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Several Combinatorial Inequalities Related to Squarefree
Monomial Ideals
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Abstract. Let K be a field and S = K[x1, . . . , xn], the ring of polynomials in n variables,
over K. Using the fact that the Hilbert depth is an upper bound for the Stanley depth of

a quotient of squarefree monomial ideals 0 ⊂ I ( J ⊂ S, we prove several combinatorial
inequalities which involve the coefficients of the polynomial f(t) = (1 + t + · · · + tm−1)n.
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1. Introduction

Let K be a field and S = K[x1, . . . , xn] the polynomial ring over K. Let M be
a Zn-graded S-module. A Stanley decomposition of M is a direct sum D : M =⊕r

i=1miK[Zi] as a Zn-graded K-vector space, where mi ∈ M is homogeneous with
respect to Zn-grading, Zi ⊂ {x1, . . . , xn} such that miK[Zi] = {umi : u ∈ K[Zi]} ⊂
M is a free K[Zi]-submodule of M . We define sdepth(D) = mini=1,...,r |Zi| and

sdepth(M) = max{sdepth(D)| D is a Stanley decomposition of M}.

The number sdepth(M) is called the Stanley depth of M .
Herzog, Vlădoiu and Zheng show in [11] that sdepth(M) can be computed in a

finite number of steps if M = I/J , where J ⊂ I ⊂ S are monomial ideals. In [1], J.
Apel restated a conjecture firstly given by Stanley in [16], namely that

sdepth(M) ≥ depth(M),

for any Zn-graded S-module M . This conjecture proves to be false, in general, for
M = S/I and M = J/I, where 0 6= I ⊂ J ⊂ S are monomial ideals, see [9], but
remains open for M = I. Another open question, proposed by Herzog [12], is the
following: Is it true that

sdepth(I) ≥ sdepth(S/I) + 1,

for any monomial ideal I?
The explicit computation of the Stanley depth is a computational difficult task,

even in the very special case of the ideal m = (x1, . . . , xn), see [2]. This is one of
the reasons, a new invariant, associated to (multi)graded S-modules, called Hilbert
depth, was introduced, which gives a natural upper bound for the Stanley depth. See
[4] for further details.
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In [3], we proved a new formula for the Hilbert depth of J/I, where 0 6= I ( J ⊂ S
are squarefree monomial ideals; see Section 2.

In this paper, our aim is to deduce several combinatorial inequalities, using the
fact that hdepth(J/I) ≥ sdepth(J/I), in certain cases when sharp lower bounds for
sdepth(J/I) are known. We mention the fact that the inequalities involved in the
computation of Hilbert depth are related to the theory of hypergeometric functions;
see for instance [4, Remark 3.8] and [3, Lemma 3.8].

In Section 3, we consider the path ideal of length m of a path graph, i.e.

In,m = (x1x2 · · ·xm, x2x3 · · ·xm+1, . . . , xn−m+1 · · ·xn) ⊂ S.

In Proposition 3.1 we show that the number of squarefree monomials of degree k
which do not belong to In,m is equal to(
n− k + 1, m

k

)
:= the coefficient of xk in the expansion of (1+x+· · ·+xm−1)n−k+1.

We mention that the above expansion was firstly studied by Euler [10]. For a modern
perspective, we refer the reader to [8, Page 77].

Using this, a formula for sdepth(S/In,m) and the fact that Hilbert depth is an
upper bound for Stanley depth, in Theorem 3.5 we prove that for n ≥ m ≥ 1 and

d := ϕ(n,m) = n+ 1−
⌊

n+1
m+1

⌋
−
⌈

n+1
m+1

⌉
, we have that:

(1)
k∑

j=0

(−1)k−j
(
d−j
k−j
)(

n−j+1, m
j

)
=
b k

mc∑̀
=0

(−1)`
k∑

j=m`

(−1)k−j
(
d−j
k−j
)(

n−j+1
`

)(
n−m`
j−m`

)
, for all

0 ≤ k ≤ d.

