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On the lattice of congruence filters of a residuated lattice

Raluca Creţan and Antoaneta Jeflea

Abstract. For a residuated lattice A we denote by Ds(A) the lattice of all congruence filters
(deductive systems) of A. The aim of this paper is to put in evidence some new rules of
calculus in residuated lattices and some properties of the lattice (Ds(A),⊆).

Also, we characterize the residuated lattices for which the lattice of congruence filters is a
Boolean lattice.
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1. Introduction

The origin of residuated lattices is in Mathematical Logic without contraction.
They have been investigated by Krull ([22]), Dilworth ([12]), Ward and Dilworth
([29]), Ward ([28]), Balbes and Dwinger ([1]) and Pavelka ([26]).

In [18], Idziak prove that the class of residuated lattices is equational. These lattices
have been known under many names: BCK- latices in [17], full BCK- algebras in [22],
FLew- algebras in [24], and integral, residuated, commutative l-monoids in [4].

Apart from their logical interest, residuated lattices have interesting algebraic prop-
erties (see [3], [8], [12], [21], [25], [28], [29]).

The paper is organized as follows.
In Section 2 we recall the basic definition and we put in evidence many new rules

of calculus in residuated lattices.
Section 3 contains some results relative to the lattice of congruence filters of a

residuated lattice. Theorem 3.4 characterize the residuated lattices for which the
lattice of congruence filters is a Boolean algebra.

2. Definitions and preliminaries

In this section we review the basic definitions of residuated lattices, with more
details and examples. Also we put in evidence connection between residuated lattices
and Hilbert algebras and new rules of calculus in residuated lattices.

Definition 2.1. A residuated lattice ([3], [27]) is an algebra

(A,∧,∨,¯,→, 0, 1)

of type (2,2,2,2,0,0) equipped with an order ≤ satisfying the following:
(LR1) (A,∧,∨, 0, 1) is a bounded lattice;
(LR2) (A,¯, 1) is a commutative ordered monoid;
(LR3) ¯ and → form an adjoint pair, i.e. c ≤ a → b iff a¯ c ≤ b for all a, b, c ∈ A.
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The relations between the pair of operations ¯ and → expressed by (LR3), is a
particular case of the law of residuation ([3]). Namely, let A and B two posets, and
f : A → B a map. Then f is called residuated if there is a map g : B → A, such that
for any a ∈ A and b ∈ B, we have f(a) ≤ b iff b ≤ g(a) (this is, also expressed by
saying that the pair (f, g) is a residuated pair).

Now setting A a residuated lattice, B = A, and defining, for any a ∈ A, two maps
fa, ga : A → A, fa(x) = x ¯ a and ga(x) = a → x, for any x ∈ A, we see that
x¯ a = fa(x) ≤ y iff x ≤ ga(y) = a → y for every x, y ∈ A, that is, for every a ∈ A,
(fa, ga) is a pair of residuation.

The symbols ⇒ and ⇔ are used for logical implication and logical equivalence.

Proposition 2.1. ([18]) The class RL of residuated lattices is equational.

One of the equational axiomatizations of RL can be:
(L) Equations axiomatizing the variety of bounded lattices;

(M) Equations axiomatizing the variety of commutative monoids;
(R1) (x¯ y) → z = x → (y → z);
(R2) [(x → y)¯ x] ∧ y = (x → y)¯ x (i.e., (x → y)¯ x ≤ y);
(R3) (x ∧ y) → y = 1.

Example 2.1. Let p be a fixed natural number and I = [0, 1] the real unit interval.
If for x, y ∈ I, we define x ¯ y = 1 −min{1, [(1 − x)p + (1 − y)p]1/p} and x → y =
sup{z ∈ [0, 1] : x¯ z ≤ y}, then (I,max, min,¯,→, 0, 1) is a residuated lattice.

Example 2.2. If we preserve the notation from Example 1, and we define for x, y ∈ I,
x ¯ y = (max{0, xp + yp − 1})1/p and x → y = min{1, (1 − xp + yp)1/p}, then
(I, max, min,¯,→, 0, 1) become a residuated lattice called generalized ÃLukasiewicz struc-
ture. For p = 1 we obtain the notion of ÃLukasiewicz structure (x ¯ y = max{0, x +
y − 1}, x → y = min{1, 1− x + y}).
Example 2.3. If on I = [0, 1], for x, y ∈ I we define x¯y = min{x, y} and x → y = 1
if x ≤ y and y otherwise, then (I, max, min,¯,→, 0, 1) is a residuated lattice (called
Gődel structure).

Example 2.4. If consider on I = [0, 1], ¯ to be the usual multiplication of real num-
bers and for x, y ∈ I, x → y = 1 if x ≤ y and y/x otherwise, then (I, max, min,¯,→
, 0, 1) is a residuated lattice (called Products structure or Gaines structure).

Example 2.5. If (A,∨,∧,′ , 0, 1) is a Boolean algebra, then if we define for every
x, y ∈ A, x ¯ y = x ∧ y and x → y = x′ ∨ y, then (A,∨,∧,¯,→, 0, 1) become a
residuated lattice.

Examples 2, 3 and 4 have some connections with the notion of t-norm.
We call continuous t-norm a continuous function ¯ : [0, 1] × [0, 1] → [0, 1] such

that ([0, 1],¯, 1) is an ordered commutative monoid.
So, there are three fundamental t-norms:
ÃLukasiewicz t-norm: x¯L y = max{0, x + y − 1};
Gődel t-norm: x¯G y = min{x, y};
Product ( or Gaines) t-norm: x¯P y = x¯ y.
Since relative to natural ordering on [0, 1], [0, 1] become a complete lattice, every

continuous t-norm introduce a natural residum (or implication) by

x → y = max{z ∈ [0, 1] : x¯ z ≤ y}.
So, the implications generated by the three norms mentioned before are
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x →L y = min{1, y − x + 1};
x →G y = 1 if x ≤ y and y otherwise;
x →P y = 1 if x ≤ y and y/x otherwise.

