Properties of derivations in a Semantic Schema

Nicolae Ţăndăreanu and Mihaela Ghindeanu

Abstract

The concept of semantic schema was introduced in [2]. The inference process was modeled there by means of a relation which is named derivation. In this paper we study several properties of the derivations in such a structure. These properties will be used in a future paper to design a knowledge manager based on semantic schemas.

2000 Mathematics Subject Classification. Primary 68T30; Secondary 68Q55. Key words and phrases. semantic schema, Peano algebra, derivation.

1. Introduction

The concept of semantic schema was introduced in [2]. We describe there a simple mechanism by which we can represent and process the knowledge. A semantic schema is a tuple of entities, each of which specifying some features of the representation process. This concept is an abstract structure which becomes a real description of a knowledge piece if some interpretation is considered. Various interpretations can be used for the same semantic schema. The concepts and results were applied in a client-server technology, trying to model some aspects concerning the use of the distributed knowledge in the domain of logic programming with constraints ([2]).

Two aspects are relieved in connection with a semantic schema \mathcal{S} :

1) A formal aspect in \mathcal{S} by which some formal computations in a Peano algebra are obtained.
2) An evaluation aspect with respect to some interpretation. The entities obtained in the previous step get values from a space, which is named the semantic space.
In this paper we give several algebraic properties for the formal aspect of the computations in a semantic schema. These computations are based on a specific relation defined in a semantic schema and this is named derivation. In Section 2 we review this concept. Several algebraic properties of a derivation are given in Section 3. These properties are useful to continue this research work, as we mention in the last section of this paper.

2. Semantic schema

Consider a symbol θ of arity 2 and a finite non-empty set A_{0}. We denote by \bar{A}_{0} the Peano θ-algebra ([1]) generated by A_{0}, therefore $\bar{A}_{0}=\bigcup_{n \geq 0} A_{n}$ where A_{n} are defined recursively as follows ([1]):

$$
\begin{equation*}
A_{n+1}=A_{n} \cup\left\{\theta(u, v) \mid u, v \in A_{n}\right\}, \quad n \geq 0 \tag{1}
\end{equation*}
$$

For every $\alpha \in \overline{A_{0}}$ we define $\operatorname{trace}(\alpha)$ as follows:

[^0](1) if $\alpha \in A_{0}$ then $\operatorname{trace}(\alpha)=<\alpha>$
(2) if $\alpha=\theta(u, v)$ then $\operatorname{trace}(\alpha)=<p, q>$, where $\operatorname{trace}(u)=<p>$ and $\operatorname{trace}(v)=<q>$.
If $E \subseteq A_{1} \times \ldots \times A_{n}$ and $i \in\{1, \ldots, n\}$ then we denote
$$
p r_{i} E=\left\{x \in A_{i} \mid \exists\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, x_{n}\right) \in E\right\}
$$

Definition 2.1. A semantic θ-schema is a system $\mathcal{S}=\left(X, A_{0}, A, R\right)$ where

- X is a finite non-empty set of symbols and its elements are named object symbols
- A_{0} is a finite non-empty set of elements named label symbols
- $A_{0} \subseteq A \subseteq \bar{A}_{0}$, where \bar{A}_{0} is the Peano θ-algebra generated by A_{0}
- $R \subseteq X \times A \times X$ is a non-empty set which fulfills the following conditions

$$
\begin{gather*}
(x, \theta(u, v), y) \in R \Longrightarrow \exists z \in X:(x, u, z) \in R,(z, v, y) \in R \tag{2}\\
\theta(u, v) \in A,(x, u, z) \in R,(z, v, y) \in R \Longrightarrow(x, \theta(u, v), y) \in R \tag{3}\\
p r_{2} R=A \tag{4}
\end{gather*}
$$

In the remainder of this paper we say shortly θ-schema instead of semantic θ schema. We denote

$$
\begin{equation*}
R_{0}=R \cap\left(X \times A_{0} \times X\right) \tag{5}
\end{equation*}
$$

Let $\mathcal{S}=\left(X, A_{0}, A, R\right)$ be a semantic schema. We consider a symbol h of arity 1 , a symbol σ of arity 2 and take the set:

$$
M=\left\{h(x, a, y) \quad \mid \quad(x, a, y) \in R_{0}\right\}
$$

We denote by \mathcal{H} the Peano σ-algebra generated by M.
We denote by Z the alphabet which includes the symbol σ, the elements of X, the elements of A, the left and right parentheses, the symbol h and comma. We denote by Z^{*} the set of all words over Z. As in the case of a rewriting system we define two rewriting rules in the next definition.

