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1. Introduction

The notion homeomorphism plays a very important role in topology. By definition,
a homeomorphism between two topological spaces X and Y is a bijective map f :
X → Y when both f and f−1 are continuous. Malghan [3] introduced the concept of
generalized closed maps in topological spaces. In this paper, we first introduce a new
class of closed maps called g̃s-closed maps in topological space and then we introduce
and study g̃s∗-homeomorphisms and prove that the set of all g̃s∗-homeomorphisms
forms a group under the operation composition of functions.

2. Preliminaries

Throughout this paper (X, τ) and (Y, σ) represent topological spaces on which
no separation axioms are assumed unless otherwise mentioned. For a subset A of a
space (X, τ), Cl(A), Int(A) and Ac denote the closure of A, the interior of A and the
complement of A in X, respectively.

We recall the following definitions and some results, which are used in the sequel

Definition 2.1. A subset A of a space (X, τ) is called:
(i) semi-open [2] if A ⊆ Cl(Int(A)).
(ii) semi-closed [2] if Int(Cl(A)) ⊆ A.

The semi-closure [1] of a subset A of X, denoted by s ClX(A) briefly s Cl(A), is
defined to be the intersection of all semi-closed sets containing A.

Definition 2.2. A subset A of a space (X, τ) is called:
(i) a ĝ-closed set [7] if Cl(A) ⊆ U whenever A ⊆ U and U is semi-open in (X, τ).

The complement of a ĝ-closed set is called ĝ-open.
(ii) a ∗g-closed set [8] if Cl(A) ⊆ U whenever A ⊆ U and U is ĝ-open in (X, τ). The

complement of a ∗g-closed set is called ∗g-open.
(iii) a #g-semi-closed (briefly #gs-closed) set [9] if s Cl(A) ⊆ U whenever A ⊆ U and

U is ∗g-open in (X, τ). The complement of a #gs-closed set is called #gs-open.
(iv) g̃-semi-closed set (briefly g̃s-closed) [6] if s Cl(A) ⊆ U whenever A ⊆ U and U

is #gs-open in (X, τ). The complement of a g̃s-closed set is called g̃s-open.
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Definition 2.3. A function f : (X, τ) → (Y, σ) is called:
(i) g̃s-continuous [5] if f−1(V ) is g̃s-closed in (X, τ) for every closed set V in (Y, σ).
(ii) g̃s-irresolute [5] if f−1(V ) is g̃s-closed in (X, τ) for every g̃s-closed set V in

(Y, σ).

Proposition 2.1. [5] If a map f : (X, τ) → (Y, σ) is g̃s-irresolute, then it is g̃s-
continuous.

Definition 2.4. Let (X, τ) be a topological space and E ⊆ X. We define the g̃s-
closure [4] of E (briefly g̃s-Cl(E)) to be the intersection of all g̃s-closed sets containing
E. In symbols, g̃s-Cl(E)=

⋂ {A : E ⊆ A and A ∈ G̃SC(X, τ)}.
Proposition 2.2. [4] Let (X, τ) be a topological space and E ⊆ X. The following
properties are hold:
(i) g̃s-Cl(E) is the smallest g̃s-closed set containing E and
(ii) E is g̃s-closed if and only if g̃s-Cl(E) = E.

Proposition 2.3. [4] For any two subsets A and B of (X, τ),
(i) If A ⊆ B, then g̃s-Cl(A) ⊆ g̃s-Cl(B),
(ii) g̃s-Cl(A ∩B) ⊆ g̃s-Cl(A) ∩ g̃s-Cl(B).

Theorem 2.1. [6] Suppose that B ⊆ A ⊆ X, B is a g̃s-closed set relative to A and
that A is open and g̃s-closed in (X, τ). Then B is g̃s-closed in (X, τ).

Corollary 2.1. [6] If A is a g̃s-closed set and F is a closed set, then A ∩ F is a
g̃s-closed set.