Definition 2.2. ([27]) A residuated lattice (A,∧,∨,¯,→, 0, 1) is called BL-algebra,
if the following two identities hold in A :

(BL1) x¯ (x → y) = x ∧ y;
(BL2) (x → y) ∨ (y → x) = 1.

Remark 2.1. 1. ÃLukasiewicz structure, Gődel structure and Product structure are
BL− algebras;

2. Not every residuated lattice, however, is a BL-algebra (see [27], p.16). Consider,
for example a residuated lattice defined on the unit interval I, for all x, y, z ∈ I,
such that

x¯ y = 0 if x + y ≤ 1
2

and x ∧ y elsewhere

x → y = 1 if x ≤ y and max{1
2
− x, y} elsewhere.

Let 0 < y < x, x + y < 1
2 . Then y < 1

2 − x and 0 6= y = x∧ y, but x¯ (x → y) =
x¯ ( 1

2 − x) = 0. Therefore (BL1) does not hold.

Remark 2.2. ([27]) If in a BL− algebra A, x∗∗ = x for all x ∈ A,(where x∗ =
x → 0), and for x, y ∈ A we denote x ⊕ y = (x∗ ¯ y∗)∗, then we obtain an algebra
(A,⊕,∗ , 0) of type (2, 1, 0) satisfying the following:

x⊕ (y ⊕ z) = (x⊕ y)⊕ z,x⊕ y = y ⊕ x,x⊕ 0 = x,

x⊕ 0∗ = 0∗,

(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x, for all x, y ∈ A.

Then for all x, y ∈ A, (y → x) → x = x ∨ y = (x → y) → y. BL− algebras of this
kind will turn out to be so called MV− algebras (see [27]). Conversely, if (A,⊕,∗ , 0)
is an MV -algebra, then (A,∧,∨,¯,→, 0, 1) is a BL-algebra, where for x, y ∈ A :

x¯ y = (x∗ ⊕ y∗)∗,

x → y = x∗ ⊕ y, 1 = 0∗,

x ∨ y = (x → y) → y = (y → x) → x and x ∧ y = (x∗ ∨ y∗)∗.

Remark 2.3. ([27]) A residuated lattice (A,∧,∨,¯,→, 0, 1) is an MV -algebra iff it
satisfies the additional condition: (x → y) → y = (y → x) → x, for any x, y ∈ A.

Example 2.6. ([19])We give an another example of a finite residuated lattice, which
is not a BL-algebra. Let A = {0, a, b, c, 1} with 0 < a, b < c < 1, but a, b are
incomparable. A become a residuated lattice relative to the following operations:

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

,

¯ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

.

The condition x ∨ y = [(x → y) → y] ∧ [(y → x) → x], for all x, y ∈ A is not verified,
since c = a ∨ b 6= [(a → b) → b] ∧ [(b → a) → a] = (b → b) ∧ (a → a) = 1, hence A is
not a BL-algebra.
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Example 2.7. ([21]) We consider the residuate lattice A with the universe {0, a, b, c, d, e, f, 1}.
Lattice ordering is such that 0 < d < c < b < a < 1, 0 < d < e < f < a < 1 and
elements {b, f} and {c, e} are pairwise incomparable. The operations of implication
and multiplication are given by the tables below :

→ 0 a b c d e f 1
0 1 1 1 1 1 1 1 1
a d 1 a a f f f 1
b e 1 1 a f f f 1
c f 1 1 1 f f f 1
d a 1 1 1 1 1 1 1
e b 1 a a a 1 1 1
f c 1 a a a a 1 1
1 1 a b c d e f 1

,

¯ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 c c c 0 d d a
b 0 c c c 0 0 d b
c 0 c c c 0 0 0 c
d 0 0 0 0 0 0 0 d
e 0 d 0 0 0 d d e
f 0 d d 0 0 d d f
1 0 a b c d e f 1

Clearly, A contains {a, b, c, d, e, f} as a sublattice, and that is a copy of the so-called
benzene ring, which shows that A is not distributive, and even not modular. But it is
easy to see that a∗ = d, b∗ = e, c∗ = f, d∗ = a, e∗ = b and f∗ = c.

Example 2.8. ([21]) Let A be the residuate lattice with the universe {0, a, b, c, d, 1}
such that 0 < b < a < 1, 0 < d < c < a < 1 and c and d are incomparable with b.
The operations of implication and multiplication are given by the tables below :

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 b c c 1
b c a 1 c c 1
c b a b 1 a 1
d b a b a 1 1
1 0 a b c d 1

,

¯ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a b d d a
b c b b 0 0 b
c b d 0 d d c
d b d 0 d d d
1 0 a b c d 1

Then A is obtained from the nonmodular lattice N5, called the pentagon, by adding
the new greatest element 1. Then A is another example of nondistributive residuated
lattice.

Example 2.9. ([19]) We give an example of a finite residuate lattice which is an non-
linearly MV -algebra. Let A = {0, a, b, c, d, 1}, with 0 < a, b < c < 1, 0 < b < d < 1,
but a, b and, respective c, d are incomparable. We define

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

,

¯ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

and so A become a BL−algebra.We have in A the following operations:
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⊕ 0 a b c d 1
0 0 a b c d 1
a a a c c 1 1
b b c d 1 d 1
c c c 1 1 1 1
d d 1 d 1 d 1
1 1 1 1 1 1 1

,
∗ 0 a b c d 1

1 d c b a 0

It is easy to see that 0∗ = 1, a∗ = d, b∗ = c, c∗ = b, d∗ = a, 1∗ = 0 and x∗∗ = x, for all
x ∈ A, hence A is an MV− algebra which is not chain.