Definition 2.2. Let be $w_{1}, w_{2} \in Z^{*}$. We define the binary relation \Rightarrow as follows:

- If $(x, a, y) \in R_{0}$ then $w_{1}(x, a, y) w_{2} \Rightarrow w_{1} h(x, a, y) w_{2}$
- Let be $(x, \theta(u, v), y) \in R$. If $(x, u, z) \in R$ and $(z, v, y) \in R$ then

$$
w_{1}(x, \theta(u, v), y) w_{2} \Rightarrow w_{1} \sigma((x, u, z),(z, v, y)) w_{2}
$$

The relation \Rightarrow is named the direct derivation relation over Z^{*}. We denote by \Rightarrow^{*} and \Rightarrow^{+}the reflexive and transitive closure of the relation \Rightarrow, respectively the transitive closure. The relation \Rightarrow^{*} will be called simply the derivation relation over Z^{*}.

Definition 2.3. For each $w \in Z^{*}$ where $w=w_{1} \ldots w_{n}$ with $w_{i} \in Z, i \in\{1, \ldots, n\}$, $n \geq 1$, we denote $\operatorname{first}(w)=w_{1}$ and $\operatorname{last}(w)=w_{n}$.

Definition 2.4. The mapping generated by \mathcal{S} is the mapping

$$
\mathcal{G}_{\mathcal{S}}: R \longrightarrow 2^{\mathcal{H}}
$$

defined as follows:

- $\mathcal{G}_{\mathcal{S}}(x, a, y)=\{h(x, a, y)\}$ for $a \in A_{0}$
- $\mathcal{G}_{\mathcal{S}}(x, \theta(u, v), y)=\left\{w \in \mathcal{H} \mid(x, \theta(u, v), y) \Rightarrow^{*} w\right\}$

3. Properties of the derivation relation

Proposition 3.1. Suppose $(x, \theta(u, v), y) \in R$. If $(x, \theta(u, v), y) \Rightarrow^{+} w$ then:
i) There is $z \in X$ such that $(x, \theta(u, v), y) \Rightarrow \sigma((x, u, z),(z, v, y)) \Rightarrow^{*} w$
ii) There are α and β such that:

1) $w=\sigma(\alpha, \beta)$
2) $(x, u, z) \Rightarrow^{*} \alpha,(z, v, y) \Rightarrow^{*} \beta$

Proof. The assertion i) is obviously true. We verify by induction on $n \geq 1$ that if $\sigma((x, u, z),(z, v, y)) \Rightarrow^{n} w$ then $\left.i i\right)$ is true and moreover, $\operatorname{last}(\alpha) \in)\}$ and $\operatorname{first}(\beta) \in$ $\{(, \sigma, h\}$.
For $n=1$ the following cases can be encountered:

1) $u \in A_{0}$ and $w=\sigma(h(x, u, z),(z, v, y))$. In that case $\alpha=h(x, u, z), \beta=(z, v, y)$ and $(x, u, z) \Rightarrow h(x, u, z)$.
2) $v \in A_{0}$ and $w=\sigma((x, u, z), h(z, v, y))$. We have $\alpha=(x, u, z), \beta=h(z, v, y)$ and $(z, v, y) \Rightarrow h(z, v, y)$.
3) $u=\theta\left(u_{1}, v_{1}\right), w=\sigma\left(\sigma\left(\left(x, u_{1}, z_{1}\right),\left(z_{1}, v_{1}, z\right)\right),(z, v, y)\right), \alpha=\sigma\left(\left(x, u_{1}, z_{1}\right),\left(z_{1}\right.\right.$, $\left.\left.v_{1}, z\right)\right), \beta=(z, v, y)$ for some $z_{1} \in X$.
4) $v=\theta\left(u_{2}, v_{2}\right), w=\sigma\left((x, u, z), \sigma\left(\left(z, u_{2}, z_{2}\right),\left(z_{2}, v_{2}, y\right)\right)\right), \alpha=(x, u, z), \beta=$ $\sigma\left(\left(z, u_{2}, z_{2}\right),\left(z_{2}, v_{2}, y\right)\right)$ for some $z_{2} \in X$.
We observe that the assertion is true for these cases. Suppose the assertion is true for n and consider a derivation:

$$
\sigma((x, u, z),(z, v, y)) \Rightarrow^{n} w_{1} \Rightarrow w
$$

By the inductive assumption, there are α_{1} and β_{1} such that

$$
\begin{aligned}
& w_{1}=\sigma\left(\alpha_{1}, \beta_{1}\right) \\
& (x, u, z) \Rightarrow^{*} \alpha_{1},(z, v, y) \Rightarrow^{*} \beta_{1} \\
& \operatorname{last}\left(\alpha_{1}\right) \in)\} \text { and } \operatorname{first}\left(\beta_{1}\right) \in\{(, \sigma, h\}
\end{aligned}
$$

We have $w_{1} \Rightarrow w$, therefore the following cases can be encountered:
$\left.i_{1}\right) \sigma\left(\alpha_{1}, \beta_{1}\right)=\omega_{1}\left(x_{1}, a, y_{1}\right) \omega_{2} \Rightarrow \omega_{1} h\left(x_{1}, a, y_{1}\right) \omega_{2}=w, a \in A_{0}$
$\left.i_{2}\right) \sigma\left(\alpha_{1}, \beta_{1}\right)=\omega_{1}\left(x_{1}, \theta\left(u_{1}, v_{1}\right), y_{1}\right) \omega_{2} \Rightarrow \omega_{1} \sigma\left(\left(x_{1}, u_{1}, z_{1}\right),\left(z_{1}, v_{1}, y_{1}\right)\right) \omega_{2}=w$ for some $z_{1} \in X$
Let us take into consideration the assumption $\operatorname{last}\left(\alpha_{1}\right) \in)\}$ and $\operatorname{first}\left(\beta_{1}\right) \in\{(, \sigma$, $h\}$. It follows that the word

$$
\operatorname{last}\left(\alpha_{1}\right), \text { first }\left(\beta_{1}\right)
$$

can be only one of the following words:

$$
\begin{aligned}
&),(\\
&), \sigma \\
&), h
\end{aligned}
$$

therefore either α_{1} is a subword of ω_{1} or β_{1} is a subword of ω_{2}.
The following cases are taken into consideration:
a) Suppose α_{1} is a subword of ω_{1}.

From i_{1}) and i_{2}) we deduce that $\left(x_{1}, a, y_{1}\right)$ or $\left(x_{1}, \theta\left(u_{1}, v_{1}\right), y_{1}\right)$ is a subword of β_{1}.

- If $\left(x_{1}, a, y_{1}\right)$ is a subword of β_{1} then $\beta_{1}=\mu_{1}\left(x_{1}, a, y_{1}\right) \mu_{2}$ for some words μ_{1} and μ_{2}. In that case, from i_{1}) we deduce that

$$
\sigma\left(\alpha_{1}, \beta_{1}\right)=\sigma\left(\alpha_{1}, \mu_{1}\left(x_{1}, a, y_{1}\right) \mu_{2}\right) \Rightarrow \sigma\left(\alpha_{1}, \mu_{1} h\left(x_{1}, a, y_{1}\right) \mu_{2}\right)=w
$$

therefore $w=\sigma(\alpha, \beta)$ for $\alpha=\alpha_{1}$ and $\beta=\mu_{1} h\left(x_{1}, a, y_{1}\right) \mu_{2}$. But

$$
\begin{gathered}
(x, u, z) \Rightarrow^{*} \alpha_{1} \Rightarrow^{*} \alpha \\
(z, v, y) \Rightarrow^{*} \beta_{1} \Rightarrow \beta
\end{gathered}
$$

$\left.\operatorname{last}(\alpha)=\operatorname{last}\left(\alpha_{1}\right) \in\{)\right\}, \operatorname{first}(\beta)=\operatorname{first}\left(\mu_{1}\right)=\operatorname{first}\left(\beta_{1}\right)$ if μ_{1} is a non-empty word and $\operatorname{first}(\beta)=h$ if μ_{1} is the empty word.

