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Classes of residuated lattices

Lavinia Corina Ciungu

Abstract. The commutative residuated lattices were first introduced by M. Ward and R.P.
Dilworth as generalization of ideal lattices of rings. Non-commutative residuated lattices,
called sometimes pseudo-residuated lattices, biresiduated lattices or generalized residuated
lattices are algebraic counterpart of substructural logics, that is, logics which lack some of
the three structural rules, namely contraction, weakening and exchange. Complete studies on
residuated lattices were developed by H. Ono, T. Kowalski, P. Jipsen and C. Tsinakis. The
aim of this paper is to study some special classes of residuated lattices, such as local, perfect
and Archimedean residuated lattices. As an important result of the paper we prove that,
generally, the Archimedean residuated lattices are not commutative. Additionally, we study
some properties of the lattice of filters of a residuated lattice.
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1. Introduction

The concept of a commutative residuated lattice was firstly introduced by M. Ward
and R.P. Dilworth ([24]) as generalization of ideal lattices of rings. The properties of
a commutative residuated lattice were presented in [21] and the lattice of filters of a
commutative residuated lattice was investigated in [22]. A. Di Nola, G. Georgescu and
A. Iorgulescu introduced in [6] and [7] the pseudo BL-algebras as non-commutative
extension of Hájek’s BL-algebras.
Pseudo BL-algebra is an algebra L = (L,∧,∨,¯,→, Ã, 0, 1) of the type (2, 2, 2, 2, 2, 0, 0)
satisfying the following conditions:
(L1) (L,∧,∨, 0, 1) is a bounded lattice;
(L2) (L,¯, 1) is a non-commutative monoid;
(L3) x¯ y ≤ z iff x ≤ y → z iff y ≤ x Ã z for any x, y, z ∈ L (pseudo-residuation) ;
(L4) (x → y)¯ x = x¯ (x Ã y) = x ∧ y (pseudo divisibility) ;
(L5) (x → y) ∨ (y → x) = (x Ã y) ∨ (y Ã x) = 1 (pseudo prelinearity).
If the algebra L satisfies (L1), (L2), (L3) and (L5), then L is called pseudo MTL-
algebra (also called weak pseudo BL-algebra). These structures were studied by P.
Flondor, G. Georgescu and A. Iorgulescu in [12] and [17].
If the algebra L satisfies (L1), (L2), (L3) and (L4), then L is called R`-monoid and
it was investigated by A. Dvurec̆enskij and J. Rachnek in [10] and [11].
An algebra L = (L,∧,∨,¯,→, Ã, 0, 1) satisfying (L1), (L3) and (L3) is a non-
commutative residuated lattices, called sometimes pseudo-residuated lattice, biresidu-
ated lattice or generalized residuated lattice. Studies on these structures were deeply
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developed in [1], [18] and [19]. In this paper we will investigate some classes of residu-
ated lattices, such as local, perfect and Archimedean residuated lattices. Additionally,
we study some properties of the lattice of filters of a residuated lattice.

2. Residuated lattices and their basic properties

Definition 2.1. ([1]) A residuated lattice is an algebra L = (L,∧,∨,¯,→, Ã, 0, 1) of
the type (2, 2, 2, 2, 2, 0, 0) satisfying the following conditions:
(L1) (L,∧,∨, 0, 1) is a bounded lattice;
(L2) (L,¯, 1) is a non-commutative monoid;
(L3) x¯ y ≤ z iff x ≤ y → z iff y ≤ x Ã z for any x, y, z ∈ L.
L is called commutative if the operation ¯ is commutative.

In the sequel we will agree that the operations ∧,∨,¯ have higher priority than
the operations →, Ã .

Example 2.2. Let’s take L = {0, a, b, c, 1} where 0 < a < b, c < 1 and b, c are
incomparable. Consider the operations ¯,→,Ã given by the following tables:

¯ 0 a b c 1
0 0 0 0 0 0
a 0 0 0 a a
b 0 a b a b
c 0 0 0 c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 c 1
c 0 b b 1 1
1 0 a b c 1

Ã 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b 0 c 1 c 1
c b b b 1 1
1 0 a b c 1

.

Then L = (L,∧,∨,¯,→,Ã, 0, 1) is a residuated lattice.

Example 2.3. Let’s consider a pseudo-MV algebra M = (M,⊕,−,∼, 0, 1) with the
additional operation x¯ y = (y− ⊕ x−)∼.
The order on M is defined by x ≤ y iff x− ⊕ y = 1 (iff y ⊕ x∼ = 1).
Defining x∧ y = x¯ (x−⊕ y) and x∨ y = x⊕ x∼¯ y, according to [14], (Proposition
1.13), (M,∧,∨, 0, 1) is a bounded distributive lattice.
Applying [14] (Proposition 1.7), (M,¯, 1) is a non-commutative monoid.
If we define x → y = y⊕x∼ and x Ã y = x−⊕ y, then according to [14] (Proposition
1.12) we have x¯ y ≤ z iff x ≤ y → z iff y ≤ x Ã z.
Thus, M = (M,∧,∨,¯,→, Ã, 0, 1) is a bounded residuated lattice.

Remark 2.4. (1) If additionally for any x, y ∈ L the structure L satisfies the axioms:
(L4) (x → y)¯ x = x¯ (x Ã y) = x ∧ y (pseudo divisibility) ;
(L5) (x → y) ∨ (y → x) = (x Ã y) ∨ (y Ã x) = 1 (pseudo prelinearity)
then L is a pseudo-BL algebra.
(2) If L satisfies the conditions (L1), (L2), (L3) and (L5), then it is a weak pseudo-BL
algebra (or pseudo-MTL algebra).
(3) If L satisfies the conditions (L1), (L2), (L3) and (L4), then it is a bounded R`-
monoid or divisible residuated lattice ([11]).

One can easy prove that the structure L = (L,∧,∨,¯,→,Ã, 0, 1) from Example
2.2 is neither pseudo BL-algebra, nor R`-monoid, because

(b → a)¯ b 6= b¯ (b Ã a),

so (L4) doesn’t hold.
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Remark 2.5. (1) A residuated lattice is commutative iff x → y = x Ã y for any x, y
;
(2) Let (L,∧,∨,¯, 0, 1) be a structure satisfying conditions (L1) and (L2). If exists
a pair (→,Ã) of operations such that (L,∧,∨,¯,→, Ã, 0, 1) is a residuated lattice,
then the pair is unique ;
(3) If a residuated lattice is a chain, then it is a weak pseudo-BL algebra.

In a residuated lattice L = (L,∧,∨,¯,→,Ã, 0, 1) we define for all x ∈ L :

x− = x → 0 and x∼ = x Ã 0.

In the sequel we will refer to the residuated lattice L by its universe L.
The following proposition provides some rules of calculus in a residuated lattice (see
[1], [3], [6], [17]), [18], [21]).