(2)
k∑

j=0

(−1)k−j
(
d−j
k−j
)(

n−j+1, m
j

)
≥ 0, for all 0 ≤ k ≤ d.

Also, since In,m is minimally generated by n − m + 1 monomials, using a result of
Okazaki [13], we show that for d :=

⌊
n+m

2

⌋
we have that:

(3)
k∑

j=0

(−1)k−j
(
d−j
k−j
)(

n−j+1, m
j

)
≤
(
n−d+k−1

k

)
, for all 0 ≤ k ≤ d.

Also, we particularize (1-3) for m = 2; see Corollary 3.6. In Remark 3.7 we translate
the inequalities from Corollary 3.6 in hypergeometric terms.

In Section 4, we consider the path ideal of length m of a cycle graph, i.e.

Jn,m = In,m + (xn−m+2 · · ·xnx1, . . . , xnx1 · · ·xm−1) ⊂ S,

where n > m ≥ 2 are some integers. In Proposition 4.1 we prove that

sdepth(Jn,m) ≥ depth(Jn,m),

i.e. Jn,m satisfies the Stanley inequality. In Corollary 4.2 we show that if m ≥ 3, then

sdepth(Jn,m) ≥ sdepth(S/Jn,m) + 1,

i.e. Jn,m satisfies the Herzog inequality.

Let d := n−
⌊

n
m+1

⌋
−
⌈

n
m+1

⌉
. Using Proposition 4.1 and some other results about

sdepth(S/Jn,m) and sdepth(Jn,m/In,m), in Theorem 4.5 we prove that:

(1)
k∑

j=0

(−1)k−j
(
d−j
k−j
)((

n−j+1, m
j

)
−

2m−2∑
`=m

(2m− 1− `)
(
n−`−j+1, m

j−`
))
≥ 0, for all 0 ≤

k ≤ d.
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(2)
k∑

j=0

(−1)k−j
(
d+m−1−j

k−j
) 2m−2∑

`=m

(2m−1−`)
(
n−`−j+1, m

j−`
)
≥ 0, for all 0 ≤ k ≤ d+m−1.

(3)
k∑

j=0

(−1)k−j
(dn

2 e−j
k−j

)((
n−j+1, m

j

)
−

2m−2∑
`=m

(2m− 1− `)
(
n−`−j+1, m

j−`
))
≤
(bn

2 c+k−1

k

)
,

for all 0 ≤ k ≤
⌈
n
2

⌉
. In Corollary 4.6 we particularize (1-3) for m = 2 and in

Remark 4.7 we further translate them in hypergeometric terms.

2. Preliminaries

First, we fix some notations and we recall the main result of [3].
We denote [n] := {1, 2, . . . , n} and S := K[x1, . . . , xn].
For two subsets C ⊂ D ⊂ [n], we denote [C,D] := {A ⊂ [n] : C ⊂ A ⊂ D}, and

we call it the interval bounded by C and D.
Let 0 ⊂ I ( J ⊂ S be two squarefree monomial ideals. We let:

PJ/I := {C ⊂ [n] : xC =
∏
j∈C

xj ∈ J \ I} ⊂ 2[n].

A partition of PJ/I is a decomposition P : PJ/I =
r⋃

i=1

[Ci, Di], into disjoint intervals.

If P is a partition of PJ/I , we let sdepth(P) := minr
i=1 |Di|. The Stanley depth of

PJ/I is
sdepth(PJ/I) := max{sdepth(P) : P is a partition of PJ/I}.