- Let us suppose that $\left(x_{1}, \theta\left(u_{1}, v_{1}\right), y_{1}\right)$ is a subword of β_{1}. In that case we obtain $\beta_{1}=\mu_{1}\left(x_{1}, \theta\left(u_{1}, v_{1}\right), y_{1}\right) \mu_{2}$ and from $\left.i_{2}\right)$ we deduce that

$$
\begin{aligned}
& \sigma\left(\alpha_{1}, \beta_{1}\right)=\sigma\left(\alpha_{1}, \mu_{1}\left(x_{1}, \theta\left(u_{1}, v_{1}\right), y_{1}\right) \mu_{2}\right) \\
& \sigma\left(\alpha_{1}, \mu_{1}\left(x_{1}, \theta\left(u_{1}, v_{1}\right), y_{1}\right) \mu_{2}\right) \Rightarrow \sigma\left(\alpha_{1}, \mu_{1} \sigma\left(\left(x_{1}, u_{1}, z_{1}\right),\left(z_{1}, v_{1}, y_{1}\right)\right) \mu_{2}\right) \\
& \sigma\left(\alpha_{1}, \mu_{1} \sigma\left(\left(x_{1}, u_{1}, z_{1}\right),\left(z_{1}, v_{1}, y_{1}\right)\right) \mu_{2}\right)=w
\end{aligned}
$$

therefore $w=\sigma(\alpha, \beta)$ for $\alpha=\alpha_{1}$ and $\beta=\mu_{1} \sigma\left(\left(x_{1}, u_{1}, z_{1}\right),\left(z_{1}, v_{1}, y_{1}\right)\right) \mu_{2}$.
b) Suppose now that β_{1} is a subword of ω_{2}. ¿From i_{1}) and i_{2}) we deduce that $\left(x_{1}, a, y_{1}\right)$ or $\left(x_{1}, \theta\left(u_{1}, v_{1}\right), y_{1}\right)$ is a subword of α_{1}. Suppose that $\left(x_{1}, a, y_{1}\right)$ is a subword of α_{1}, therefore $\alpha_{1}=\mu_{1}\left(x_{1}, a, y_{1}\right) \mu_{2}$. From i_{1}) we deduce that $\sigma\left(\alpha_{1}, \beta_{1}\right)=\sigma\left(\mu_{1}\left(x_{1}, a, y_{1}\right) \mu_{2}, \beta_{1}\right) \Rightarrow \sigma\left(\mu_{1} h\left(x_{1}, a, y_{1}\right) \mu_{2}, \beta_{1}\right)=w$, therefore $w=$ $\sigma(\alpha, \beta)$ for $\alpha=\mu_{1} h\left(x_{1}, a, y_{1}\right) \mu_{2}$ and $\beta=\beta_{1}$. But $(x, u, z) \Rightarrow^{*} \alpha_{1}$ and $\alpha_{1} \Rightarrow \alpha$, therefore $(x, u, z) \Rightarrow^{*} \alpha$. We have also $(z, v, y) \Rightarrow^{*} \beta_{1}$ and $\beta_{1}=\beta$, therefore $(z, v, y) \Rightarrow^{*} \beta$. In addition, $\operatorname{first}(\beta)=\operatorname{first}\left(\beta_{1}\right)$ and $\operatorname{last}(\alpha) \in)\}$ if μ_{2} is the empty word. If μ_{2} is a non-empty word, then $\operatorname{last}(\alpha)=\operatorname{last}\left(\mu_{2}\right)=\operatorname{last}\left(\alpha_{1}\right)$.
Thus the proposition is proved.
Proposition 3.2. If $(x, u, y) \Rightarrow^{+} \alpha$ and $\alpha \in(\{\sigma\} \cup M)^{*}$ then $\alpha \in \mathcal{H}$.
Proof. We prove by induction on n that if $(x, u, y) \Rightarrow^{n} \alpha$ and $\alpha \in(\{\sigma\} \cup M)^{*}$ then $\alpha \in \mathcal{H}$. We verify this property for $n=1$. If $(x, u, y) \Rightarrow \alpha$ then two cases are possible: 1) $u \in A_{0}$ and $\alpha=h(x, u, y)$. In that case we have $\alpha \in \mathcal{H}$.
2) $u \in A \backslash A_{0}$, therefore $u=\theta\left(u_{1}, v_{1}\right)$. In that case $\alpha=\sigma\left(\left(x, v_{1}, z_{1}\right),\left(z_{1}, v_{2}, y\right)\right)$ for some $z_{1} \in X$. This case is not possible because $\alpha \notin(\{\sigma\} \cup M)^{*}$.
Suppose the assertion is true for $n \in\{1, \ldots, k\}$ and take a derivation $(x, u, y) \Rightarrow^{k+1} \alpha$ such that $\alpha \in(\{\sigma\} \cup M)^{*}$. Because $k+1 \geq 2$ and $\alpha \in(\{\sigma\} \cup M)^{*}$ we have $u=\theta\left(v_{1}, v_{2}\right)$ for some $v_{1}, v_{2} \in A$. Really, if by contrary we suppose that $u \in A_{0}$ then we have:

$$
(x, u, y) \Rightarrow h(x, u, y) \Rightarrow^{k} h^{k}(x, u, y)=\alpha
$$

therefore $\alpha \notin(\{\sigma\} \cup M)^{*}$.
The derivation $(x, u, y) \Rightarrow^{k+1} \alpha$ can be written as follows:

$$
\left(x, \theta\left(v_{1}, v_{2}\right), y\right) \Rightarrow \sigma\left(\left(x, v_{1}, z\right),\left(z, v_{2}, y\right)\right) \Rightarrow^{k} \alpha
$$

for some $z \in X$. Applying Proposition 3.1 we deduce that there are β_{1}, β_{2} such that $\left(x, v_{1}, z\right) \Rightarrow^{*} \beta_{1},\left(z, v_{2}, y\right) \Rightarrow^{*} \beta_{2}$ and $\alpha=\sigma\left(\beta_{1}, \beta_{2}\right)$. Because $\alpha \in(\{\sigma\} \cup M)^{*}$ we have $\beta_{1}, \beta_{2} \in(\{\sigma\} \cup M)^{*}$. Applying the inductive assumption we have $\beta_{1}, \beta_{2} \in \mathcal{H}$, therefore $\alpha=\sigma\left(\beta_{1}, \beta_{2}\right) \in \mathcal{H}$.

Proposition 3.3. Suppose that $w \in \mathcal{G}_{\mathcal{S}}(x, \theta(u, v), y)$ and denote by α and β those elements of \mathcal{H}, uniquely determined, such that $w=\sigma(\alpha, \beta)$. There is $z \in X$, such that

$$
\begin{aligned}
& (x, \theta(u, v), y) \Rightarrow \sigma((x, u, z),(z, v, y)) \Rightarrow^{*} w \\
& \alpha \in \mathcal{G}_{\mathcal{S}}(x, u, z) \text { and } \beta \in \mathcal{G}_{\mathcal{S}}(z, v, y)
\end{aligned}
$$

Proof. We have $(x, \theta(u, v), y) \Rightarrow^{+} w$ and $w \in \mathcal{H}$ because $w \in \mathcal{G}_{\mathcal{S}}(x, \theta(u, v), y)$. But \mathcal{H} is a Peano σ-algebra, therefore w is written as $w=\sigma(\alpha, \beta)$ for $\alpha, \beta \in \mathcal{H}$ uniquely determined. By Proposition 3.1 there is $z \in X$ such that:

$$
(x, \theta(u, v), y) \Rightarrow \sigma((x, u, z),(z, v, y)) \Rightarrow^{*} w
$$

and there are α_{1}, β_{1} such that $w=\sigma\left(\alpha_{1}, \beta_{1}\right),(x, u, z) \Rightarrow^{*} \alpha_{1},(z, v, y) \Rightarrow^{*} \beta_{1}$. By Proposition 3.2 we obtain $\alpha_{1} \in \mathcal{H}$ and $\beta_{1} \in \mathcal{H}$. But $w=\sigma(\alpha, \beta)=\sigma\left(\alpha_{1}, \beta_{1}\right)$, where $\alpha, \beta, \alpha_{1}, \beta_{1} \in \mathcal{H}$. By the property of the Peano σ-algebra \mathcal{H}, we have $\alpha=\alpha_{1}$ and $\beta=\beta_{1}$. In conclusion, the proposition is proved.