Theorem 2.2. [6] A set A is g̃s-open in (X, τ) if and only if F ⊆ s Int(A) whenever
F is #gs-closed in (X, τ) and F ⊆ A.

Definition 2.5. [4] Let (X, τ) be a topological space and E ⊆ X. We define the
g̃s-interior of E (briefly g̃s-Int(E)) to be the union of all g̃s-open sets contained in
E.

Lemma 2.1. [4] For any E ⊆ X, Int(E) ⊆ g̃s-Int(E) ⊆ E.

Proof. Since every open set is g̃s-open, the proof follows immediately. ¤

3. g̃s-Closed Maps

In this section, we introduce the notions of g̃s-closed maps, g̃s-open maps, g̃s∗-
closed maps, g̃s∗-open maps in topological spaces and obtain certain characterizations
of these maps.

Definition 3.1. The map f : (X, τ) → (Y, σ) is called g̃s-closed if the image of every
closed set in (X, τ) is g̃s-closed in (Y, σ).

Example 3.1. Let X = Y = {a, b, c}, τ = {∅, {a}, X} and σ = {∅, {b}, Y }. Define
a map f : (X, τ) → (Y, σ) by f(a) = b, f(b) = a and f(c) = c . Then f is a g̃s-closed
map.

Proposition 3.1. A mapping f : (X, τ) → (Y, σ) is g̃s-closed if and only if g̃s-
Cl(f(A)) ⊆ f(Cl(A)) for every subset A of (X, τ).

Proof. Suppose that f is g̃s-closed and A ⊆ X. Then f(Cl(A)) is g̃s-closed in
(Y, σ). We have f(A) ⊆ f(Cl(A)) and by Propositions 2.2 and 2.3, g̃s-Cl(f(A))
⊆ g̃s-Cl(f(Cl(A))) = f(Cl(A)).
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Conversely, let A be any closed set in (X, τ). Then A = Cl(A) and so f(A) =
f(Cl(A)) ⊇ g̃s-Cl(f(A)), by hypothesis. We have f(A) ⊆ g̃s-Cl(f(A)) by Proposition
2.2. Therefore, f(A) = g̃s-Cl(f(A)). i.e., f(A) is g̃s-closed by Proposition 2.2 and
hence f is g̃s-closed. ¤
Theorem 3.1. A map f : (X, τ) → (Y, σ) is g̃s-closed if and only if for each subset
S of (Y, σ) and for each open set U containing f−1(S) there exists a g̃s-open set V
of (Y, σ) such that S ⊆ V and f−1(V ) ⊆ U .

Proof. Suppose that f is a g̃s-closed map. Let S ⊆ Y and U be an open subset of
(X, τ) such that f−1(S) ⊆ U . Then V = (f(U c))c is a g̃s-open set containing S such
that f−1(V ) ⊆ U .

For the converse, let S be a closed set of (X, τ). Then f−1((f(S))c) ⊆ Sc and Sc

is open. By assumption, there exists a g̃s-open set V of (Y, σ) such that (f(S))c ⊆ V
and f−1(V ) ⊆ Sc and so S ⊆ (f−1(V ))c. Hence V c ⊆ f(S) ⊆ f((f−1(V ))c) ⊆ V c

which implies f(S) = V c. Since V c is g̃s-closed, f(S) is g̃s-closed and therefore f is
g̃s-closed. ¤

The following example shows that the composition of two g̃s-closed maps need not
be g̃s-closed.

Example 3.2. Let X = Y = Z = {a, b, c}, τ = {∅, {a}, {b, c}, X}, σ = {∅, {a, c}, Y }
and η = {∅, {b}, {a, c}, Z}. Define a map f : (X, τ) → (Y, σ) by f(a) = f(b) = b
and f(c) = a and a map g : (Y, σ) → (Z, η) by g(a) = c, g(b) = b and g(c) = a. Then
both f and g are g̃s-closed maps but their composition g ◦ f : (X, τ) → (Z, η) is not a
g̃s-closed map, since for the closed set {b, c} in (X, τ), (g ◦ f)({b, c}) = {a, b}, which
is not a g̃s-closed set in (Z, η).

