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uAbstra
t. Present paper addresses the famous ma
hine learning paradigm, 
alled supportve
tor ma
hines, from the viewpoint of evolutionary 
omputation. Namely, the 
onstrainedoptimization problem within support ve
tor ma
hines is solved through an evolutionary al-gorithm, for the sake of simpli
ity. The new approa
h has been so far applied solely to the
ase of linear support ve
tor ma
hines for separable data. Experiments are 
ondu
ted on a�
titious 2-dimensional points data set and are very promising.2000 Mathemati
s Subje
t Classi�
ation. 68T05, 68T20, 92D10.Key words and phrases. support ve
tor ma
hines, separable data, evolutionary
omputation, 2-dimensional points data set.
1. Introdu
tionRe
ently developed and powerful tools, support ve
tor ma
hines (SVMs) haveproven their su

ess in various pattern re
ognition �elds regarding 
lassi�
ation andregression.Although truly remarkable as learning ma
hines, SVMs have a highly 
ompli
atedmathemati
s a
ting as an engine. Con
epts of 
onvexity and extension of the methodof Lagrange multipliers a

ording to Karush-Kuhn-Tu
ker-Lagrange 
onditions areused in order to solve the 
onstrained optimization problem within.Proposed paper presents an alternative approa
h to this standard solving. The newapproa
h is 
alled evolutionary support ve
tor ma
hines (ESVMs) and a

ordinglyrelies on elements from the �eld of evolutionary optimization.So far, ESVMs deal just with standard 
lassi�
ation issues. Moreover, this �rsttest of the newly developed te
hnique has only been applied to the situation whentraining data are binary and linearly separable.With respe
t to 
lassi�
ation, standard SVMs are primarily 
on
erned with binarylabelled training data [2℄, [4℄. They were initially built to handle linearly separabledata; they were then extended to linear SVMs for nonseparable data and �nally tononlinear SVMs. Present paper is thus the beginning step towards the validation ofESVMs on all possible 
on�gurations of binary 
lassi�
ation. Moreover, ESVMs formulti-
lass 
ategorization are also to be developed in the near future.Experiments for the assessment of ESVMs in the 
ase of linear separability were
ondu
ted on a �
titious 2D points data set. Results reveal the suitability of the newapproa
h and the guarantee for the su

ess of extended ESVMs.The stru
ture of the paper is the following. Se
ond se
tion presents the basi

on
epts within linear SVMs for separable training data; next se
tion introdu
esthe linear ESVMs for data separability. Experimental results are outlined in theRe
eived : November 21st 2005. 141
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tion; values for parameters of the evolutionary 
omponents are assignedand illustration of obtained results is given on a 2D points data set.2. Linear support ve
tor ma
hines for separable data. An overviewLet it �rst be supposed that training data is of the following form:
{(xi, yi)}i=1,2,...,m (1)where every xi ∈ Rn represents an input ve
tor and ea
h yi an output (label).As already mentioned, the two subsets of input ve
tors labelled with +1 and −1,respe
tively, are linearly separable. The positive and negative training ve
tors arethen separated by the hyperplane:
〈w, x〉 − b = 0, (2)where w ∈ Rn is the normal to the hyperplane, b ∈ R and |b|

‖w‖ is the distan
e fromthe origin to the hyperplane.A

ordingly, two subsets of data are linearly separable i� there exist w ∈ Rn and
b ∈ R su
h that:

{

〈w, xi〉 − b > 0, yi = 1,

〈w, xi〉 − b < 0, yi = −1, i = 1, 2, ..., m.
(3)A

ording to [1℄, two subsets of data are linearly separable i� there exist w ∈ Rnand b ∈ R su
h that:

{

〈w, xi〉 − b > 1, yi = 1,

〈w, xi〉 − b < −1, yi = −1, i = 1, 2, ..., m.
(4)Basi
ally, in the statement above, a s
aling of the parameters for the separatinghyperplane is performed. The separating hyperplane lies thus in the middle of theparallel supporting hyperplanes of the two 
lasses.Consider the data points (xi, yi) for whi
h either the �rst line or the se
ond of(4) holds with the equality sign. They are 
alled support ve
tors. They are datapoints that lie 
losest to the de
ision surfa
e. Their removal would 
hange the solutionfound.Now, following the stru
tural risk minimization prin
iple [5℄, [6℄, [7℄, the supportve
tor ma
hine has a high generalization ability if the separating hyperplane dividesthe training data with as few errors as possible and, at the same time, with a maximalmargin of separation.Therefore, one is led to the following 
onstrained optimization problem:

{�nd w and b as to minimize ‖w‖2

2
,subje
t to yi(〈w, xi〉 − b) ≥ 1, i = 1, 2, ..., m.