Remark 3.1. Finally we shall prove that just one element z satisfies the conditions of the previous proposition.

Proposition 3.4. If $(x, u, z) \Rightarrow^{*} \alpha$ and $(z, v, y) \Rightarrow^{*} \beta$ then $\sigma((x, u, z),(z, v, y)) \Rightarrow^{*}$ $\sigma(\alpha, \beta)$

Proof. There are the following derivations:

$$
\begin{aligned}
& (x, u, z) \Rightarrow \omega_{1} \Rightarrow \omega_{2} \Rightarrow \ldots \Rightarrow \omega_{k} \Rightarrow \alpha \\
& (z, v, y) \Rightarrow w_{1} \Rightarrow w_{2} \Rightarrow \ldots \Rightarrow w_{r} \Rightarrow \beta
\end{aligned}
$$

We know that if $\mu \Rightarrow \nu$ is a direct derivation and $w \in Z^{*}$ then $w \mu \Rightarrow w \nu$ and $\mu w \Rightarrow \nu w$. Based on this property we obtain the following derivations:

$$
\begin{aligned}
& \sigma((x, u, z),(z, v, y)) \Rightarrow \sigma\left(\omega_{1},(z, v, y)\right) \Rightarrow \ldots \Rightarrow \sigma(\alpha,(z, v, y)) \\
& \sigma(\alpha,(z, v, y)) \Rightarrow \sigma\left(\alpha, w_{1}\right) \Rightarrow \ldots \Rightarrow \sigma(\alpha, \beta)
\end{aligned}
$$

and the proposition is proved.
Corollary 3.1.

$$
\mathcal{G}_{\mathcal{S}}(x, \theta(u, v), y)=\bigcup_{z \in X} \mathcal{G}_{\mathcal{S}}(x, u, z) \otimes_{\sigma} \mathcal{G}_{\mathcal{S}}(z, v, y)
$$

where $P \otimes_{\sigma} Q=\{\sigma(u, v) \mid u \in P, v \in Q\}$.
Proof. By Proposition 3.3, if $w \in \mathcal{G}_{\mathcal{S}}(x, \theta(u, v), y)$ then $w \in \mathcal{G}_{\mathcal{S}}(x, u, z) \otimes_{\sigma} \mathcal{G}_{\mathcal{S}}(z, v, y)$. Conversely, consider $w=\sigma(\alpha, \beta)$, where $\alpha \in \mathcal{G}_{\mathcal{S}}(x, u, z)$ and $\beta \in \mathcal{G}_{\mathcal{S}}(z, v, y)$.

It follows that $(x, u, z) \Rightarrow^{*} \alpha,(z, v, y) \Rightarrow^{*} \beta$ and $\alpha \in \mathcal{H}, \beta \in \mathcal{H}$. On the other hand, if $(x, u, z) \Rightarrow^{*} \alpha$ and $(z, v, y) \Rightarrow^{*} \beta$ then

$$
\begin{equation*}
\sigma((x, u, z),(z, v, y)) \Rightarrow^{*} \sigma(\alpha, \beta)=w \tag{6}
\end{equation*}
$$

as is stated in Proposition 3.4. But $\theta(u, v) \in A,(x, \theta(u, v), y) \in R,(x, u, z) \in R$ and $(z, v, y) \in R$. It follows that:

$$
(x, \theta(u, v), y) \Rightarrow \sigma((x, u, z),(z, v, y))
$$

therefore using (6) we deduce $(x, \theta(u, v), y) \Rightarrow^{*} w$. We recall that $\alpha, \beta \in \mathcal{H}$ and $w=\sigma(\alpha, \beta)$, therefore $w \in \mathcal{H}$. In this way we have $w \in \mathcal{G}_{\mathcal{S}}(x, \theta(u, v), y)$ and the proposition is proved.

