ., € C(I) so that h,, ,, is finite on some fixed points of I; this
implies that h,,, € AC(I) since f — by m(unm) € L*(I). Consequently, Ay, ., is
uniformly bounded. Using (H;), we deduce that ¢(un m), is uniformly bounded in
L*(I) since Uy, is uniformly bounded in L>°(I). We get then ¢(uy, ) uniformly
bounded in W1:>°(1).

Consequently, one has:

n,Mm—00

Unm —> UE Le(I)
by (tmm) == b(u) € L(I) (53)

Plunm) "= p(u) € Wh().

Now, we Know by Bnilan and Tour work in 1994 (see [BT]) that u,, ., is an entropy
solution of (SP), m, since b, does not degenerate; then it checks the following
entropy inequalities:

(Gnm) / ot — k) {(H(E) — B )s + (f — by (tn))E} di > 0

) [ Ho(k = ) L) = B+ (F = b ()€} i < 0,

now, passing to the limit when n,m — oo in the two inequalities by using (53) and
a pseudomonotony argument (see [L]), we obtain that there exists a3 € L*(RR),
az € L°(R), a; € HY(u — k), ag € H'(k — u) such that:

/I on {(H(k) = h)Es + (f — b(u))E} da > 0
and

/ an {(H(k) — W& + (f — b(w))E} dz < 0,

I
which are equivalent to the entropy inequalities ( see [Bp], [T]).

4. The A, Operator associated

In this part, we define an operator associated to the evolution problem (CP) and
show some useful properties of this operator. We define the operator A, in L'(I) by:

v € Apb(u) if and only if b(u) € L*(I),v € L>(I)and u is entropy

solution of the stationary problem (SP) with f = v+ b(u).

One show that
Ay C {(b(U); —a(u, o(u)x)e); p(u) € Wy (1), u € LF(I),b(u) € Ll(I)}-
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We have the following result

Proposition 4.1. The operator A, defined above satisfies:

(1) Ay is T — accretive in L'(I).

(2) For all A >0, the range R(I + \Ap) of I+ MAy is dense in L*(I).
(3) The domain D(Ay) of Ay is dense in L1(I).

Proof. The T-accretivity is a direct consequence of corollary 9.
According to theorem 11, R(I + AAp) = L°°(I); which implies that R(I + AAp) is
dense in L(I).
We have then to prove 3.
Let Dy = {v € L'(I)/; there exists u € L*(I), with v = b(u)}.
D(Ap) C Dy. It is thus enough to prove that D(Ap) D Dy since Dy is dense in L(I).
Let wg € Dgy and for A > 0, consider the problem

b(u/\) - )\a(U)\, @(uz\)x)x = Wo
i.e
b(ux) — Ahxe = wo < b(ur) = Ahy 4 + wo.
To prove that b(uy) — wo in L'(I) when A — 0, it is enough to prove that Ahy , — 0
in D'(I).
Since Ahy . is bounded in L*°(I), we have to prove only that

Ahy — 0 in measure on I forA — 0. (54)

To prove (54), consider R > ||wo|, and for 7 > 0, let

=in a(k,€) €. a r
C(’f’)— f{a(k,£)|’|k|<R7 (k7£)|2 }

Using (H;), we have
lim C(r) = +o0.
r—+00
a(ux, Wx,z)Wx z

It is then clear that C(r) is nondecreasing and C(|hy|) <
la(ux, wx,z)]

, with

wy = @(uy).
This implies that C(|hy]) [ha| < hawy, . Let us fix now § > 0 and r¢ > 0 such that
C(rog) > 0. Let A > 0 verifying Arg < 4, one has:

é
C ()8 < AC([hal) Rl if ARl > 0.
The preceding inequality gives:
0 0
[ e =csliaml> o< [ Ac(mD bl
{Alha|>6} {Alhal>6}

From the inequality above , we have

/ C(ﬁ)édxg/ Ahywy, zd;
(Alhal>s} A (Alha|>5)

/ C’(é)chxS/ Ahyw)y pd.
BUNE R {Ihal>70}

which give then
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since {|hy| > ro} D {A|ha| > 6} (by using the fact that Arg < 9).

So
//\h,\w,\7zdx:/ )\h,\w,\7wda:+/ /\h,\w,\ywdx,
I {lhx|>r0} {Ihx|<ro}

then

/ C(é)éd:ﬂ < / Ahawy zdz <
{Alhx|>6} A {lhx|>r0}

/x\h,\wA7xd:z:—/ )\h,\w,\,xdac,
I {lhxl<ro}

from the inequality above, we obtain

/ C(é)édw < /)\h)\wA,zdl'—/ Ahawy, pdz =
CINES I 1 {Ihal<ro}

/(’wo - b(’LL)\))U)Adx — / AhAwA,rdxv
I {Ihal<ro}

from which, we get

/ C(é)&lﬂ? < /(wo — b(uy))wydr — / Ahpwy, zd.
(Alhal>6} A 1 {Ihxl<ro}

The inequality above is equivalent to

5
()5 1A > 6} < /(wo ~ buy))wrda —/ Nt oda.
A I {Ihal<ro}

According to (Hy), we show that 0(2)5 [{A]hx| > 6} is bounded. Since lim C(r) =

r——400
400, then necessarily

Lim [{A|ha] > 8} = 0.

Consequently, b(uy) — wq in L*(I) for A — 0.
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