Proposition 2.6. In any residuated lattice the following rules of calculus hold:
(c1) x → (y → z) = (x¯ y) → z;
(c2) x Ã (y Ã z) = (y ¯ x) Ã z;
(c3) x ≤ y iff x → y = 1 iff x Ã y = 1;
(c4) x → x = x Ã x = 1;
(c5) x → 1 = x Ã 1 = 1;
(c6) 0 → x = 0 Ã x = 1;
(c7) x¯ 0 = 0¯ x = 0;
(c8) x¯ y ≤ x ∧ y;
(c9) (x → y)¯ x ≤ y and x¯ (x Ã y) ≤ y;
(c10) x ≤ y → (x¯ y) and x ≤ y Ã (y ¯ x);
(c11) x ≤ y implies x¯ z ≤ y ¯ z and z ¯ x ≤ z ¯ y for any z ∈ L;
(c12) (x → y)¯ x ≤ x ∧ y and x¯ (x Ã y) ≤ x ∧ y;
(c13) (x → y)¯ x ≤ x ≤ y → (x¯ y) and (x → y)¯ x ≤ y ≤ x → (y ¯ x);
(c14) x¯ (x Ã y) ≤ y ≤ x Ã (x¯ y) and x¯ (x Ã y) ≤ x ≤ y Ã (y ¯ x);
(c15) If x ≤ y then z → x ≤ z → y and z Ã x ≤ z Ã y;
(c16) If x ≤ y then y → z ≤ x → z and y Ã z ≤ x Ã z;
(c17) 1 → x = x and 1 Ã x = x;
(c18) x → y ≤ (y → z) Ã (x → z);
(c19) x Ã y ≤ (y Ã z) → (x Ã z);
(c20) x → y ≤ (z → x) Ã (z → y);
(c21) x Ã y ≤ (z Ã x) → (z Ã y);
(c22) x → (y Ã z) = y Ã (x → z);
(c23) x → (x Ã y) = x Ã (x → y);
(c24) x → y = x → (x ∧ y);
(c25) x Ã y = x Ã (x ∧ y);
(c26) y ≤ x → y and y ≤ x Ã y;
(c27) If x ≤ y then x ≤ z → y and x ≤ z Ã y;
(c28) z ¯ (x ∧ y) ≤ (z ¯ x) ∧ (z ¯ y);
(c29) (x ∧ y)¯ z ≤ (x¯ z) ∧ (y ¯ z);
(c30) x → y ≤ (x¯ z) → (y ¯ z);
(c31) x Ã y ≤ (z ¯ x) Ã (z ¯ y);
(c32) (x Ã y)¯ (y Ã z) ≤ x Ã z;
(c33) x¯ (y → z) ≤ y → (x¯ z);
(c34) (y Ã z)¯ x ≤ y Ã (z ¯ x);
(c35) (y → z)¯ (x → y) ≤ x → z;
(c36) (x1 Ã x2)¯ (x2 Ã x3)¯ ...¯ (xn−1 Ã xn) ≤ x1 Ã xn;



192 LAVINIA CORINA CIUNGU

(c37) (xn−1 → xn)¯ (xn−2 → xn−1)¯ ...¯ (x2 → x3)¯ (x1 → x2) ≤ x1 → xn;
(c38) (x → y)¯ (x′ → y′) ≤ (x ∨ x′) → (y ∨ y′);
(c39) (x Ã y)¯ (x′ Ã y′) ≤ (x ∨ x′) Ã (y ∨ y′);
(c40) (x → y)¯ (x′ → y′) ≤ (x ∧ x′) → (y ∧ y′);
(c41) (x Ã y)¯ (x′ Ã y′) ≤ (x ∧ x′) Ã (y ∧ y′);
(c42) 1− = 1∼ = 0 and 0− = 0∼ = 1;
(c43) x− ¯ x = 0 and x¯ x∼ = 0;
(c44) x ≤ y− iff x¯ y = 0 and x ≤ y∼ iff y ¯ x = 0;
(c45) x ≤ x−∼ and x ≤ x∼−;
(c46) x → y− = (x¯ y)− and x Ã y∼ = (y ¯ x)∼;
(c47) x ≤ y− iff y ≤ x∼;
(c48) If x ≤ y, then y− ≤ x− and y∼ ≤ x∼;
(c49) x ≤ x∼ → y and x ≤ x− Ã y;
(c50) x → y ≤ y− Ã x− and x Ã y ≤ y∼ → x∼;
(c51) x → y∼ = y Ã x− and x Ã y− = y → x∼;
(c52) x∼−∼ = x∼ and x−∼− = x−;
(c53) x → x∼ = x Ã x−;
(c54) x¯ (∨i∈Iyi) = ∨i∈I(x¯ yi);
(c55) (∨i∈Iyi)¯ x = ∨i∈I(yi ¯ x);
(c56) (∨i∈Ixi) Ã y = ∧i∈I(xi Ã y);
(c57) (∨i∈Ixi) → y = ∧i∈I(xi → y);
(c58) y Ã (∧i∈Ixi) = ∧i∈I(y Ã xi);
(c59) y → (∧i∈Ixi) = ∧i∈I(y → xi);
(c60) x → (y Ã z) = y Ã (x → z);
(c61) x Ã (y → z) = y → (x Ã z);
(c62) (x ∨ y) → (x ∧ y) = (x → y) ∧ (y → x);
(c63) (x ∨ y) Ã (x ∧ y) = (x Ã y) ∧ (y Ã x);
(c64) (x ∨ y)− = x− ∧ y− and (x ∨ y)∼ = x∼ ∧ y∼;
(c65) (x ∧ y)− ≥ x− ∨ y− and (x ∧ y)∼ ≥ x∼ ∨ y∼;
(c66) (x ∨ y)−∼ ≥ x−∼ ∨ y−∼ and (x ∨ y)∼− ≥ x∼− ∨ y∼−;
(c67) y− Ã x− = x−∼ → y−∼ = x → y−∼;
(c68) y∼ → x∼ = x∼− Ã y∼− = x Ã y∼−;
(c69) If x ∨ y = 1, then for each n ∈ N, n ≥ 1, xn ∨ yn = 1.

Corollary 2.7. For any g, h, k ∈ L we have
(c70) g ∨ (h¯ k) ≥ (g ∨ h)¯ (g ∨ k).

Proof.

(g ∨ h)¯ (g ∨ k) = ((g ∨ h)¯ g) ∨ ((g ∨ h)¯ k) =
= ((g ¯ g) ∨ (h¯ g)) ∨ ((g ¯ k) ∨ (h¯ k)) ≤ g ∨ g ∨ (g ∨ (h¯ k)) =
= g ∨ (h¯ k).

¤

Corollary 2.8. (c71) g ∨ (h1 ¯ h2 ¯ ...hn) ≥ (g ∨ h1)¯ (g ∨ h2)¯ ...¯ (g ∨ hn).

Corollary 2.9. (c72) g ∨ hn ≥ (g ∨ h)n.

Proposition 2.10. In any residuated lattice the following properties hold:
(c73) x ∨ y ≤ [(x → y) Ã y] ∧ [(y Ã x) → x];
(c74) x ∨ y ≤ [(x Ã y) → y] ∧ [(y → x) Ã x];
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(c75) x ∨ y ≤ [(x → y) Ã y] ∧ [(y → x) Ã x];
(c76) x ∨ y ≤ [(x Ã y) → y] ∧ [(y Ã x) → x].

Proof. (c73) : From (x → y)¯ x ≤ y we have x ≤ (x → y) Ã y.
Taking in consideration that y ≤ (x → y) Ã y, we get

x ∨ y ≤ (x → y) Ã y.

Similarly, x ∨ y ≤ (y Ã x) → x.
Thus, x ∨ y ≤ [(x → y) Ã y] ∧ [(y Ã x) → x].
(c74),(c75),(c76) : Similarly as (c73). ¤
Corollary 2.11. If x ∨ y = 1, then x → y = x Ã y = y.

Corollary 2.12. If x ∨ y = 1 for any x, y ∈ L, then L is commutative.

The next result extends to residuated lattices a property presented in [9] for R`-
monoids and it can provide other examples of residuated lattices.

Proposition 2.13. Let L = (L,∧,∨,¯,→,Ã, 0, 1) be a residuated latice. Then, the
algebra L′a = ([a, 1],¯1

a,∧,∨,→,Ã, a, 1) is a residuated lattice, where
x¯1

a y = (x¯ y) ∨ a.

Proof. We will check conditions (L1)−(L3) from the definition of a residuated lattice:
(L1) Obviously, ([a, 1],∧,∨, a, 1) is a bounded lattice with the smallest element a and
the greatest element 1;
(L2) Since x¯1

a 1 = (x¯ 1) ∨ a = x ∨ a = x and 1¯1
a x = (1¯ x) ∨ a = x ∨ a = x,

it follows that 1 is the unity element in ([a, 1],¯1
a, 1).