Herzog, Vlădoiu and Zheng proved in [11] that sdepth(J/I) = sdepth(PJ/I).
Let P := PJ/I , where I ⊂ J ⊂ S are squarefree monomial ideals. For any 0 ≤ k ≤

n, we denote Pk := {A ∈ P : |A| = k} and αk(J/I) = αk(P) = |Pk |.
For all 0 ≤ d ≤ n and 0 ≤ k ≤ d, we consider the integers

βd
k(J/I) :=

k∑
j=0

(−1)k−j
(
d− j
k − j

)
αj(J/I). (1)

From (1) we can easily deduce that

αk(J/I) =

k∑
j=0

(
d− j
k − j

)
βd
k(J/I), for all 0 ≤ k ≤ d. (2)

Also, we have that

βd
k(J/I) = αk(J/I)−

(
d

k

)
βd

0 (J/I)−
(
d− 1

k − 1

)
βd

1 (J/I)− · · · −
(
d− k + 1

1

)
βd
k−1(J/I).

(3)

Theorem 2.1. ([3, Theorem 2.4]) With the above notations, the Hilbert depth of J/I
is

hdepth(J/I) := max{d : βd
k(J/I) ≥ 0 for all 0 ≤ k ≤ d}.

As a basic property of the Hilbert depth, we state the following:

Proposition 2.2. Let I ⊂ J ⊂ S be two square-free monomial ideals. Then

sdepth(J/I) ≤ hdepth(J/I).

We recall the following result:
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Theorem 2.3. ([13, Theorem 2.3]) Let I ⊂ S be a monomial ideal, minimally gen-
erated by m monomials. Then

sdepth(I) ≥ max{1, n−
⌊m

2

⌋
}.

As a direct consequence of Proposition 2.2 and Theorem 2.3 we obtain:

Corollary 2.4. Let I ⊂ S be a squarefree monomial ideal, minimally generated by
m monomials. Then

hdepth(I) ≥ max{1, n−
⌊m

2

⌋
}.

3. The m-path ideal of a path graph

Let n ≥ m ≥ 1 be two integers and

In,m = (x1x2 · · ·xm, x2x3 · · ·xm+1, . . . , xn−m+1 · · ·xn) ⊂ S,
be the m-path ideal associated to the m-path of length n− 1. We define:

ϕ(n,m) := n+ 1−
⌊
n+ 1

m+ 1

⌋
−
⌈
n+ 1

m+ 1

⌉
. (4)

According to [6, Theorem 1.3] we have that

sdepth(S/In,m) = depth(S/In,m) = ϕ(n,m). (5)

Also, according to [7, Proposition 1.7], we have that

sdepth(In,m) ≥ depth(In,m) = ϕ(n,m) + 1. (6)

Note that αk(S/In,m) counts the number of squarefree monomial of degree k which
do not belong to In,m.

Proposition 3.1. With the above notations, αk(S/In,m) =
(
n−k+1, m

k

)
:= the coef-

ficient of xk from the expansion (1 + x+ · · ·+ xm−1)n−k+1.

In particular αk(In,m) =
(
n
k

)
−
(
n−k+1, m

k

)
.

Proof. Note that the coefficient of xk from the expansion (1 + x+ · · ·+ xm−1)n−k+1

is equal to the number of sequences (a1, a2, . . . , an−k+1) with ai ∈ {0, 1, . . . ,m − 1}
for all 1 ≤ i ≤ n − k + 1, such that a1 + a2 + · · · + an−k+1 = k. Therefore, in order
to complete the proof, it is enough to establish a 1-to-1 correspondence with the set
of squarefree monomials u ∈ S \ In,m of degree k.

Indeed, given a sequence a = (a1, a2, . . . , an−k+1) as above, we define a monomial

ua as follows: We let Aj :=
∑j

i=1 ai for all 1 ≤ j ≤ n− k, and A0 = 0. We define

ua =

n−k+1∏
i=1

ui, where ui =

{
1, ai = 0

xi+Ai
xi+1+Ai

· · ·xi+ai−1+Ai
, ai > 0

.

It is clear that deg(ua) = k and u /∈ In,m, since, by construction, there is no monomial
of the form xixi+1 · · ·xi+m−1 which divides ua.