Example 2.10. ([19]) We give an another example of a finite residuate lattice A =
{0, a, b, c, d, e, f, g, 1}, which is non-linearly MV− algebra, with 0 < a < b < e <
1, 0 < c < f < g < 1, a < d < g, c < d < e, but {a, c}, {b, d}, {d, f}, {b, f} and,
respective {e, g} are incomparable. We define

→ 0 a b c d e f g 1
0 1 1 1 1 1 1 1 1 1
a g 1 1 g 1 1 g 1 1
b f g 1 f g 1 f g 1
c e e e 1 1 1 1 1 1
d d e e g 1 1 g 1 1
e c d e f g 1 f g 1
f b b b e e e 1 1 1
g a b b d e e g 1 1
1 0 a b c d e f g 1

,

¯ 0 a b c d e f g 1
0 0 0 0 0 0 0 0 0 0
a 0 0 a 0 0 a 0 0 a
b 0 a b 0 a b 0 a b
c 0 0 0 0 0 0 c c c
d 0 0 a 0 0 a c c d
e 0 a b 0 a b c d e
f 0 0 0 c c c f f f
g 0 0 a c c d f f g
1 0 a b c d e f g 1

and so A become a residuated lattice.We have 0∗ = 1, a∗ = g, b∗ = f, c∗ = e, d∗ =
d, e∗ = c, f∗ = b, g∗ = a.

Example 2.11. ([19]) We give an example of a finite residuate lattice which is an
MV -algebra. Let A = {0, a, b, c, d, 1}, with 0 < a < b < 1, 0 < c < d < 1, but a, c and,
respective b, d are incomparable. We define

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 1 d 1 1
b c d 1 c d 1
c b b b 1 1 1
d a b b d 1 1
1 0 a b c d 1

,

¯ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 a 0 0 a
b 0 a b 0 a b
c 0 0 0 c c c
d 0 0 a c c d
1 0 a b c d 1

It is easy to see that 0∗ = 1, a∗ = d, b∗ = c, c∗ = b, d∗ = a.

In what follows by A we denote a residuated lattice; for x ∈ A and a natural
number n, we define x∗ = x → 0, (x∗)∗ = x∗∗, x0 = 1 and xn = xn−1 ¯ x for n ≥ 1.

Definition 2.3. An element a in A is called idempotent iff a2 = a, and it is called
nilpotent iff there exists a natural number n such that an = 0. The minimum n such
that an = 0 is called nilpotence order of a and will be denoted by ord(a); if there is
no such n, then ord(a) = ∞. A residuated lattice A is called locally finite if every
a ∈ A, a 6= 1, has finite order. An element a in A is called dense iff a∗ = 0, and it
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is called a unity iff for all natural numbers n, (an)∗ is nilpotent. The set of dense
elements of A will be denoted by D(A).

Theorem 2.1. ([21], [27]) Let x, x1, x2, y, y1, y2, z ∈ A. Then we have the following
rules of calculus:

(lr − c1) 1 → x = x, x → x = 1, y ≤ x → y, x → 1 = 1, 0 → x = 1;
(lr − c2) x¯ y ≤ x, y, hence x¯ y ≤ x ∧ y and x¯ 0 = 0;
(lr − c3) x¯ y ≤ x → y;
(lr − c4) x ≤ y iff x → y = 1;
(lr − c5) x → y = y → x = 1 ⇔ x = y;
(lr − c6) x¯ (x → y) ≤ y, x ≤ (x → y) → y, ((x → y) → y) → y = x → y;
(lr − c7) x¯ (y → z) ≤ y → (x¯ z) ≤ (x¯ y) → (x¯ z);
(lr − c8) x → y ≤ (x¯ z) → (y ¯ z);
(lr − c9) x ≤ y implies x¯ z ≤ y ¯ z;

(lr − c10) x → y ≤ (z → x) → (z → y);
(lr − c11) x → y ≤ (y → z) → (x → z);
(lr − c12) x ≤ y implies z → x ≤ z → y, y → z ≤ x → z and y∗ ≤ x∗,
(lr − c13) x → (y → z) = (x¯ y) → z = y → (x → z);
(lr − c14) x1 → y1 ≤ (y2 → x2) → [(y1 → y2) → (x1 → x2)].

Remark 2.4. ¿From lr − c1 and lr − c4 we deduce that 1 is the greatest element of
A.

Theorem 2.2. ([21], [27]) If x, y ∈ A, then :
(lr − c15) x¯ x∗ = 0 and x¯ y = 0 iff x ≤ y∗;
(lr − c16) x ≤ x∗∗, x∗∗ ≤ x∗ → x;
(lr − c17) 1∗ = 0 , 0∗ = 1;
(lr − c18) x → y ≤ y∗ → x∗;
(lr − c19) x∗∗∗ = x∗, (x¯ y)∗ = x → y∗ = y → x∗ = x∗∗ → y∗.

Theorem 2.3. ([21], [27]) If A is a complete residuated lattice, x ∈ A and (yi)i∈I a
family of elements of A, then :

(lr − c20) x¯ (
∨
i∈I

yi) =
∨
i∈I

(x¯ yi);

(lr − c21) x¯ (
∧
i∈I

yi) ≤
∧
i∈I

(x¯ yi);

(lr − c22) x → (
∧
i∈I

yi) =
∧
i∈I

(x → yi);

(lr − c23) (
∨
i∈I

yi) → x =
∧
i∈I

(yi → x);

(lr − c24)
∨
i∈I

(yi → x) ≤ (
∧
i∈I

yi) → x;

(lr − c25)
∨

(
i∈I

x → yi) ≤ x → (
∨
i∈I

yi);

(lr − c26) (
∨
i∈I

yi)∗ =
∧
i∈I

y∗i ;

(lr − c27) (
∧
i∈I

yi)∗ ≥
∨
i∈I

y∗i .

Corollary 2.1. ([8]) If x, x′, y, y′, z ∈ A then:
(lr − c28) x ∨ y = 1 implies x¯ y = x ∧ y;
(lr − c29) x → (y → z) ≥ (x → y) → (x → z);
(lr − c30) x∨ (y¯ z) ≥ (x∨ y)¯ (x∨ z), hence x∨ yn ≥ (x∨ y)nand xm ∨ yn ≥ (x∨ y)mn,

for any m,n natural numbers;
(lr − c31) (x → y)¯ (x

′ → y
′
) ≤ (x ∨ x

′
) → (y ∨ y

′
);

(lr − c32) (x → y)¯ (x
′ → y

′
) ≤ (x ∧ x

′
) → (y ∧ y

′
).