For any x, y, z ∈ [a, 1] we have:

(x¯1
a y)¯1

a z = (((x¯ y) ∨ a)¯ z) ∨ a

= (x¯ y ¯ z) ∨ (a¯ z)) ∨ a =
= (x¯ y ¯ z) ∨ ((a¯ z) ∨ a) =
= (x¯ y ¯ z) ∨ a.

x¯1
a (y ¯1

a z) = (x¯ (y ¯ z) ∨ a) ∨ a

= ((x¯ y ¯ z) ∨ (x¯ a)) ∨ a =
= (x¯ y ¯ z) ∨ ((x¯ a) ∨ a)
= (x¯ y ¯ z) ∨ a.

Thus, ([a, 1],¯1
a, 1) is a monoid.

(L3) x¯1
a y ≤ z ⇒ (x¯ y) ∨ a ≤ z ⇒ x¯ y ≤ z ⇒ x ≤ y → z and y ≤ x Ã z.

Conversely, x ≤ y → z ⇒ x¯ y ≤ z and considering that a ≤ z we get
(x¯ y) ∨ a ≤ z ∨ a = z ⇒ x¯1

a y ≤ z.
Similarly, from y ≤ x Ã z we get x¯1

a y ≤ z.
We conclude that L1

a is a residuated lattice.
Trivially, L = L1

0 and {1} = L1
1. ¤

Definition 2.14. A residuated lattice L is called good if x−∼ = x∼− for any x ∈ L.

Remark 2.15. In [13] it was formulated as open problem to find a pseudo-BL algebra
which is not good. In the case of a residuated lattice we have a such example.
Indeed, the residuated lattice in Example 2.2 is not good :

a−∼ = c∼ = b, but a∼− = b− = c.
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Proposition 2.16. In any good residuated lattice the following properties hold:
(c77) (x∼ ¯ y∼)− = (x− ¯ y−)∼;
(c78) x−∼ ¯ y−∼ ≤ (x¯ y)−∼.

Proof. (c77) : Applying (c46),(c50),(c51) we have:

(x∼ ¯ y∼)− = x∼ → y∼− = x∼ → y−∼ = y−∼− Ã x∼−

= y− Ã x∼− = y− Ã x−∼ = (x− ¯ y−)∼.

(In the last equality we also applied (c46)).
(c78) : Because the residuated lattice is good and by (c9), we have:

(x¯ y)−∼ = (x¯ y)∼− ≥ (x¯ y)∼− ∧ x∼− ≥ x∼− ¯ (x∼− Ã (x¯ y)∼−)
= x∼− ¯ (x∼− Ã (x¯ y)−∼) = x∼− ¯ (x∼− Ã (x → y−))∼.

But, applying (c46) and (c2) we have:

x∼− Ã (x → y−)∼ =
x∼− Ã ((x → y−) Ã 0) = (x∼− → y−)¯ x∼− Ã 0
= ((x∼− → y−)¯ x∼−)∼ ≥ (x∼− ∧ y−)∼ ≥ x∼−∼ ∨ y−∼ = x∼ ∨ y−∼.

(By (c46) we have (x∼− → y−)¯ x∼− ≤ (x∼− ∧ y−), so
((x∼− → y−)¯ x∼−)∼ ≥ (x∼− ∧ y−)∼).
It follows that

(x¯ y)−∼ ≥ x∼− ¯ (x∼ ∨ y−∼) = (x∼− ¯ x∼) ∨ (x∼− ¯ y−∼)
= 0 ∨ (x∼− ¯ y−∼) = x∼− ¯ y∼− = x−∼ ¯ y−∼.

(we applied (c54), (c55) and (c43)). ¤
Proposition 2.17. Let L be a good residuated lattice. We define a binary operation
⊕ on L by x⊕ y := (y∼ ¯ x∼)−, x, y ∈ L. Then for all x, y, z ∈ L we have:
(c79) x⊕ y := (y− ¯ x−)∼;
(c80) ⊕ is associative;
(c81) x, y ≤ x⊕ y;
(c82) x⊕ 0 = x−∼ = 0⊕ x;
(c83) x⊕ 1 = 1 = 1⊕ x;
(c84) x⊕ y = x− Ã y−∼ = y∼ → x−∼.

Proof. (c79) : It follows from (c77).
(c80) : We have :

(x⊕ y)⊕ z = (y∼ ¯ x∼)− ¯ z = (z∼ ¯ (y∼ ¯ x∼)−∼)−

= z∼ → (y∼ ¯ x∼)−∼− = z∼ → (y∼ ¯ x∼)− = z∼ → (y∼ → x∼−)

(we applied (c46) and (c52);

x⊕ (y ⊕ z) = x⊕ (z∼ ¯ y∼)− = ((z∼ ¯ y∼)−∼ ¯ x∼)−

= (z∼ ¯ y∼)−∼ → x∼− = (z∼ ¯ y∼)−∼ → x−∼

= (z∼ ¯ y∼) → x−∼ = z∼ → (y∼ → x−∼) = z∼ → (y∼ → x∼−) = (x⊕ y)⊕ z.

(we applied (c50) and (c1));
(c81) : By (c46) and (c49) we have:

x⊕ y = (y− ¯ x−)∼ = x− Ã y−∼ ≥ x

x⊕ y = (y∼ ¯ x∼)− = y∼ → x∼− ≥ y;
(c82) : Applying (rl − c43) and (rl − c17) we get:
x⊕ 0 = (0∼ ¯ x∼)− = 0∼ → x−∼ = 1 → x−∼ = x∼− = x−∼;
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0⊕ x = (x− ¯ 0−)∼ = x− Ã 0−∼ = x− Ã 0 = x−∼.
(c83) : x⊕ 1 = (1− ¯ x−)∼ = x− Ã 1−∼ = x− Ã 1 = 1 ((c46) and (c5));
1⊕ x = (x− ¯ 1−)∼ = 1− Ã x−∼ = 0 Ã x−∼ = 1 ((c46) and (c6)).
(c84) : x⊕ y = (y∼ ¯ x∼)− = y∼ → x∼− = y∼ → x−∼.
x⊕ y = (y− ¯ x−)∼ = x− Ã y−∼.
It follows that x⊕ y = x− Ã y−∼ = y∼ → x−∼. ¤

Other properties of the operation ”⊕” can be established similarly as in the above
proposition.

3. Lattice of filters of a residuated lattice

In this section we extend to a residuated lattice the results investigated in [6], [7],
[3] and [15] for the case of lattice of filters of a pseudo BL-algebra.

Definition 3.1. Let L be a residuated lattice. A nonempty set F of L is called filter
of L if the following conditions hold:
(F1) If x, y ∈ F , then x¯ y ∈ F ;
(F2) If x ∈ F , y ∈ L, x ≤ y then y ∈ F.

Proposition 3.2. ([13]) If F is a filter of L then:
(F3) 1 ∈ F ;
(F4) If x ∈ F , y ∈ L then y → x ∈ F , y Ã x ∈ F ;
(F5) If x, y ∈ F , then x ∧ y ∈ F .

Proposition 3.3. ([13]) For a subset F of L the following are equivalent:
(i) F is a filter;
(ii) 1 ∈ F and if x, x → y ∈ F , then y ∈ F ;
(iii) 1 ∈ F and if x, x Ã y ∈ F , then y ∈ F .

A filter F of L is proper if F 6= L. Clearly, F is a proper filter iff 0 /∈ F .

Proposition 3.4. If L is a residuated lattice, then the sets

L−0 = {x ∈ L |−= 0} and L∼0 = {x ∈ L | x∼ = 0}
are proper filters of L.

Proof. If x, y ∈ L−0 , then (x¯ y)− = x → y− = x → 0 = x− = 0, so x¯ y ∈ L−0 .
If x ∈ L−0 , y ∈ A such that x ≤ y, then y− ≤ x− = 0, so y− = 0, that is y ∈ L−0 .
Because 0 /∈ L−0 , we conclude that L−0 is a proper filter of L.
Similarly for the case of L∼0 . ¤

We will denote by Fs(L) the set of filter of L.