Definition 3.1. We define:

$$
H(h(x, a, y))=<h(x, a, y)>\text { for } h(x, a, y) \in M
$$

$H(\sigma(\alpha, \beta))=<p, q>$, where $H(\alpha)=<p>$ and $H(\beta)=<q>, \sigma(\alpha, \beta) \in \mathcal{H}$, $\alpha \in \mathcal{H}, \beta \in \mathcal{H}$.

Proposition 3.5. Let be $u \in A$ such that trace $(u)=<a_{1}, \ldots, a_{n}>$. For every $\alpha \in$ $\mathcal{G}_{\mathcal{S}}\left(x_{1}, u, z_{1}\right)$ there are $y_{1}, \ldots, y_{n-1} \in X$ such that $H(\alpha)=<h\left(x_{1}, a_{1}, y_{1}\right), h\left(y_{1}, a_{2}, y_{2}\right)$, $\ldots, h\left(y_{n-1}, a_{n}, z_{1}\right)>$ for $n \geq 2$ and $H(\alpha)=<h\left(x_{1}, u, z_{1}\right)>$ for $n=1$.

Proof. We proceed by induction on n. For $n=1$ we have $\operatorname{trace}(u)=<a_{1}>$, therefore $u=a_{1} \in A_{0}$. If α is an arbitrary element of $\mathcal{G}_{\mathcal{S}}\left(x_{1}, u, z_{1}\right)$ then $\left(x_{1}, u, z_{1}\right) \Rightarrow^{*} \alpha$ and $\alpha \in \mathcal{H}$. This derivation is a direct one, that is $\left(x_{1}, u, z_{1}\right) \Rightarrow h\left(x_{1}, u, z_{1}\right)=\alpha$. It follows that $H(\alpha)=<h\left(x_{1}, u, z_{1}\right)>$ and the property is verified for $n=1$.

Consider $k \geq 1$ and suppose the proposition is true for $n \in\{1, \ldots, k\}$. Take an element $u \in A$ such that $\operatorname{trace}(u)=<a_{1}, \ldots, a_{k+1}>$. There is $u_{1}, v_{1} \in A$ such that $u=\theta\left(u_{1}, v_{1}\right)$. Take an element $\alpha \in \mathcal{G}_{\mathcal{S}}\left(x_{1}, u, z_{1}\right)=\mathcal{G}_{\mathcal{S}}\left(x_{1}, \theta\left(u_{1}, v_{1}\right), z_{1}\right)$. By Corollary 3.1 we deduce that there is $z \in X$ such that $\alpha=\sigma\left(\alpha_{1}, \beta_{1}\right)$, where $\alpha_{1} \in \mathcal{G}_{\mathcal{S}}\left(x_{1}, u_{1}, z\right)$ and $\beta_{1} \in \mathcal{G}_{\mathcal{S}}\left(z, v_{1}, z_{1}\right)$. We use the inductive assumption. Because $u=\theta\left(u_{1}, v_{1}\right)$ and $\operatorname{trace}(u)=<a_{1}, \ldots, a_{k+1}>$, it follows that there is $i \in\{1, \ldots, k\}$ such that $\operatorname{trace}\left(u_{1}\right)=<a_{1}, \ldots, a_{i}>$ and $\operatorname{trace}\left(v_{1}\right)=<a_{i+1}, \ldots, a_{k+1}>$.