If B = {a1, a2, ..., an} is a finite subset of A we denote ΠB = a1 ¯ ...¯ an.
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Proposition 2.2. ([2], [5]) Let A1, ..., An finite subsets of A.
(lr − c33) If a1 ∨ ... ∨ an = 1, for all ai ∈ Ai, i ∈ {1, ..., n}, then

(ΠA1) ∨ ... ∨ (ΠAn) = 1.

Proof. For n = 2 it is proved in [5] and for n = 2, A1 a singleton and A2 a
doubleton in [2] (Lemma 6.4). The proof for arbitrary n is a simple mathematical
induction argument. ¥

Corollary 2.2. Let a1, ..., an ∈ A.
(lr − c34) If a1 ∨ ... ∨ an = 1, then ak

1 ∨ ... ∨ ak
n = 1, for every natural number k.

Proposition 2.3. Suppose A is a locally finite residuated lattice. Then for all a, b ∈
A, a ∨ b = 1 iff a = 1 or b = 1.

Proof. Assume a ∨ b = 1. Then, since a ∨ b ≤ [(a → b) → b] ∧ [(b → a) → a] we
deduce that (a → b) → b = (b → a) → a = 1, hence a → b = b and b → a = a. Let
now a 6= 1. Since the residuated lattice A is locally finite (under consideration) there
is a natural number m such that am = 0. Now b = a → b = a → (a → b) = a2 → b =
... = am → b = 0 → b = 1. ¥

Proposition 2.4. In any locally finite residuated lattice A, for all x ∈ A
(i) 0 < x < 1 iff 0 < x∗ < 1;

(ii) x∗ = 0 iff x = 1;
(iii) x∗ = 1 iff x = 0.

Proof. (i). Assume 0 < x < 1, ord(x) = m ≥ 2. Then, xm−1¯x = 0, xm−2¯x 6= 0,
so by the definition of x∗, 0 < xm−1 ≤ x∗ < xm−2 ≤ 1. Conversely, let 0 < x∗ < 1,
ord(x∗) = n ≥ 2. Then by similar argument, 0 < (x∗)n−1 ≤ x∗∗ < (x∗)n−2 ≤ 1.

If now x = 0, then x∗ = 1, a contradiction. Therefore 0 < x ≤ x∗∗ < 1.
(ii). If x∗ = 0 but x 6= 1, then 0 < x < 1, which leads to a contradiction x∗ 6= 0.

Thus x = 1.
(iii). Analogously as (ii). ¥
Let (L,∨,∧, 0, 1) be a bounded lattice. Recall (see [15]) that an element a ∈ L is

called complemented if there is an element b ∈ L such that a∨ b = 1 and a∧ b = 0; if
such element b exists it is called a complement of a. We will denote b = a′ and the set
of all complemented elements in L by B(L). Complements are generally not unique,
unless the lattice is distributive.

In residuated lattices however, although the underlying lattices need not be dis-
tributive, the complements are unique.

Lemma 2.1. ([21]) Suppose that a ∈ A have a complement b ∈ A. Then, the following
hold:
(i) If c is another complement of a in A, then c = b ;

(ii) a′ = b and b′ = a;
(iii) a2 = a.

Let B(A) the set of all complemented elements of the lattice L(A) = (A,∧,∨, 0, 1).

Proposition 2.5. ([6], [21]) A nontrivial residuated lattice A is directly indecompos-
able iff B(A) = {0, 1}.
Corollary 2.3. ([6], [21]) If A is subdirectly irreducible, then B(A) = {0, 1}.
Lemma 2.2. ([8]) If e ∈ B(A), then e′ = e∗ and e∗∗ = e.
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Remark 2.5. ([21]) If e, f ∈ B(A), then e∧f, e∨f ∈ B(A). Moreover, (e∨f)′ = e′∧f ′

and (e ∧ f)′ = e′ ∨ f ′. So, e → f = e′ ∨ f ∈ B(A).

Lemma 2.3. ([21]) If e ∈ B(A), then
(lr − c35) e¯ x = e ∧ x, for every x ∈ A.

Corollary 2.4. ([21]) The set B(A) is the universe of a Boolean subalgebra of A
(called the Boolean center of A).

Proposition 2.6. ([8]) For e ∈ A the following are equivalent:
(i) e ∈ B(A);

(ii) e ∨ e∗ = 1.

Definition 2.4. A totally ordered (linearly ordered) residuated lattice will be called
chain.

Remark 2.6. If A is a chain, then B(A) = {0, 1}.
Proposition 2.7. ([8]) For e ∈ A we consider the following assertions:
(1) e ∈ B(A);
(2) e2 = e and e = e∗∗;
(3) e2 = e and e∗ → e = e;
(4) (e → x) → e = e, for every x ∈ A;
(5) e ∧ e∗ = 0.

Then:
(i) (1) ⇒ (2), (3), (4) and (5),

(ii) (2) ; (1), (3); (1), (4); (1), (5) ; (1),
(iii) If A is a BL−algebra then the conditios (1)− (5) are equivalent.