Definition 3.5. For every subset X ⊆ L, the smallest filter of L containing X (i.e.
the intersection of all filters F ∈ Fs(L) such that X ⊆ F ) is called the filter generated
by X and will be denoted by [X).

For any n ∈ N, x ∈ L we put x0 = 1 and xn+1 = xn ¯ x = x ¯ xn. The order of
x ∈ L, denoted ord(x) is the smallest n ∈ N such that xn = 0.
If there is no such n, then ord(x) = ∞.

Definition 3.6. A residuated lattice L is locally finite if for any x ∈ L, x 6= 1 implies
ord(x) < ∞.
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Example 3.7. Consider the residuated lattice L from Example 2.2.
Since ord(b) = ∞ and ord(c) = ∞, it follows that L is not locally finite.

Example 3.8. Let’s consider L = {0, a, b, c, 1} where 0 < a < b < c < 1 and the
operations ¯,→, Ã given by the following tables:

¯ 0 a b c 1
0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 0 0 b
c 0 0 a a c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b b c 1 1 1
c b c c 1 1
1 0 a b c 1

Ã 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 1 1
c a c c 1 1
1 0 a b c 1

.

Then L = (L,∧,∨,¯,→,Ã, 0, 1) is a residuated lattice and we have :

ord(0) = 1, ord(a) = 2, ord(b) = 2, ord(c) = 3.

Thus, L is a locally finite residuated lattice.

Remark 3.9. (1) In [20] it is proved that every locally finite pseudo MV-algebra is
commutative ;
(2) In [15] it is proved that every locally finite pseudo BL-algebra is a MV-algebra,
so it is commutative ;
(3) By the above example we have proved that there exist non-commutative locally
finite residuated lattices.

Lemma 3.1. ([15]) Let L be a residuated lattice and x, y ∈ L. Then :
(1) [x) is proper iff ord(x) = ∞ ;
(2) if x ≤ y and ord(y) < ∞, then ord(x) < ∞ ;
(3) if x ≤ y and ord(x) = ∞, then ord(y) = ∞ .

Proposition 3.10. ([6]) If X ⊆ L, then

[X) = {y ∈ L | y ≥ x1 ¯ x2 ¯ · · · ¯ xn for some n ≥ 1 andx1, x2, . . . , xn ∈ X}.
Proposition 3.11. ([6]) If X ⊆ L, then

[X) = {y ∈ L | x1 → (x2 → (. . . (xn → y)) . . . )
= 1 for some n ≥ 1 and x1, x2, . . . , xn ∈ X} =
= {y ∈ L | x1 Ã (x2 Ã (. . . (xn Ã y)) . . . )
= 1 for some n ≥ 1 and x1, x2, . . . , xn ∈ X}.

Remark 3.12. The following results proved in ([6]) for a pseudo BL-algebra are also
valid in the case of a residuated lattice :
(1) If X is a filter of L, then [X) = X;
(2) If X = {x} we write [x) instead of [{x}) and [x) = {y ∈ X | y ≥ xn for some n ≥
1}. [x) is called principal filter.
(3) If F is a filter of L and x ∈ L, then
F (x) = [F ∪ {x}) = {y ∈ L | y ≥ (f1 ¯ xn1)¯ (f2 ¯ xn2)¯ · · · ¯ (fm ¯ xnm) for some
m ≥ 1, n1, n2, ..., nm ≥ 0, f1, f2, ..., fm ∈ F}.
Proposition 3.13. ([3], [6]) In any residuated lattice the following hold:
(1) If F is a filter of L and x ∈ L \ F , then F (x) = F ∨ [x);
(2) [x) is a proper filter iff ord(x) = ∞;
(3) [x ∨ y) = [x) ∩ [y);
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(4) If x ≤ y, then [y) ⊆ [x);
(5) [x) ∨ [y) = [x ∨ y) = [x¯ y);
(6) [x¯ y) = [y ¯ x);
(7) [x → y) ∨ [x) = [x Ã y) ∨ [x).

Proposition 3.14. ([3]) If F1, F2 are nonempty sets of L such that 1 ∈ F1 ∩F2 then
[F1 ∪ F2) = {x ∈ L | x ≥ (f1 ¯ f ′1) ¯ (f2 ¯ f ′2) ¯ · · · ¯ (fn ¯ f ′n) for some n ≥ 1,
f1, f2, . . . , fn ∈ F1, f ′1, f

′
2, . . . , f

′
n ∈ F2}

Corollary 3.15. ([3]) If F1, F2 are filters of L, then
[F1∪F2) = {x ∈ Lx ≥ (f1¯f ′1)¯(f2¯f ′2)¯· · ·¯(fn¯f ′n) for some n ≥ 1, f1, f2, . . . , fn ∈
F1, f ′1, f

′
2, . . . , f

′
n ∈ F2}

If (Fi)i∈I is a family of all filters of L, we define ∧i∈IFi = ∩i∈IFi and ∨i∈IFi =
[∪i∈IFi)

Definition 3.16. ([3], [16]) A complete lattice (L,∧,∨) is called Browerian if it
satisfies the identity a ∧ (

∨
i∈I

bi) =
∨
i∈I

(a ∧ bi) ; the element a of L is called compact if

a ≤ ∨X for some X ⊆ L implies a ≤ ∨X1 for some finite subset X1 ⊆ X. A complete
lattice is called algebraic if every element is the join of compact elements of L.

Theorem 3.17. ([3], [16]) (Fs(L),∧,∨) is a complete Browerian algebraic lattice,
the compact elements being exactly the principal filter of L.

Definition 3.18. ([7]) A filter H of L is called normal if for any x, y ∈ L,
(N) x → y ∈ H iff x Ã y ∈ H.
We denote by Fn(L) the set of all normal filters of L.

Example 3.19. Consider L = {0, a, b, c, 1} where 0 < a < b < c < 1 and the
operations ¯,→, Ã given by the following tables:

¯ 0 a b c 1
0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b a a 1 1 1
c a a b 1 1
1 0 a b c 1

Ã 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

.

Then L = (L,∧,∨,¯,→,Ã, 0, 1) is a residuated lattice and H = {b, c, 1} is a normal
filter of L.

Remark 3.20. ([7]) Let H be a normal filter of L. Then:
(1) x− ∈ H iff x∼ ∈ H;
(2) x ∈ H implies (x−)− ∈ H and (x∼)∼ ∈ H.

Remark 3.21. In case of a pseudo BL-algebra A, it is proved in [13] that a filter H
is normal if and only if x¯H = H ¯ x for any x ∈ A. This equality doesn’t hold in
the case of residuated latices as we can see in the next example.

Example 3.22. Consider L = {0, a, b, c, 1} where 0 < a < b < c < 1 and the
operations ¯,→, Ã given by the following tables:
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¯ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a a a b
c 0 a b c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 b 1 1 1
c 0 b b 1 1
1 0 a b c 1

Ã 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 1 1
c 0 a b 1 1
1 0 a b c 1

.

Then L = (L,∧,∨,¯,→, Ã, 0, 1) is a residuated lattice and H = {a, b, c, 1} is a
normal filter of L.
One can see that c¯H = {a, b, c} and H ¯ c = {a, c}, so c¯H 6= H ¯ c.

Lemma 3.2. Let H be a normal filter of L. Then:
(1) For any x ∈ L and h ∈ H there is h′ ∈ H such that x¯ h ≥ h′ ¯ x;
(2) For any x ∈ L and h ∈ H there is h′ ∈ H such that h¯ x ≥ x¯ h′.