Conversely, let u ∈ S \ In,m be a squarefree monomial of degree k. We can write u
as a product u = w1w2 · · ·wt, where wj = xijxij+1 · · ·xij+bj−1 for all 1 ≤ j ≤ t such
that:

1 ≤ i1 < i2 < · · · < it ≤ n−bt+1, b1+· · ·+bt = k and ij+bj < ij+1 for all 1 ≤ j ≤ t−1.
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Note that, since u /∈ In,m, we have that bj = deg(wj) ≤ m− 1 for all 1 ≤ j ≤ t.
We construct a sequence a = (a1, . . . , an−k+1) as follows:
We let aij−j+1 = bj for all 1 ≤ j ≤ t and ai = 0 whenever i 6= ij − j + 1 for all

1 ≤ j ≤ t. It is easy to see that
∑n−k+1

i=1 ai = k and ai ∈ {0, 1, . . . ,m − 1} for all
1 ≤ i ≤ n− k+ 1. Moreover, we have that u = ua. Hence, the proof is complete. �

Example 3.2. Let n = 7, m = 3 and k = 4. According to Proposition 3.1, α4(S/I7,3) =
the coefficient of x4 in the expansion of (1 + x+ x2)4. By straightforward computa-
tions, we get α4(S/I7,3) = 19. Let a = (0, 1, 1, 2) be a sequence, as in the proof of
Proposition 3.1. The corresponding monomial is u = x2x4x6x7 ∈ S \ I7,3. Similarly,
if u′ = x1x3x4x5 ∈ S \ I7,3, then u′ = ua′ , where a′ = (1, 3, 0, 0).

Remark 3.3. Let n ≥ m ≥ 1 and m ≤ k ≤ n be some integers such that n ≥ 2m. Let
L0 := In,m and Li := Li−1 : xn−i+1 for 1 ≤ i ≤ m − 1. We consider the short exact
sequences:

0→ S/Li
·xn−i+1→ S/Li−1 → S/(Li−1, xn−i+1)→ 0 for 1 ≤ i ≤ m− 1. (7)

We denote Sj := K[x1, . . . , xj ] for any 1 ≤ j ≤ n. We have that

S/(Li−1, xn−i+1) ∼= S/(In−i,mS, xn−i+1) = (Sn−i/In−i,m)[xn−i+2, . . . , xn], (8)

for 1 ≤ i ≤ m− 1. Also Lm−1 = (In−m,m, xn−m+1) and therefore

S/Lm−1
∼= (Sn−m/In−m,m)[xn−m+2, . . . , xn]. (9)

From (7), (8) and (9) it follows that

αk(S/In,m) = αk(Sn−1/In−1,m) + · · ·+ αk−m+1(Sn−m/In−m,m). (10)

Let N := n− k + 1. From Proposition 3.1 and (10) we reobtain the identity:(
N, m

k

)
=

(
N − 1, m

k

)
+

(
N − 1, m

k − 1

)
+ · · ·+

(
N − 1, m

k −m+ 1

)
.

Lemma 3.4. (See also [8, Page 77]) Let n ≥ m ≥ 1 and 0 ≤ k ≤ n be some integers.
Then: (

n− k + 1, m

k

)
=

b k
mc∑

`=0

(−1)`
(
n− k + 1

`

)(
n−m`
k −m`

)
.

Proof. We have that (1 + t+ · · ·+ tm−1)n−k+1 =

=

(
1− tm

1− t

)n−k+1

=

n−k+1∑
`=0

(−1)`
(
n− k + 1

`

)
tm`

∞∑
j=0

(
n+ j − 1

j

)
tj . (11)

Identifying the coefficient of tk in (11) we deduce the required conclusion. �

We also recall the following combinatorial identity

k∑
j=0

(−1)k−j
(
d− j
k − j

)(
n

j

)
=

(
n− d+ k − 1

k

)
, (12)

which is a direct consequence of the Chu-Vandermonde summation.