Remark 2.7. 1. If A = {0, a, b, c, 1}, is the residuated lattice from Example 2.6,
then B(A) = {0, 1};

2. If A = {0, a, b, c, d, e, f, 1}, is the residuated lattice from Example 2.7, then
B(A) = {0, 1}; also B(A) = {0, 1}, where A is the residuated lattice from Exam-
ple 2.8;

3. If A = {0, a, b, c, d, 1}, is the residuated lattice from Example 2.9, then B(A) =
{0, a, d, 1};

4. If A = {0, a, b, c, d, e, f, g, 1}, is the residuated lattice from Example 2.10, then
B(A) = {0, b, f, 1};

5. If A = {0, a, b, c, d, 1}, is the residuated lattice from Example 2.11, then B(A) =
{0, b, c, 1}.

Lemma 2.4. ([8]) If e, f ∈ B(A) and x, y ∈ A, then:
(lr − c36) x¯ (x → e) = e ∧ x, e¯ (e → x) = e ∧ x;
(lr − c37) e ∨ (x¯ y) = (e ∨ x)¯ (e ∨ y);
(lr − c38) e ∧ (x¯ y) = (e ∧ x)¯ (e ∧ y);
(lr − c39) e¯ (x → y) = e¯ [(e¯ x) → (e¯ y)];
(lr − c40) x¯ (e → f) = x¯ [(x¯ e) → (x¯ f)];
(lr − c41) e → (x → y) = (e → x) → (e → y).

Corollary 2.5. If e ∈ B(A) and x, y ∈ A, then:
(lr − c42) e ∧ (x ∨ y) = (e ∧ x) ∨ (e ∧ y).

Definition 2.5. A Heyting algebra is a lattice (L,∨,∧) with 0 such that for every
a, b ∈ L, there exists an element a → b ∈ L (called the pseudocomplement of a
with respect to b) such that for every x ∈ L, a ∧ x ≤ b iff x ≤ a → b (that is,
a → b = sup{x ∈ L : a ∧ x ≤ b}).
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Definition 2.6. ([11]) Following Diego, by Hilbert algebra we mean an algebra (A,→
, 1) of type (2, 0) satisfying the following identities:

(H1) x → (y → x) = 1;
(H2) (x → (y → z)) → ((x → y) → (x → z)) = 1;
(H3) If x → y = y → x = 1, then x = y.

Remark 2.8. ([11]) If (L,∨,∧,→, 0) is a Heyting algebra, then (L,→, 1) is a Hilbert
algebra, where 1 = a → a for an element a ∈ L.

Taking as a guide -line the case of BL− algebras ([7]), a residuated lattice A will
be called G- algebra if x2 = x, for every x ∈ A.

Remark 2.9. In a G-algebra A, x¯ y = x ∧ y for every x, y ∈ A.

Proposition 2.8. In a residuated lattice A the following assertions are equivalent :
(i) x2 = x for every x ∈ A;

(ii) x¯ (x → y) = x¯ y = x ∧ y for every x, y ∈ A.

Proof. (i) ⇒ (ii). Let x, y ∈ A. By (lr − c7) we have

x¯ (x → y) ≤ (x¯ x) → (x¯ y) ⇔ x¯ (x → y) ≤ x → (x¯ y) ⇔
x → y ≤ x → (x → (x¯ y)) = x2 → (x¯ y) = x → (x¯ y) ⇒

x¯ (x → y) ≤ x¯ y.

Since y ≤ x → y, then x¯ y ≤ x¯ (x → y), so x¯ (x → y) ≤ x¯ y.
Clearly, x¯ y ≤ x, y. To prove x¯ y = x ∧ y, let t ∈ A such that t ≤ x and t ≤ y.

Then t = t2 ≤ x¯ y, that is, x¯ y = x ∧ y.
(ii) ⇒ (i). In particular for x = y we obtain x¯ x = x ∧ x = x ⇔ x2 = x. ¥

Proposition 2.9. For a residuated lattice (A,∧,∨,¯,→, 0, 1) the following are equiv-
alent:
(i) (A,→, 1) is a Hilbert algebra;

(ii) (A,∧,∨,¯,→, 0, 1) is a G-algebra.

Proof. (i) ⇒ (ii). Suppose that (A,→, 1) is a Hilbert algebra, then for every
x, y, z ∈ A we have

x → (y → z) = (x → y) → (x → z).
¿From lr − c13 we have

x → (y → z) = (x¯ y) → z and (x → y) → (x → z) = (x¯ (x → y)) → z,

so we obtain
(x¯ y) → z = (x¯ (x → y)) → z

hence x¯ y = x¯ (x → y); for x = y we obtain x2 = x, that is, A is a G- algebra.
(ii) ⇒ (i). Follows from Proposition 2.8. ¥

3. The lattice of congruence filters of a residuated lattice

In this section we present new results relative to lattice of congruence filters of
a residuated lattice. We characterize the residuated lattices for which the lattice of
congruence filters is a Boolean algebra.

Definition 3.1. ([21], [27]) A non empty subset D ⊆ A is called a congruence filters
of A if the following conditions are satisfied:

(Ds1) 1 ∈ D;
(Ds2) If x, x → y ∈ D, then y ∈ D.
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Clearly {1} and A are congruence filters ; a congruence filter D of A is called proper
if D 6= A.

Remark 3.1. 1. A congruence filter D is proper iff 0 /∈ D iff no element a ∈ A
holds a, a∗ ∈ D;

2. a ∈ D iff an ∈ D for every n ≥ 1.

Remark 3.2. ([21], [27]) A nonempty subset D⊆ A is a congruence filters of A iff
for all x, y ∈ A :

(Ds′1) If x, y ∈ D, then x¯ y ∈ D;
(Ds′2) If x ∈ D, y ∈ A, x ≤ y, then y ∈ D.

Remark 3.3. Congruence filters are called also deductive systems in literature. To
avoid confusion we reserve, however in this paper, the name filter to lattice filters
and deductive system (ds) for congruence filters. From (lr − c2) and Remark 3.2 we
deduce that every ds of A is a filter for L(A), but filters of L(A) are not, in general,
congruence filters for A (see [27]).

We denote by Ds(A) the set of all congruence filters (deductive systems, ds for
short) of A.

Whith any ds D of A we can (see [21], [27]) associate a congruence θD on A by
defining : (a, b) ∈ θD iff a → b, b → a ∈ D iff (a → b)¯ (b → a) ∈ D. Conversely, for
θ ∈ Con(A), the subset Dθ of A defined by a ∈ Dθ iff (a, 1) ∈ θ is a ds of A. Moreover
the natural maps associated whith the above are mutually inverse and establish an
isomorphism between the lattices Ds(A) and Con(A).