Proof. (1) Let y = x¯ h. Then x¯ h = y = x ∧ y ≥ (x → y)¯ x.
But h ≤ x Ã x¯ h = x Ã y. Since h ∈ H, it follows that x Ã y ∈ H.
Because H is a normal filter we have h′ = x → y ∈ H. Thus x¯ h ≥ h′ ¯ x.
(2) Let y = h¯x. Then h¯x = y = x∧y ≥ x¯(x Ã y). But h ≤ x → h¯x = x → y.
Since h ∈ H, it follows that x → y ∈ H.
Because H is a normal filter we have h′ = x Ã y ∈ H.
Thus h¯ x ≥ x¯ h′. ¤

Proposition 3.23. Let H be a normal filter of L and x ∈ L. Then

[H ∪ {x}) = {y ∈ L | y ≥ h¯ xn for some n ∈ N, h ∈ H}
= {y ∈ L | y ≥ xn ¯ h for some n ∈ N, h ∈ H}
= {y ∈ L | xn → y ∈ H for some n ≥ 1}
= {y ∈ L | xn Ã y ∈ H for some n ≥ 1}.

Proof. Let y ∈ [H ∪ {x}). Then y ≥ (h1 ¯ xn1)¯ (h2 ¯ xn2)¯ · · · ¯ (hm ¯ xnm) for
some m ≥ 1, n1, n2, . . . , nm ≥ 0, h1, h2, . . . , hm ∈ F .
If m = 1 then y ≥ h1 ¯ xn1 and we take h = h1 and n = n1.
If m = 2 then y ≥ (h1 ¯ xn1)¯ (h2 ¯ xn2) = h1 ¯ (xn1 ¯ h2)¯ xn2 .
According to the above lemma, there is h′2 ∈ H such that xn1 ¯ h2 ≥ h′2 ¯ xn1 .
Hence y ≥ h1 ¯ (h′2 ¯ xn1)¯ xn2 = (h1 ¯ h′2)¯ xn1+n2 and we take h = h1 ¯ h′2 and
n = n1 + n2.
By induction we get y ≥ h¯ xn for some n ∈ N, h ∈ H.
Similarly y ≥ xn ¯ h for some n ∈ N, h ∈ H.
Thus [H ∪ {x}) = {y ∈ L | y ≥ h ¯ xn for some n ∈ N, h ∈ H} = {y ∈ L |
y ≥ xn ¯ h for some n ∈ N, h ∈ H}. If y ∈ [H ∪ {x}), then h ¯ xn ≤ y for some
n ≥ 1, h ∈ H. Thus h ≤ xn → y, hence xn → y ∈ H.
Conversely, assume that h = xn → y ∈ H for some n ≥ 1.
We also have (h¯ xn) → y = h → (xn → y) = h → h = 1, hence h¯ xn ≤ y.
Therefore, y ∈ [H ∪ {x}) and we conclude that

[H ∪ {x}) = {y ∈ L | xn → y ∈ H for some n ≥ 1}.
Similarly [H ∪ {x}) = {y ∈ L | xn Ã y ∈ H for some n ≥ 1}. ¤

Proposition 3.24. If F1, F2 ∈ Fn(L) then

[F1 ∪ F2) = {x ∈ L | x ≥ u¯ v for some u ∈ F1, v ∈ F2}.
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Proof. We have [F1 ∪ F2) = {x ∈ L | x ≥ (f1 ¯ f ′1) ¯ (f2 ¯ f ′2) ¯ · · · ¯ (fn ¯
f ′n) for some n ≥ 1, f1, f2, . . . , fn ∈ F1, f

′
1, f

′
2, . . . , f

′
n ∈ F2}.

Put f = (f1¯f ′1)¯ (f2¯f ′2)¯· · ·¯ (fn¯f ′n) = f1¯ (f ′1¯f2)¯· · ·¯ (f ′n−1¯fn)¯f ′n.
There is f ′′2 ∈ F2 such that f ′1 ¯ f2 ≥ f2 ¯ f ′′2 . Hence

f ≥ f1 ¯ f2 ¯ (f ′′2 ¯ f3)¯ · · · ¯ (fn ¯ f ′n).

Similarly, there is f ′′3 ∈ F2 such that f ′′2 ¯ f3 ≥ f3 ¯ f ′′3 so

f ≥ f1 ¯ f2 ¯ f3 ¯ (f ′′3 ¯ f4)¯ · · · ¯ (fn ¯ f ′n).

Finally f ≥ f1 ¯ f2 ¯ f3 ¯ · · · ¯ fn ¯ f ′′n with f1, f2, . . . , fn ∈ D1, f ′′n ∈ F2. Taking
u = f1 ¯ f2 ¯ f3 ¯ · · · ¯ fn, v = f ′′n we get x ≥ f ≥ u¯ v with u ∈ F1, v ∈ F2. ¤
Proposition 3.25. If F1, F2 ∈ Fn(L) then:
(1) F1 ∧ F2 ∈ Fn(L);
(2) F1 ∨ F2 ∈ Fn(L).

Proof. (1) We have F1 ∧ F2 = F1 ∩ F2. Consider x, y ∈ L such that x → y ∈ F1 ∩ F2,
that is, x → y ∈ F1 and x → y ∈ F2. It follows that x Ã y ∈ F1 and x Ã y ∈ F2,
hence x Ã y ∈ F1 ∩ F2.
Similarly, x Ã y ∈ F1 ∩ F2 implies x → y ∈ F1 ∩ F2 = F1 ∧ F2.
(2) Let x, y ∈ L such that x → y ∈ F1 ∨ F2.
There are u ∈ F1, v ∈ F2 such that u¯ v ≤ x → y.
Hence (u¯v)¯x ≤ y so u¯(v¯x) ≤ y. Since there is v′ ∈ F2 such that v¯x ≥ x¯v′,
we get y ≥ (u¯ x)¯ v′.
Similarly, there is u′ ∈ F1 such that u ¯ x ≥ x ¯ u′, so y ≥ x ¯ (u′ ¯ v′). We get
u′ ¯ v′ ≤ x Ã y, hence x Ã y ∈ F1 ∨ F2.
Similarly x Ã y ∈ F1 ∨ F2 implies x → y ∈ F1 ∨ F2. ¤
Proposition 3.26. If (Fi)i∈I is a family of normal filter of L then:
(1)

∧
i∈I

Fi ∈ Fn(L);

(2)
∨
i∈I

Fi ∈ Fn(L);

Proof. Similarly as above. ¤
As a consequence of the above result we get:

Theorem 3.27. ([3]) Fn(L) is a complete sublattice of (Fs(L),⊆).

With any normal filter H of L we associate a binary relation ≡H on L by defining
x ≡H y iff x → y, y → x ∈ H iff x Ã y, y Ã x ∈ H.

Proposition 3.28. ([13]) For a given normal filter H of L the relation ≡H is a
congruence on L.

For any x ∈ L, let x/L be the equivalence class x/≡H
and L/H = {x/H|x ∈ L}.

L/H becomes a residuated lattice with the natural operations induced from those of
L. If x, y ∈ L, then x/H ≤ y/H iff x → y ∈ H iff x Ã y ∈ H.

Definition 3.29. A proper filter of L is called maximal or ultrafilter if it is not strictly
contained in any other proper filter of L.
Denote Max(L) = {F | F ismaximal filter of L} and
Maxn(L) = {F | F is maximal and normal filter of L}.
Proposition 3.30. Any proper filter of a residuated lattice L can be extended to a
maximal filter of L.
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Proof. It is an immediate consequence of Zorn’s lemma. ¤
Theorem 3.31. If F is a proper filter of L then the following are equivalent :
(1) F is a maximal filter ;
(2) For any x /∈ F there is f ∈ F , n,m ∈ N, n,m ≥ 1 such that (f ¯ xn)m = 0.