Theorem 3.5. Let n ≥ m ≥ 1.
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(1) Let d := ϕ(n,m) = n+ 1−
⌊

n+1
m+1

⌋
−
⌈

n+1
m+1

⌉
. We have that:

k∑
j=0

(−1)k−j

(
d− j

k − j

)(
n− j + 1, m

j

)
=

b k
mc∑

`=0

(−1)`
k∑

j=m`

(−1)k−j

(
d− j

k − j

)(
n− j + 1

`

)(
n−m`

j −m`

)

and

k∑
j=0

(−1)k−j

(
d− j

k − j

)(
n− j + 1, m

j

)
≥ 0, for all 0 ≤ k ≤ d.

(3) Let d =
⌊
n+m

2

⌋
. We have that:

k∑
j=0

(−1)k−j
(
d− j
k − j

)(
n− j + 1, m

j

)
≤
(
n− d+ k − 1

k

)
, for all 0 ≤ k ≤ d.

Proof. (1) The equality follows immediately from Lemma 3.4.
From Proposition 2.2, Proposition 3.1, (1) and (5) it follows that

βd
k(S/In,m) =

k∑
j=0

(−1)k−j
(
d− j
k − j

)(
n− j + 1, m

j

)
≥ 0,

for all 0 ≤ k ≤ d, as required.
(2) Note that the ideal In,m is minimally generated by n−m+ 1 monomials and

n−
⌊
n−m+1

2

⌋
=
⌊
n+m

2

⌋
. Hence, the conclusion follows from Proposition 2.2, Corollary

2.4, Proposition 3.1, (1) and (12). �

Corollary 3.6. (Case m = 2) Let n ≥ 2 be an integer. We have that:

(1)
k∑

j=0

(−1)k−j
(dn

3 e−j
k−j

)(
n−j+1

j

)
=
b k

2 c∑̀
=0

(−1)`
k∑

j=2`

(−1)k−j
(dn

3 e−j
k−j

)(
n−j+1

`

)(
n−2`
j−2`

)
, for

all 0 ≤ k ≤
⌈
n
3

⌉
.

(2)
k∑

j=0

(−1)k−j
(dn

3 e−j
k−j

)(
n−j+1

j

)
≥ 0, for all 0 ≤ k ≤

⌈
n
3

⌉
.

(3)
k∑

j=0

(−1)k−j
(bn

2 c+1−j
k−j

)(
n−j+1

j

)
≤
(bn

2 c+k−3

k

)
, for all 0 ≤ k ≤

⌊
n
2

⌋
+ 1.

Proof. (1) From Proposition 3.1, it follows that αk(S/In,2) =
(
n−k+1

k

)
for all 0 ≤ k ≤

n. The conclusion follows from Theorem 3.5. �

Remark 3.7. We consider the standard hypergeometric notation (cf. [15]), that is

rFs

[
a1, . . . , ar
b1, . . . , bs

; z

]
=

∞∑
k=0

(a1)k · · · (ar)k
k! (b1)k · · · (bs)k

zk .

By straightforward computations, we have

k∑
j=0

(−1)k−j
(
d− j
k − j

)(
n− j + 1

j

)
= (−1)k

(
d

k

)
4F3

[
−k,− 1

2 ,−
n
2 ,−

n
2

−d,−1,−n ; 4

]
.

Therefore, from Corollary 3.6(2) it follows that

(−1)k4F3

[
−k,− 1

2 ,−
n
2 ,−

n
2

−
⌈
n
3

⌉
,−1,−n ; 4

]
≥ 0 for all 0 ≤ k ≤

⌈n
3

⌉
.
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Also, from Corollary 3.6(3) it follows that

(−1)k4F3

[
−k,− 1

2 ,−
n
2 ,−

n
2

−
⌊
n
2

⌋
− 1,−1,−n; 4

]
≤
(bn

2 c+k−3

k

)
(bn

2 c+1

k

) for all 0 ≤ k ≤
⌊n

2

⌋
+ 1.