For a ∈ A, let a/D be the equivalence class of a modulo θD. If we denote by
A/D the quotient set A/θD, then A/D becomes a residuated lattice with the natural
operations induced from those of A. Clearly, in A/D, 0 = 0/D and 1 = 1/D.

Proposition 3.1. Let D ∈ Ds(A), and a, b ∈ A, then
(i) a/D = 1/D iff a ∈ D, hence a/D 6= 1 iff a /∈ D;

(ii) a/D = 0/D iff a∗ ∈ D;
(iii) If D is proper and a/D = 0/D, then a /∈ D;
(iv) a/D ≤ b/D iff a → b ∈ D.

Proof. (i). We have a/D = 1/D iff (a → 1)¯ (1 → a) ∈ D iff 1¯ a = a ∈ D.
(ii). We have a/D = 0/D iff (a → 0)¯ (0 → a) ∈ D iff a∗ ¯ 1 = a∗ ∈ D.
(iii). Follow from Remark 3.1.
(iv). By lr − c4 we have a/D ≤ b/D iff a/D → b/D = 1 iff (a → b)/D = 1/D iff

a → b ∈ D (by (i)). ¥
It follows immediately from the above that a residuated lattice A (see and [6]) is

subdirectly irreducible iff it has the second smallest ds, i.e. the smallest ds among all
ds except {1}. The next theorem characterises internally subdirectly irreducible and
simple residuated lattices.

Theorem 3.1. ([21]) A residuated lattice A is:
(i) subdirectly irreducible (si for short) iff there exists an element a < 1 such that

for any x < 1 there exists a natural number n ≥ 1 such that xn ≤ a;
(ii) simple iff a can be taken to be 0.

Proposition 3.2. ([21]) In any si residuated lattice, if x ∨ y = 1, then either x = 1
or y = 1 holds.

Therefore, every si residuated lattice has at most one coatom (recall that are
element a of a lattice L with the greatest element 1 is a coatom if it is maximal
among elements in L\{1}).
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The next result characterises these si residuated lattices which have the coatom:

Theorem 3.2. ([20]) A residuated lattice A has the unique coatom iff there exists an
element a < 1 and a natural number n such that xn ≤ a holds for any x < 1.

Directly indecomposable residuated lattices also have quite a handly description.
It was obtained for a subvariety of residuated latticers, called product algebras, by
Cignoli and Torrens in [10].

For arbitrary residuated lattices we have:

Theorem 3.3. ([21]) A nontrivial residuated lattice A is directly indecomposable iff
B(A) = {0, 1}.
Remark 3.4. The lattices from Examples 2.6, 2.7 and 2.8 are directly indecompos-
able.

For a nonempty subset S ⊆ A, the smallest ds of A which contains S, i.e. ∩{D ∈
Ds(A) : S ⊆ D}, is said to be the ds of A generated by S and will be denoted by [S).

If S = {a}, with a ∈ A, we denote by [a) the ds generated by {a} ([a) is called
principal).

For D ∈ Ds(A) and a ∈ A, we denote by D(a) = [D ∪ {a}) (clearly, if a ∈ D, then
D(a) = D).

Proposition 3.3. ([21], [27]) Let S ⊆ A a nonempty subset of A, a ∈ A, D,D1, D2 ∈
Ds(A). Then
(i) If S is a ds, then [S) = S;

(ii) [S) = {x ∈ A : s1¯ ...¯sn ≤ x, for some n ≥ 1 and s1, ..., sn ∈ S}. In particular,
[a) = {x ∈ A : x ≥ an, for some n ≥ 1};

(iii) D(a) = {x ∈ A : x ≥ d¯ an, whith d ∈ D and n ≥ 1};
(iv) [D1 ∪D2) = {x ∈ A : x ≥ d1 ¯ d2 for some d1 ∈ D1 and d2 ∈ D2}.
Lemma 3.1. Let D ∈ Ds(A) and a ∈ A. Then D(a) = {x ∈ A : an → x ∈ D, for
some n ≥ 1}.

Proof. If x ∈ D(a), then x ≥ d¯an, for some n ≥ 1 and d ∈ D. Thus, d ≤ an → x,
so an → x ∈ D.

Conversely, assume that d = an → x ∈ D for some n ≥ 1. We also have (an¯d) →
x = d → (an → x) = d → d = 1, hence an ¯ d ≤ x. Therefore, x ∈ D(a). ¥

Proposition 3.4. For any element x of a residuated lattice A, there is a proper ds
D of A such that x ∈ D iff ord(x) = ∞.

Proof. Let D be a proper ds and x ∈ D. Then xn ∈ D, for some natural number
n ≥ 1, whence xn 6= 0 for any natural number n. Therefore ord(x) = ∞. Conversely,
if ord(x) = ∞, then D = [x) = {y ∈ A : xn ≤ y for some natural number n} is a
proper ds of A and x ∈ D. ¥

For D1, D2 ∈ Ds(A) we put

D1 ∧D2 = D1 ∩D2 and D1 ∨D2 = [D1 ∪D2).

Proposition 3.5. If a, b ∈ A, then
(i) [a) = {x ∈ A : a ≤ x} iff a¯ a = a ;

(ii) a ≤ b implies [b) ⊆ [a);
(iii) [a) ∩ [b) = [a ∨ b);
(iv) [a) ∨ [b) = [a ∧ b) = [a¯ b);
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(v) [a) = 1 iff a = 1.

Proof. (i), (ii). Obviously.
(iii). Since a, b ≤ a ∨ b, by (ii), [a ∨ b) ⊆ [a), [b), hence [a ∨ b) ⊆ [a) ∩ [b). Let

now x ∈ [a) ∩ [b); then x ≥ am, x ≥ bn for some natural numbers m,n ≥ 1, hence
x ≥ am ∨ bn ≥ (a∨ b)mn, (by lr− c30), so x ∈ [a∨ b), that is, [a)∩ [b) ⊆ [a∨ b). Hence
[a) ∩ [b) = [a ∨ b).