Proof. (a) ⇒ (b) : Since F is a maximal filter of L and x /∈ F , then
[F ∪ {x}) = L, so 0 ∈ [F ∪ {x}). By Remark 3.12 it follows tha there exist m ≥
1, n1, n2, ..., nm ≥ 0, f1, f2, ..., fm ∈ F} such that

(f1 ¯ xn1)¯ (f2 ¯ xn2)¯ · · · ¯ (fm ¯ xnm) ≤ 0, so

(f1 ¯ xn1)¯ (f2 ¯ xn2)¯ · · · ¯ (fm ¯ xnm) = 0.

Taking n = max{n1, n2, · · · , nm} and f = f1 ¯ f2 ¯ · · · ¯ fm ∈ F we get

(f ¯ xn)m ≤ (f1 ¯ xn1)¯ (f2 ¯ xn2)¯ · · · ¯ (fm ¯ xnm) = 0.

It follows that (f ¯ xn)m = 0.
(b) ⇒ (a) : Assume that there is a proper filter E of L such that F ⊂ E. Then there
exists x ∈ E such that x /∈ F . By hypothesis, there exist f ∈ F , n,m ∈ N such
that (f ¯ xn)m = 0. Since x, f ∈ E, it follows that 0 ∈ E, hence E = L which is a
contradiction.
Thus, F is a maximal filter of L. ¤
Theorem 3.32. If H is a proper normal filter of L then the following are equivalent:
(1) H ∈ Max(L);
(2) For any x ∈ L, x /∈ H iff (xn)− for some n ∈ N;
(3) For any x ∈ L, x /∈ H iff (xn)∼ for some n ∈ N.

Proof. (1) ⇒ (2) : If x /∈ H then [H ∪ {x}) = L, hence 0 ∈ [H ∪ {x}).
Then h ≤ xn → 0 = (xn)−, i.e. (xn)− ∈ H.
Conversely, if (xn)− ∈ H, then xn → 0 ∈ H, so 0 ∈ [H ∪ {x}.
This means that [H ∪{x}) = L, i.e. H is not a proper filter, which is a contradiction.
Hence, x /∈ H.
(2) ⇒ (1) : Assume there is a proper filter F such that H ⊆ F and H 6= F .
Then there is x ∈ F such that x /∈ H. Hence, (xn)− ∈ H ⊆ F for some n ∈ N .
It follows that xn ∈ F and xn ¯ (xn)− = 0 ∈ F , wich is a contradiction with the fact
that F is a proper filter. Thus, H ∈ Max(L).
(1) ⇔ (3) : Similarly as (1) ⇔ (2). ¤
Proposition 3.33. If H is a proper normal filter of L then the following are equiv-
alent:
(1) H ∈ Maxn(L);
(2) L/H is locally finite.

Proof. It follows from the fact that the condition (2) is equivalent with :
for any x ∈ L, x/H 6= 1/H iff (xn)−/H = 1/H for some n ∈ N iff (x/H)n = 0/H for
some n ∈ N . ¤
Proposition 3.34. If F = L\{0} is a maximal filter of the residuated lattice L, then
L is good.

Proof. Obviously (0−)∼ = (0∼)− = 0. Assume x > 0, that is, x ∈ F . If x−, x∼ ∈ F
it follows that x− ¯ x, x¯ x− ∈ F , that is, 0 ∈ F , a contradiction.
Thus x− = x∼ = 0, hence (x−)∼ = (x∼)− = 1.
Therefore, L is a good residuated lattice. ¤
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Proposition 3.35. If F is a maximal filter of the residuated lattice L, then:
(1) y /∈ F and y ¯ x = x implies x = 0;
(2) y /∈ F and x¯ y = x implies x = 0.

Proof. (1) Assume x > 0 and consider E = {z ∈ L | z ¯ x = x}.
First we prove that E is a proper filter. Obviously, 1 ∈ E and 0 /∈ E.
Consider y, y → z ∈ E, that is, y ¯ x = x and (y → z)¯ x = x.
Since (y → z)¯ y ¯ x = (y → z)¯ x, it follows that

x = [(y → z)¯ y]¯ x ≤ (y ∧ z)¯ x ≤ (y ¯ x) ∨ (z ¯ x) = x ∨ (z ¯ x) = z ¯ x ≤ x

Thus z ¯ x = x, hence z ∈ E. Therefore E is a proper filter. Since y ∈ E and F is
maximal, it follows that y ∈ F , a contradiction. Thus x = 0.
(2) Similarly as (1). ¤

In the next section we will study the local and perfect residuated lattices.

4. Local residuated lattices

In this section we exdend to residuated lattices the results established in [15] for
pseudo BL-algebras.

Definition 4.1. A residuated lattice is called local if and only if it has a unique
maximal filter.

If L is a residuated lattice, we will denote :

D(L) = {x ∈ L | ord(x) = ∞}
D(L)∗ = {x ∈ L | ord(x) < ∞}.

Obviously, D(L) ∩D(L)∗ = ® and D(L) ∪D(L)∗ = L.
We also can remark that 1 ∈ D(L) and 0 ∈ D(L)∗.

Let L be a residuated lattice and F a filter of L. We will use the following notations:

F ∗− = {x ∈ L | x ≤ y− for some y ∈ F}
F ∗∼ = {x ∈ L | x ≤ y∼ for some y ∈ F}.

Remark 4.2. Let L be a residuated lattice. Then :
(1) F ∗− = {x ∈ L | x¯ y = 0 for some y ∈ F} ;
(2) F ∗∼ = {x ∈ L | y ¯ x = 0 for some y ∈ F} ;
(3) F ∗− = {x ∈ L | x∼ ∈ F} ;
(4) F ∗∼ = {x ∈ L | x− ∈ F}.
Proof. (1) : x ∈ F ∗− iff x ≤ y− for some y ∈ F iff x ≤ y → 0 for some y ∈ F iff
x¯ y = 0 for some y ∈ F ;
(2) Similarly as (1) ;
(3) Let’s denote E = {x ∈ L | x∼ ∈ F}. We must prove that F ∗− = E.
Consider x ∈ F ∗−. It follows that x ≤ y− for some y ∈ F . We have y ≤ y−∼ ≤ x∼.
Since F is a filter of L, we get x∼ ∈ F . Hence, x ∈ E.
Conversely, suppose x ∈ E, that is x∼ ∈ F . Since x ≤ (x∼)−, taking y = x∼, we get
x ≤ y− with y ∈ F , so x ∈ F ∗− ;
(4) Simlilarly as (3). ¤
Proposition 4.3. Let L be a local residuated lattice. Then :
(1) any proper filter of L is included in the unique maximal filter of L ;
(2) L−0 and L∼0 are included in the unique maximal filter of L.
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Proof. (1) It follows applying the Proposition 3.30 and taking into consideration that
L has a unique maximal filter ;
(2) Apply Proposition 3.4 and (1). ¤
Proposition 4.4. Let L be a residuated lattice. Then the following are equivalent:
(i) D(L) is a filter of L ;
(ii) D(L) is a proper filter of L ;
(iii) L is local ;
(iv) D(L) is the unique maximal filter of L ;
(v) for all x, y ∈ L, ord(x¯ y) < ∞ implies ord(x) < ∞ or ord(y) < ∞.