By the inductive assumption we have the following properties:

1) there are $y_{1}, \ldots, y_{i-1} \in X$ such that $H\left(\alpha_{1}\right)=<h\left(x_{1}, a_{1}, y_{1}\right), h\left(y_{1}, a_{2}, y_{2}\right), \ldots$, $h\left(y_{i-1}, a_{i}, z\right)>$
2) there are $t_{1}, \ldots, t_{k-i} \in X$ such that $H\left(\beta_{1}\right)=<h\left(z, a_{i+1}, t_{1}\right), h\left(t_{1}, a_{i+2}, t_{2}\right), \ldots$, $h\left(t_{k-i}, a_{k+1}, z_{1}\right)>$
But $\alpha=\sigma\left(\alpha_{1}, \beta_{1}\right)$, therefore $H(\alpha)$ is the following system:

$$
<h\left(x_{1}, a_{1}, y_{1}\right), h\left(y_{1}, a_{2}, y_{2}\right), \ldots, h\left(y_{i-1}, a_{i}, z\right), h\left(z, a_{i+1}, t_{1}\right), \ldots, h\left(t_{k-i}, a_{k+1}, z_{1}\right)>
$$

and the proposition is proved.
Corollary 3.2. If $\mathcal{G}_{\mathcal{S}}\left(x_{1}, u, z_{1}\right) \cap \mathcal{G}_{\mathcal{S}}\left(x_{2}, v, z_{2}\right) \neq \emptyset$ then $x_{1}=x_{2}$, trace $(u)=\operatorname{trace}(v)$ and $z_{1}=z_{2}$.

Proof. If $\alpha \in \mathcal{G}_{\mathcal{S}}\left(x_{1}, u, z_{1}\right) \cap \mathcal{G}_{\mathcal{S}}\left(x_{2}, v, z_{2}\right)$ and $\operatorname{trace}(u)=<a_{1}, \ldots, a_{n}>, \operatorname{trace}(v)=<$ $b_{1}, \ldots, b_{k}>$ then by Proposition 3.5 there are $y_{1}, \ldots, y_{n-1}, t_{1}, \ldots, t_{k-1} \in X$ such that: $H(\alpha)=<h\left(x_{1}, a_{1}, y_{1}\right), h\left(y_{1}, a_{2}, y_{2}\right), \ldots, h\left(y_{n-1}, a_{n}, z_{1}\right)>$
$H(\alpha)=<h\left(x_{2}, b_{1}, t_{1}\right), h\left(t_{1}, b_{2}, t_{2}\right), \ldots, h\left(t_{k-1}, b_{k}, z_{2}\right)>$
therefore $n=k, a_{1}=b_{1}, \ldots, a_{n}=b_{k}, x_{1}=x_{2}, y_{1}=t_{1}, \ldots, y_{n-1}=t_{k-1}$ and $z_{1}=z_{2}$. Thus, $x_{1}=x_{2}$, $\operatorname{trace}(u)=\operatorname{trace}(v)$ and $z_{1}=z_{2}$.

Corollary 3.3. The element $z \in X$ from Proposition 3.3 is uniquely determined.
Proof. If $\alpha \in \mathcal{G}_{\mathcal{S}}\left(x, u, z_{1}\right) \cap \mathcal{G}_{\mathcal{S}}\left(x, u, z_{2}\right)$ then $z_{1}=z_{2}$ by Corollary 3.2.

4. Open problems

The following open problems are relieved:

- Study the case when the component A of a semantic schema is an infinite set. The corresponding set R is also an infinite set. Give an example of knowledge piece which can be modeled by such structures.
- Embed two distinct semantic schemas in a semantic schema.
- Introduce a partial order between two semantic schemas and find the least semantic schema which contains some semantic schemas.
- Combine two semantic schemas such that the reasoning by analogy can be performed.
- Design a knowledge manager which uses the previous concepts and can process the distributed knowledge.

References

[1] V.Boicescu, A.Filipoiu, G.Georgescu, S.Rudeanu, "Lukasiewicz-Moisil Algebras", Annals of Discrete Mathematics 49, North-Holland, 1991
[2] N. Ţăndăreanu - Semantic Schemas and Applications in Logical Representation of Knowledge, Proceedings of the 10th International Conference on Cybernetics and Information Technologies, Systems and Applications (CITSA2004), July 21-25, Orlando, Florida, 2004
(Nicolae Ţăndăreanu) Department of Computer Science, University of Craiova, Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania, Tel. \& Fax: 40-251412673
E-mail address: ntand@oltenia.ro
(Mihaela Ghindeanu) Department of Computer Science, University of Craiova, Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania, Tel. \& Fax: 40-251412673
E-mail address: mghindeanu@yahoo.com

[^0]: Received: July 15, 2005.