(iv). Since a¯ b ≤ a ∧ b ≤ a, b, by (ii), we deduce that [a), [b) ⊆ [a ∧ b) ⊆ [a¯ b),
hence [a) ∨ [b) ⊆ [a ∧ b) ⊆ [a¯ b).

For the converse inclusions, let x ∈ [a¯ b). Then for some natural number n ≥ 1,
x ≥ (a¯ b)n = an¯ bn ∈ [a)∨ [b) (since an ∈ [a), bm ∈ [b)), (by Proposition 3.3, (ii)),
hence x ∈ [a) ∨ [b), that is, [a¯ b) ⊆ [a) ∨ [b), so [a) ∨ [b) = [a ∧ b) = [a¯ b).

(v). Obviously. ¥

Corollary 3.1. If we denote by Dsp(A) the family of all principal ds of A, then
Dsp(A) is a bounded sublattice of Ds(A).

Proof. Apply Proposition 3.5, (iii), (iv) and the fact that {1} = [1) ∈ Dsp(A)
and A = [0) ∈ Dsp(A). ¥

Definition 3.2. We recall ([15], p.93) that a lattice (L,∨,∧) is called Brouwerian if
it satisfies the identity a ∧ (

∨
i

bi) =
∨
i

(a ∧ bi) ) (whenever the arbitrary unions

exists). Let L be a complete lattice and let a be an element of L. Then a is called
compact if a ≤ ∨X for some X ⊆ L implies that a ≤ ∨X1 for some finite X1 ⊆ X.
A complete lattice is called algebraic if every element is the join of compact elements
(in the literature, algebraic lattices are also called compactly generated lattices).

Proposition 3.6. The lattice (Ds(A),⊆ ) is a complete Brouwerian lattice (hence
distributive), the compacts elements being exactly the principal ds of A.

Proof. Clearly, if (Di)i∈I is a family of ds from A, then the infimum of this family
is ∧

i∈I
Di = ∩

i∈I
Di and the supremum is ∨

i∈I
Di = [ ∪

i∈I
Di) = {x ∈ A : x ≥

xi1 ¯ ...¯xim , where i1, ..., im ∈ I, xij ∈ Dij , 1 ≤ j ≤ m}, that is, Ds(A) is complete.
We will to prove that the compacts elements of Ds(A) are exactly the principal ds

of A. Let D be a compact element of Ds(A). Since D =
∨
a∈D

[a), there are m ≥ 1

and a1, ..., am ∈ A such that D = [a1) ∨ ... ∨ [am) = [a1 ¯ ....¯ am), (by Proposition
3.5, (iv)). Hence D is a principal ds of A.

Conversely, let a ∈ A and (Di)i∈I be a family of ds of A such that [a) ⊆ i ∈ I∨ Di.

Then a ∈ i ∈ I∨ Di = [ i ∈ I∪ Di), so we deduce that there are m ≥ 1, i1, ..., im ∈
I, xij ∈ Dij (1 ≤ j ≤ m) such that a ≥ xi1 ¯ ...¯ xim .

It follows that a ∈ [Di1 ∪ ... ∪Dim), so [a) ⊆ [Di1 ∪ ... ∪Dim) = Di1 ∨ ... ∨Dim .
For any ds D we have D = a ∈ D∨ [a), so the lattice Ds(A) is algebraic.

In order to prove that Ds(A) is Brouwerian we must show that for every ds D and
every family (Di)i∈I of ds, D ∧ ( i ∈ I∨ Di) = i ∈ I∨ (D ∧Di) ⇔ D ∩ ( i ∈ I∨ Di) =
[ i ∈ I∪ (D ∩Di)). Clearly, [ i ∈ I∪ (D ∩Di)) ⊆ D ∩ ( i ∈ I∨ Di).

Let now x ∈ D ∩ ( i ∈ I∨ Di). Then x ∈ D and there exist i1, ..., im ∈ I, xij ∈ Dij

(1 ≤ j ≤ m) such that x ≥ xi1 ¯ ... ¯ xim . Then x = x ∨ (xi1 ¯ ... ¯ xim) ≥
(x ∨ xi1)¯ ....¯ (x ∨ xim) (by lr− c30). Since x ∨ xij ∈ D ∩Dij , for every 1 ≤ j ≤ m
we deduce that x ∈ i ∈ I∨ (D ∩Di), hence D ∩ ( i ∈ I∨ Di) ⊆ i ∈ I∨ (D ∩Di), that
is, D ∩ ( i ∈ I∨ Di) = i ∈ I∨ (D ∩Di).¥
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For D1, D2 ∈ Ds(A) we put

D1 → D2 = {a ∈ A : D1 ∩ [a) ⊆ D2}.
Lemma 3.2. If D1, D2 ∈ Ds(A) then
(i) D1 → D2 ∈ Ds(A);

(ii) If D ∈ Ds(A), then D1 ∩D ⊆ D2 iff D ⊆ D1 → D2, that is,

D1 → D2 = sup{D ∈ Ds(A) : D1 ∩D ⊆ D2}.
Proof. (i). Since [1) = {1} and [1)∩D1 = {1} ⊆ D2 we deduce that 1 ∈ D1 → D2.
Let x, y ∈ A such that x ≤ y and x ∈ D1 → D2 , that is, [x) ∩ D1 ⊆ D2. Then

[y) ⊆ [x), so [y) ∩D1 ⊆ [x) ∩D1 ⊆ D2, hence [y) ∩D1 ⊆ D2, that is, y ∈ D1 → D2 .
To proof that (Ds′1) is verified, let x, y ∈ A such that x, y ∈ D1 → D2, hence

[x) ∩D1 ⊆ D2 and [y) ∩D1 ⊆ D2.