Proof. (i) ⇒ (ii) Since ord(0) = 1, we have 0 /∈ D(L), so D(L) is a proper filter of L.
(ii) ⇒ (i) Obviously.
(i) ⇒ (v) Consider x, y ∈ L such that ord(x ¯ y) < ∞, so x ¯ y /∈ D(L). Since
D(L) is a filter of L, it follows that x /∈ D(L) or y /∈ D(L). Hence, ord(x) < ∞ or
ord(y) < ∞.
(v) ⇒ (i) Because 1 ∈ D(L) it follows that D(L) is nonempty. Consider x, y ∈ D(L),
that is, ord(x) = ∞ and ord(y) = ∞. By (v) we get ord(x¯y) = ∞, so x¯y ∈ D(L).
Consider x ∈ D(L) and y ∈ L such that x ≤ y. It follows that xn > 0 for all ∈ N.
Since xn ≤ yn we get yn > 0 for all ∈ N, so ord(y) = ∞, that is y ∈ D(L).
Thus, D(L) is a filter of L.
(iv) ⇒ (iii) It follows by the definition of a local residuated lattice.
(iii) ⇒ (iv) If M is the unique maximal filter of L, then by Lemma 3.1 and Proposition
4.3 we have x ∈ M iff [x) ⊆ M iff [x) is proper iff ord(x) = ∞ iff x ∈ D(L). Hence,
M = D(L).
(iv) ⇒ (i) Obviously.
(i) ⇒ (iv) Since 0 /∈ D(L), it follows that D(L) is a proper filter of L. Let F be a
proper filter of L. Consider x ∈ F . Since [x) ⊆ F , we have that [x) is proper filter
of L, so by Lemma 3.1 it follows that ord(x) = ∞. Hence, x ∈ D(L), so F ⊆ D(L).
Thus, D(L) is the unique maximal filter of L. ¤
Example 4.5. Consider the residuated lattice from Example 3.19. One can check
that D(L) = {b, c, 1} is a filter of L, so L is a local residuated lattice.

Example 4.6. Consider the residuated lattice from Example 3.22. One can check
that D(L) = {a, b, c, 1} is a filter of L, so L is a local residuated lattice.

Example 4.7. In the case of the residuated lattice in Example 2.2 we have D(L) =
{b, c, 1}. Since b¯ c = a /∈ D(L), it follows that D(L) is not a filter of L, so L is not
a local residuated lattice.

Corollary 4.8. If L is a local residuated lattice, then :
(1) for any x ∈ L, ord(x) < ∞ or [ord(x−) < ∞ and ord(x∼) < ∞] ;
(2) D(L)∗− ⊆ D(L)∗ and D(L)∗∼ ⊆ D(L)∗ ;
(3) D(L) ∩D(L)∗− = D(L) ∩D(L)∗∼ = ®.

Proof. (1) Let x ∈ L. Since x ¯ x− = x∼ ¯ x = 0, it follows that ord(x ¯ x−) =
ord(x∼ ¯ x) = ord(0) = 1 < ∞. By Proposition 4.4 (iv) we get (1).
(2) Consider x ∈ D(L)∗−. It means that there is y ∈ D(L) such that x ≤ y−. Since
ord(y) = ∞, by (1) we get that ord(y−) < ∞. Hence, ord(x) < ∞, so x ∈ D(L)∗.
Thus, D(L)∗− ⊆ D(L)∗. Similarly, D(L)∗∼ ⊆ D(L)∗.
(3) It follows by (2) taking into consideration that D(L) ∩D(L)∗ = ®. ¤
Proposition 4.9. Any residuated lattice chain is a local residuated lattice.
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Proof. Assume that L is a residuated lattice chain and consider x, y ∈ L such that
ord(x¯y) < ∞. Since L is a chain, we have x ≤ y or y ≤ x. Let’s suppose that x ≤ y.
It follows that x¯x ≤ x¯ y, so ord(x¯x) ≤ ∞. Hence, ord(x) < ∞. Similarly, from
y ≤ x we get ord(y) < ∞. Thus, according to Proposition 4.4, L is a local residuated
lattice. ¤
Definition 4.10. A residuated lattice L is called perfect if it satisfies the following
conditions :
(1) L is a local good residuated lattice ;
(2) for any x ∈ L, ord(x) < ∞ iff [ord(x−) = ∞ and ord(x∼) = ∞].

Proposition 4.11. Let L be a local good residuated lattice. Then the following are
equivalent :
(i) L is perfect ;
(ii) D(L)∗− = D(L)∗ and D(L)∗∼ = D(L)∗.

Proof. (i) ⇒ (ii) : Since L is a local residuated lattice, applying Corollary 4.8 (2) we
get D(L)∗− ⊆ D(L)∗ and D(L)∗∼ ⊆ D(L)∗.
Conversely, consider x ∈ D(L)∗, that is ord(x) < ∞. By the definition of a perfect
residuated lattice we get ord(x−) = ∞ and ord(x∼) = ∞, that is x−, x∼ ∈ D(L).
Applying the properties x ≤ x∼− and x ≤ x−∼ we get x ∈ D(L)∗− and x ∈ D(L)∗∼.
It follows that D(L)∗ ⊆ D(L)∗− and respectively D(L)∗ ⊆ D(L)∗∼.
Thus, D(L)∗− = D(L)∗ and D(L)∗∼ = D(L)∗.
(ii) ⇒ (i) : Consider x ∈ L such that ord(x) < ∞, that is x ∈ D(L)∗.
Since D(L)∗− = D(L)∗, there exists y ∈ D(L) such that x ≤ y−, so y−∼ ≤ x∼.
By y ≤ y−∼ and ord(y) = ∞, we get ord(y−∼) = ∞.
¿From y−∼ ≤ x∼ we get ord(x∼) = ∞.
Since D(L)∗∼ = D(L)∗, there exists y ∈ D(L) such that x ≤ y∼, so y∼− ≤ x−.
By y ≤ y∼− and ord(y) = ∞, we get ord(y∼−) = ∞.
¿From y∼− ≤ x− we get ord(x−) = ∞.
Conversely, consider x ∈ L such that (ord(x−) = ∞ and ord(x∼) = ∞).
Since L is local, by Corollary 4.8 (1) it follows that ord(x) < ∞.
Thus, L is a perfect residuated lattice. ¤
Corollary 4.12. If L is a perfect residuated lattice, then

D(L)∗ = {x− | x ∈ D(L)} = {x∼ | x ∈ D(L)}.
Example 4.13. Let’s consider the residuated lattice L in Example 2.2. Since L is
not a good residuated lattices, it is not a perfect residuated lattice.

Example 4.14. Consider the local residuated lattice in Example 3.22.
One can easy check that L is a good residuated. Moreover, D(L) = {a, b, c, 1} and
D(L)∗ = {0}.
Since ord(0−) = ord(0∼) = ∞, it follows that L is a perfect residuated lattice.

Definition 4.15. Let L be a residuated lattice. The intersection of all maximal filters
of L is called the radical of L and it is denoted by Rad(L).
The intersection of all maximal normal filters of L is called the normal radical of L
and it is denoted by Radn(L).

Proposition 4.16. If L is a perfect residuated lattice, then Rad(L) = D(L).

Proof. By Proposition 4.4 it follows that D(L) is the unique maximal filter of L, so
Rad(L) = D(L). ¤
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Example 4.17. Let’s consider the perfect residuated lattice L in Example 3.22. One
can easily check that Rad(L) = Radn(L) = D(L) = {a, b, c, 1}.
Remark 4.18. If L is a local residuated lattice and x ∈ Rad(L)∗, y ∈ L such that
y ≤ x, then y ∈ Rad(L)∗.

Theorem 4.19. If A is a perfect residuated lattice then Rad(L) is a normal filter of
L.

Proof. We have to prove that x → y ∈ Rad(L) iff x Ã y ∈ Rad(L) for all x, y ∈ L.
Consider x, y ∈ L such that x → y ∈ Rad(L) and suppose x Ã y /∈ Rad(L).
¿From y ≤ y−∼ we get x → y ≤ x → y−∼ (by (c45) and (c15)). Since Rad(L) is a
filter of L, it follows that x → y−∼ ∈ Rad(L), that is, (x¯y∼)− ∈ Rad(L) (by (c46)).
Hence, x¯ y∼ ∈ Rad(L)∗.
On the other hand, from x Ã y /∈ Rad(L), it follows that x Ã y ∈ Rad(L)∗.
Since x ≤ x−∼, by (c16) we get x−∼ Ã y ≤ x Ã y, so x−∼ Ã y ∈ Rad(L)∗

(by Remark 3.20). By (c49) we have x∼ ≤ x∼− Ã y, so x∼ ∈ Rad(L)∗, that is,
x ∈ Rad(L). But y ≤ x Ã y, so y ∈ Rad(L)∗, that is, y∼ ∈ Rad(L).
Since Rad(L) is a filter of L and x, y∼ ∈ Rad(L), we get x¯ y∼ ∈ Rad(L) which is a
contradiction. Thus, x → y ∈ Rad(L) implies x Ã y ∈ Rad(L).
Similarly, x Ã y ∈ Rad(L) implies x → y ∈ Rad(L) and we conclude that Rad(L) is
a normal filter of L. ¤

Remark 4.20. If the residuated lattice L is not perfect, then the above result is not
allways valid. Indeed, let’s consider the residuated lattice L in Example 2.2.
Since L is not good, it is not a perfect residuated lattice. Moreover, H = {c, 1} is the
unique maximal filter of L, so Rad(L) = H. Since b → 0 = c ∈ H and b Ã 0 = 0 /∈ H,
it follows that H is not a normal filter of L.