4. The m-path ideal of a cycle graph

Let n > m ≥ 2 be two integer and

Jn,m = In,m + (xn−m+2 · · ·xnx1, . . . , xnx1 · · ·xm−1) ⊂ S,

the m-path ideal associated to the cycle graph of length n. According to [5, Theorem
1.4] we have that

ϕ(n,m) ≥ sdepth(S/Jn,m) ≥ depth(S/Jn,m) = ϕ(n− 1,m). (13)

Also, according to [5, Proposition 1.6] we have that

sdepth(Jn,m/In,m) ≥ depth(Jn,m/In,m) ≥ ϕ(n− 1,m) +m− 1. (14)

Proposition 4.1. Let n > m ≥ 2 be two integers. We have that:
(1) sdepth(Jn,m) ≥ min{ϕ(n− 1,m) +m− 1, ϕ(n,m) + 1}.
(2) sdepth(Jn,m) ≥ depth(Jn,m) = ϕ(n− 1,m) + 1.
(3) If m ≥ 3 then sdepth(Jn,m) ≥ ϕ(n,m) + 1.

Proof. (1) We consider the short exact sequence

0→ In,m → Jn,m →
Jn,m
In,m

→ 0.

From [14, Lemma 2.2], (6) and (14) we get the required result.
(2) It follows from (1) and (13), since ϕ(n,m) ≥ ϕ(n− 1,m) and m ≥ 2.
(3) Since m ≥ 3, it follows that ϕ(n−1,m)+m−1 ≥ ϕ(n−1,m)+2 ≥ ϕ(n,m)+1,

hence, the first inequality follows from (1). �

Corollary 4.2. If m ≥ 3 then sdepth(Jn,m) ≥ sdepth(S/Jn,m) + 1.

Proof. It follows from (13) and Proposition 4.1(3). �

Proposition 4.3. With the above notations,

αk(Jn,m/In,m) =

2m−2∑
`=m

(2m− 1− `)
(
n− `− k + 1, m

k − `

)
.

Proof. As in the proof of Proposition 3.1, we put squarefree monomials of degree k
which are not in In,m in bijection with sequences of the form a = (a1, . . . , an−k+1),

where ai’s are integers such that 0 ≤ ai ≤ m − 1 for all i and
∑n−k+1

i=1 ai = k.
Let u ∈ Jn,m \ In,m such that deg(u) = k. Assume u = ua for a sequence a as
above. Since u ∈ Jn,m it follows that ` := a1 + an−k+1 ≥ m. On the other hand,
` ≤ 2(m−1) = 2m−2. Also, for a given ` ∈ {m,m+ 1, . . . , 2m−2} there are exactly
(2m−1−`) pairs (a1, an−k+1) such that a1 +an−k+1 = ` and 0 ≤ a1, an−k+1 ≤ m−1.
Note that the sequence (a2, a3, . . . , an−k) has length n−k−1 and satisfy the conditions

0 ≤ ai ≤ m− 1, for all 2 ≤ i ≤ n− k, and
∑n−k

i=2 ai = k − `.
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Therefore, there are
(
n−`−k+1, m

k−`
)

ways in which we can choose such sequences.

Since the monomial u is uniquely determined by the pair (a0, an−k+1) and the se-
quence (a2, a3, . . . , an−k) as above, we get the required conclusion. �

Proposition 4.4. Let n > m ≥ 2 and 0 ≤ k ≤ n be some integers. We have that

(1) αk(S/Jn,m) =
(
n−k+1, m

k

)
−

2m−2∑
`=m

(2m− 1− `)
(
n−`−k+1, m

k−`
)
.

(2) αk(Jn,m) =
(
n
k

)
−
(
n−k+1, m

k

)
+

2m−2∑
`=m

(2m− 1− `)
(
n−`−k+1, m

k−`
)
.

Proof. (1) It follows from Proposition 4.3, Proposition 3.1 and the obvious fact that

αk(S/Jn,m) = αk(S/In,m)− αk(Jn,m/In,m).