We deduce ([x)∩D1)∨( [y)∩D1) ⊆ D2, hence by Proposition 3.6, ([x)∨ [y))∩D1 ⊆
D2. By Proposition 3.5 we deduce that [x¯ y) ∩D1 ⊆ D2, hence, x¯ y ∈ D1 → D2,
that is, D1 → D2 ∈ Ds(A).

(ii). Suppose D1 ∩ D ⊆ D2 and let x ∈ D. Then [x) ⊆ D, hence [x) ∩ D1 ⊆
D ∩D1 ⊆ D2, so x ∈ D1 → D2, that is, D ⊆ D1 → D2.

Suppose D ⊆ D1 → D2 and let x ∈ D1∩D. Then x ∈ D, hence x ∈ D1 → D2, that
is, [x) ∩D1 ⊆ D2. Since x ∈ [x) ∩D1 ⊆ D2 we obtain x ∈ D2, that is, D1 ∩D ⊆ D2.
¥

For D1, D2 ∈ Ds(A), we denote

D1 ∗D2 = {x ∈ A : x ∨ y ∈ D2, for all y ∈ D1}.
Proposition 3.7. For all D1, D2 ∈ Ds(A), D1 ∗D2 = D1 → D2.

Proof. Let x ∈ D1 ∗ D2 and z ∈ [x) ∩ D1, that is, z ∈ D1 and z ≥ xn for some
n ≥ 1. Then x ∨ z ∈ D2. Since z = z ∨ xn ≥ (z ∨ x)n (by lr − c30) we deduce that
z ∈ D2, hence x ∈ D1 → D2, so D1 ∗D2 ⊆ D1 → D2.

For converse inclusion, let x ∈ D1 → D2. Thus [x) ∩D1 ⊆ D2, so, if y ∈ D1 then
x∨y ∈ [x)∩D1, hence x∨y ∈ D2. We deduce that x ∈ D1∗D2, so D1 → D2 ⊆ D1∗D2.
Since D1 ∗D2 ⊆ D1 → D2 we deduce that D1 ∗D2 = D1 → D2. ¥

Corollary 3.2. (Ds(A),∨,∧,→, {1}, A) is a Heyting algebra, where for D ∈ Ds(A),

D∗ = D → 0 = D → {1} = {x ∈ A : x ∨ y = 1, for every y ∈ D},
hence for every x ∈ D and y ∈ D∗, x ∨ y = 1. In particular, for every a ∈ A,

[a)∗ = {x ∈ A : x ∨ a = 1}.
Proposition 3.8. If x, y ∈ A, then [x¯ y)∗ = [x)∗ ∩ [y)∗.

Proof. If a ∈ [x¯y)∗, then a∨(x¯y) = 1. Since x¯y ≤ x, y then a∨x = a∨y = 1,
hence a ∈ [x)∗ ∩ [y)∗, that is, [x¯ y)∗ ⊆ [x)∗ ∩ [y)∗.

Let now a ∈ [x)∗ ∩ [y)∗, that is, a ∨ x = a ∨ y = 1.
By lr − c30 we deduce a ∨ (x ¯ y) ≥ (a ∨ x) ¯ (a ∨ y) = 1, hence a ∨ (x ¯ y) = 1,

that is, a ∈ [x¯ y)∗ .
It follows that [x)∗ ∩ [y)∗ ⊆ [x¯ y)∗, hence [x¯ y)∗ = [x)∗ ∩ [y)∗. ¥

Theorem 3.4. If A is a residuated lattice, then the following assertions are equiva-
lent:
(i) (Ds(A),∨,∧,∗ , {1}, A) is a Boolean algebra;
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(ii) Every ds of A is principal and for every a ∈ A there exists n ≥ 1 such that
a ∨ (an)∗ = 1.

Proof. (i) ⇒ (ii). Let D ∈ Ds(A) ; since Ds(A) is supposed Boolean algebra,
then D ∨D∗ = A. So, since 0 ∈ A, there exist a ∈ D, b ∈ D∗ such that a¯ b = 0.

Since b ∈ D∗ , by Corollary 3.2, it follow that a ∨ b = 1. By (lr − c28) we deduce
that a∧ b = a¯ b = 0, that is, b is the complement of a in L(A). Hence a, b ∈ B(A) =
B(L(A)).

If x ∈ D, since b ∈ D∗, we have b∨x = 1. Since a = a∧(b∨x) lr−c42= (a∧b)∨(a∧x) =
a ∧ x we deduce that a ≤ x, that is, D = [a). Hence every ds of A is principal.

Let now x ∈ A; since Ds(A) is a Boolean algebra, then [x)∨ [x)∗ = A ⇔ [x)∗(x) =
A ⇔ {a ∈ A : a ≥ c¯ xn, with c ∈ [x)∗ and n ≥ 1} = A (see Proposition 3.3, (ii)).

So, since 0 ∈ A, there exist c ∈ [x)∗ and n ∈ ω such that c¯ xn = 0. Since c ∈ [x)∗

, then x ∨ c = 1. By (lr − c15), from c¯ xn = 0 we deduce c ≤ (xn)∗. So, 1 = x ∨ c ≤
x ∨ (xn)∗, hence x ∨ (xn)∗ = 1.

(ii) ⇒ (i). By Corollary 3.2, Ds(A) is a Heyting algebra. To prove Ds(A) is a
Boolean algebra, we must show that for D ∈ Ds(A) , D∗ = {1} only for D = A
([1], p. 175). By hypothesis every ds of A is principal, so we have a ∈ A such that
D = [a).

Also, by hypothesis, for a ∈ A , there is n ∈ ω such that a∨(an)∗ = 1. By Corollary
3.2, (an)∗ ∈ [a)∗ = {1}, hence (an)∗ = 1, that is, an = 0. By Remark 3.1, we deduce
that 0 ∈ D, hence D = A. ¥
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Logics and Their Aplications to Fuzzy Subsets, Kluwer Academic Publishers, 1995.
[18] P. M. Idziak: Lattice operations in BCK-algebras, Mathematica Japonica, 29(1984), 839-846.
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