5. Archimedean residuated lattices

In this section we will introduce the class of Archimedean residuated lattices in the
same way it was introduced in [3] in the case of pseudo BL-algebras.

Proposition 5.1. In any residuated lattice the following are equivalent:
(i) xn ≥ x− ∨ x∼ for any n ∈ N implies x = 1;
(ii) xn ≥ y− ∨ y∼ for any n ∈ N implies x ∨ y = 1.

Proof. (i) ⇒ (ii) Take x, y ∈ L such that xn ≥ y− ∨ y∼ for any n ∈ N.
By the properties of residuated lattices and by hypothesis we have

(x ∨ y)− = x− ∨ y− ≤ y− ≤ y− ∨ y∼ ≤ xn ≤ (x ∨ y)n and

(x ∨ y)∼ = x∼ ∨ y∼ ≤ y∼ ≤ y− ∨ y∼ ≤ xn ≤ (x ∨ y)n,

hence (x ∨ y)n ≥ (x ∨ y)− ∨ (x ∨ y)∼ for any n ∈ N. Thus, by hypothesis we get
x ∨ y = 1.
(ii) ⇒ (i) Consider x ∈ L such that xn ≥ x− ∨ x∼ for any n ∈ N.
Taking y = x in (ii) we get x ∨ x = 1, hence x = 1. ¤

Definition 5.2. A residuated lattice is called Archimedean if one of the equivalent
conditions from the above proposition is satisfied.
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Proposition 5.3. If in an Archimedean residuated lattice L xn ≥ y− ∨ y∼ for any
n ∈ N, then x → y = x Ã y = y.

Proof. Similarly as in the above proposition, if x, y ∈ L we have

(x ∨ y) ≤ [(x → y) Ã y] ∧ [(y Ã x) → x]

(x ∨ y) ≤ [(x Ã y) → y] ∧ [(y → x) Ã x].
Since x ∨ y = 1, it follows that:

[(x → y) Ã y] ∧ [(y Ã x) → x] = 1,

[(x Ã y) → y] ∧ [(y → x) Ã x] = 1,

hence (x → y) Ã y = 1 and (x Ã y) → y = 1.
From (x → y) Ã y = 1 we have x → y ≤ y and taking in consideration that
y ≤ x → y, we obtain x → y = y.
Similarly, x Ã y = y. ¤
Example 5.4. Consider the residuated lattice L from Example 3.19.
Since cn = c ≥ c− ∨ c∼ = a for all n ∈ N, it follows that L ist not an Archimedean
residuated lattice.

Example 5.5. Consider the residuated lattice L from Example 2.2. We have :

0n = 0 � 0− ∨ 0∼ = 1 ∨ 1 = 1, n ≥ 1

an = 0 � a− ∨ a∼ = c ∨ b = 1, n ≥ 2
bn = b � b− ∨ b∼ = c ∨ 0 = c, n ≥ 1
cn = c � c− ∨ c∼ = 0 ∨ b = b, n ≥ 1

1n = 1 ≥ 1− ∨ 1∼ = 0 ∨ 0 = 0, n ≥ 1.

Obviously : a � a− ∨ a∼ = c ∨ b = 1.
We conclude that, xn ≥ x− ∨ x∼ for all n ∈ N, n ≥ 1, implies x = 1. Hence, L is an
Archimedean residuated lattice.

Let’s consider the commutative case of a residuated lattice.

Proposition 5.6. In any commutative residuated lattice the following properties are
equivalent:
(a) xn ≥ x for any n ∈ N implies x = 1;
(b) xn ≥ y for any n ∈ N implies x ∨ y = 1;
(c) xn ≥ y for any n ∈ N implies x → y = y and y → x = x.

Proof. (a) ⇒ (b) : Let x, y ∈ L such that xn ≥ y for any n ∈ N.
By (c64) and by the hypothesis we have:

(x ∨ y)− = x ∧ y ≤ y ≤ xn ≤ (x ∨ y)n,

hence (x ∨ y)n ≥ (x ∨ y)− for any n ∈ N. Thus, by the hypothesis we get x ∨ y = 1.
(b) ⇒ (a) : Consider x ∈ L such that xn ≥ y for any n ∈ N.
By (b), taking y = x we get x ∨ x = 1, hence x = 1.
(a) ⇒ (c). Let x, y ∈ L such that xn ≥ y for any n ∈ N.
Similarly with (a) ⇒ (b), if x, y ∈ L we have
(x ∨ y)n ≥ (x ∨ y)− for any n ∈ N,
hence, by the hypothesis, we get x ∨ y = 1.
By (c73) we have x ∨ y ≤ [(x → y) → y] ∧ [(y → x) → x].
Since x ∨ y = 1, it follows that [(x → y) → y] ∧ [(y → x) → x] = 1,
hence (x → y) → y = 1 and (y → x) → x = 1.
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¿From (x → y) → y = 1, we have x → y ≤ y and considering that y ≤ x → y we
obtain x → y = y. Similarly, y → x = x.
(c) ⇒ (a) : Consider x ∈ L such that xn ≥ x, for any n ∈ N.
By the hypothesis we obtain x → x = x, hence x = 1. ¤
Definition 5.7. A commutative residuated lattice is called Archimedean if one of the
equivalent conditions from the above proposition is satisfied.

We will give bellow one example of commutative not Archimedean residuated lat-
tices.

Example 5.8. Consider the residuated lattice L = (L,∧,∨,¯,→, 0, 1) defined on
the unit interval L = [0, 1] with the operations (see [23]):

x¯ y =
{

0, if x + y ≤ 1
2

x ∧ y, otherwise

x → y =
{

1, if x ≤ y
max{1

2 − x, y}, otherwise
Since ( 1

3 )n = 1
3 > 1

6 = ( 1
3 )− for al n ∈ N and 1

3 6= 1, it follows that L is not
Archimedean.

Remark 5.9. When we study an Archimedean noncommutative ordered structure it
is a crucial problem to prove the existence of objects in this class. As answer of this
question we have :
(1) Every Archimedean `-group is commutative ([2]) ;
(2) Every Archimedean pseudo MV-algebra is commutative, i.e. an MV-algebra ([8]);
(3) Generally, an Archimedean pseudo MTL-algebra is not commutative ([5]);
(4) By Example 5.5 we proved that, generally, an Archimedean residuated lattice is
not commutative.

Remark 5.10. The existence of finite non-commutative residuated structures is also
a very important problem.
As we know, every finite peudo MV-algebra is an MV-algebra ([8]).
In this paper we proved that there exist finite non-commutative residuated lattices
and finite pseudo MTL-algebras.

Open problem 5.11. Find an example of Archimedean pseudo BL-algebra.

Open problem 5.12. Find an example of Archimedean non-commutative R`-monoid.

Open problem 5.13. Find an example of finite pseudo BL-algebra.

Open problem 5.14. Find an example of finite non-commutative R`-monoid.
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Splaiul Independenţei 313, Bucharest, Romania
E-mail address: lavinia ciungu@math.pub.ro