(2) If follows from (1) and the fact that αk(Jn,m) =
(
n
k

)
− αk(S/Jn,m). �

Theorem 4.5. Let n > m ≥ 2 be some integers. Let d := n−
⌊

n
m+1

⌋
−
⌈

n
m+1

⌉
. We

have that:

(1)
k∑

j=0

(−1)k−j
(
d−j
k−j
)((

n−j+1, m
j

)
−

2m−2∑
`=m

(2m− 1− `)
(
n−`−j+1, m

j−`
))
≥ 0,

for all 0 ≤ k ≤ d.

(2)
k∑

j=0

(−1)k−j
(
d+m−1−j

k−j
) 2m−2∑

`=m

(2m− 1− `)
(
n−`−j+1, m

j−`
)
≥ 0,

for all 0 ≤ k ≤ d+m− 1.

(3)
k∑

j=0

(−1)k−j
(dn

2 e−j
k−j

)((
n−j+1, m

j

)
−

2m−2∑
`=m

(2m− 1− `)
(
n−`−j+1, m

j−`
))
≤
(bn

2 c+k−1

k

)
,

for all 0 ≤ k ≤
⌈
n
2

⌉
.

Proof. (1) As in the proof of Theorem 3.5, the conclusion follows from Proposition
2.2, Proposition 4.4(1), (4), (13) and (1).

(2) It follows from Proposition 2.2, Proposition 4.3, (4), (14) and (1).
(3) It follows from Proposition 2.2, Proposition 4.4(2), Proposition 4.1(2), (1) and

(12). �

Corollary 4.6. (Case m = 2) Let n ≥ 3 be an integer. We have that:

(1)
k∑

j=0

(−1)k−j
(dn−1

3 e−j
k−j

)(
n−j+1

j

)
≥

k∑
j=2

(−1)k−j
(dn−1

3 e−j
k−j

)(
n−j+1
j−2

)
for all 0 ≤ k ≤⌈

n−1
3

⌉
.

(2)
k∑

j=2

(−1)k−j
(dn+2

3 e−j
k−j

)(
n−j+1
j−2

)
≥ 0 for all 2 ≤ k ≤

⌈
n+2

3

⌉
.

(3)
(bn

2 c+k−1

k

)
−

k∑
j=0

(−1)k−j
(dn

2 e−j
k−j

)(
n−j+1

j

)
≥

k∑
j=2

(−1)k−j
(dn

2 e−j
k−j

)(
n−j+1
j−2

)
for all 0 ≤

k ≤
⌈
n
2

⌉
.

Proof. It follows immediately from Theorem 4.5. �

Remark 4.7. Similarly to Remark 3.7, we have that

k∑
j=2

(−1)k−j
(
d− j
k − j

)(
n− j + 1

j − 2

)
= (−1)k

(
d− 2

k − 2

)
3F2

[
2− k, 1−n

2 , 2−n
2

2− d, 1− n ; 4

]
.



270 S. BĂLĂNESCU AND M. CIMPOEAŞ

In particular, from Corollary 4.6(2) it follows that

(−1)k3F2

[
2− k, 1−n

2 , 2−n
2

2−
⌈
n+2

3

⌉
, 1− n; 4

]
≥ 0, for all 2 ≤ k ≤

⌈
n+ 2

3

⌉
.

Other identities can be also derived from Corollary 4.6(1) and Corollary 4.6(3), but
we live them as an exercise for the reader.

5. Conclusion

Using the fact that Hilbert depth is a natural upper bound for the Stanley depth
and the new characterization of the Hilbert depth of a quotient of two squarefree
monomial ideals given in [3], we derived several combinatorial identities related to
the coefficients of the polynomial f(t) = (1 + t+ · · ·+ tm−1)n, while, direct proofs of
those inequalities seems out of reach.

Our method is suitable to prove similar inequalities, using other squarefree mono-
mial ideals, and their quotient rings, for which the Stanley depth or a sharp lower
bound is known.
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