(5)Note. After basi
 
al
ulations, one obtains for margin the value 2

‖w‖ .



LINEAR SVMS FOR SEPARABLE DATA 1433. Evolutionary linear support ve
tor ma
hines for separable dataThe standard solving of (5) relies on 
onstru
ting the Lagrangian fun
tion and af-terwards applying the Karush-Kuhn-Tu
ker-Lagrange 
onditions. Issues of 
onvexityare ne
essary and su�
ient for the above.The less 
ompli
ated evolutionary algorithm to solve the 
onstrained optimizationproblem in (5) is next presented.Representation of 
hromosomes A 
hromosome is a ve
tor of w and b of theform:
c = (w1, ..., wn, b) (6)where wi ∈ [−1, 1], i = 1, 2, ..., n and b ∈ [−1, 1].Initial population Ea
h gene of a 
hromosome is randomly generated with auniform distribution from the 
orresponding interval.Fitness evaluation The �tness fun
tion has the subsequent expression:

f(c) = f(w1, ..., wn, b) = w2

1
+ ... + w2

n +

m
∑

i=1

[t(yi(〈w, xi〉 − b) − 1)]2, (7)where
t(a) =

{

a, a < 0,

0, otherwise. (8)One is led to
minimize(f(c), c) (9). Sele
tion operator Tournament sele
tion is used [3℄.Variation operators Intermediate 
rossover and mutation with normal pertur-bation are appointed [3℄.Stop 
ondition The algorithm stops after a �xed number of generations. At thispoint it provides the values for w and b. If equations for the supporting hyperplanesare also desired, an appropriate s
aling of the de
ision fun
tion has to be performed,a

ording to the proof of (4) from [1℄.On
e a support ve
tor ma
hine is trained and the equation of the separating hy-perplane is found, the way to determine on whi
h side of the hyperplane of de
isiona given test example x lies is to 
ompute the value of the expression:
sgn(〈w, x〉 − b) (10)



144 RUXANDRA STOEAN AND DUMITRU DUMITRESCU4. Experimental results. Appli
ation to a 2-dimensional points data setA �
titious training data set of m = 60 points in a 2-dimensional environmentof [−50, 50] × [−50, 50] was 
onsidered as to validate the evolutionary approa
h tosolving the 
onstrained optimization problem within linear support ve
tor ma
hinesfor the separable 
ase. The data set was 
hosen as in Figure 1.The values that were appointed for the evolutionary parameters are given in Table1. Illustration of obtained separating and supporting hyperplanes is depi
ted in Figure2. It 
an be noti
ed how the de
ision hyperplane separates the squares from the 
ir
les.The 
ir
led points are the support ve
tors.5. Con
lusions and future workThe newly developed ESVMs prove to be very su

essful for binary 
lassi�
ationof linearly separable data. The evolutionary approa
h is mu
h easier for both thedeveloper and the end user than that of the standard approa
h. The evolutionarysolving of the optimization problem leads to the obtaining of w and b dire
tly, whilein the 
lassi
al approa
h the equation of the optimal hyperplane is determined afterLagrange multipliers are found.Future work will be held in extending ESVMs to handle nonseparable data, bothlinearly and nonlinearly. The design of multi-
lass ESVMs would also be of interest.Referen
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LINEAR SVMS FOR SEPARABLE DATA 1456. Tables and �gures ps gen p
 pm ms100 300 0.3 0.4 0.1Table 1. Values for parameters of the evolutionary algorithm applied to linearSVMs for separable data; ps stands for population size, gen denotes the number ofgenerations, while pc, pm and ms symbolize the probabilities for 
rossover, formutation and the mutation strength, respe
tively

Figure 1. The 2D points set to validate linear ESVMs for separable data
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Figure 2. The separating hyperplane and the supporting hyper-planes in the 
ase of linear ESVMs for separable data. The supportve
tors are 
ir
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