Proposition 3.2. Let f : (X, τ) → (Y, σ) be a closed map and g : (Y, σ) → (Z, η) be
a g̃s-closed map, then their composition g ◦ f : (X, τ) → (Z, η) is g̃s-closed.

Proof. Obvious. ¤
Remark 3.1. If f : (X, τ) → (Y, σ) is g̃s-closed and g : (Y, σ) → (Z, η) is closed, then
their composition need not be a g̃s-closed map as seen from the following example.

Example 3.3. Let X = Y = Z= {a, b, c}, τ = {∅, {a}, {b, c}, X}, σ = {∅, {a, c}, Y }
and η = {∅, {b}, {a, c}, Z}. Define a map f : (X, τ) → (Y, σ) by f(a) = f(b) = b and
f(c) = a and g : (Y, σ) → (Z, η) be the identity map. Then f is a g̃s-closed map and
g is a closed map. But their composition g ◦ f : (X, τ) → (Z, σ) is not a g̃s-closed
map, since for the closed set {b, c} in (X, τ), (g ◦ f)({b, c}) = {a, b}, which is not
g̃s-closed in (Z, σ).

Theorem 3.2. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be two mappings
such that their composition g ◦ f : (X, τ) → (Z, η) be a g̃s-closed mapping. Then the
following statements are true.
(i) If f is continuous and surjective, then g is g̃s-closed.
(ii) If g is g̃s-irresolute and injective, then f is g̃s-closed.

Proof. (i). Let A be a closed set of (Y, σ). Since f is continuous, f−1(A) is closed in
(X, τ) and since g ◦ f is g̃s-closed, (g ◦ f)(f−1(A)) is g̃s-closed in (Z, σ). i.e., g(A) is
g̃s-closed in (Z, σ), since f is surjective. Therefore, g is a g̃s-closed map.

(ii). Let B be a closed set of (X, τ). Since g ◦ f is g̃s-closed, (g ◦ f)(B) is g̃s-closed
in (Z, σ). Since g is g̃s-irresolute, g−1((g ◦ f)(B)) is g̃s-closed in (Y, σ). i.e., f(B) is
g̃s-closed in (Y, σ), since g is injective. Thus, f is a g̃s-closed map. ¤
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As for the restriction fA of a map f : (X, τ) → (Y, σ) to a subset A of (X, τ), we
have the following:

Theorem 3.3. Let (X, τ) and (Y, σ) be any topological spaces. Then
(i) If f : (X, τ) → (Y, σ) is g̃s-closed and A is a closed subset of (X, τ), then

fA : (A, τA) → (Y, σ) is g̃s-closed.
(ii) If f : (X, τ) → (Y, σ) is g̃s-closed (resp. closed) and A = f−1(B) for some closed

(resp. g̃s-closed) set B of (Y, σ), then fA: (A, τA) → (Y, σ) is g̃s-closed.

Proof. (i). Let B be a closed set of A. Then B = A ∩ F for some closed set F of
(X, τ) and so B is closed in (X, τ). By hypothesis, f(B) is g̃s-closed in (Y, σ). But
f(B) = fA(B) and therefore fA is a g̃s-closed map.

(ii). Let D be a closed set of A. Then D = A∩H for some closed set H in (X, τ).
Now fA(D) = f(D) = f(A∩H) = f(f−1(B)∩H) = B ∩ f(H). Since f is g̃s-closed,
f(H) is g̃s-closed and so B ∩ f(H) is g̃s-closed in (Y, σ) by Corollary 2.1. Therefore,
fA is a g̃s-closed map. ¤

Analogous to a g̃s-closed map, we define a g̃s-open map as follows:

Definition 3.2. A map f : (X, τ) → (Y, σ) is said to a g̃s-open map if the image
f(A) is g̃s-open in (Y, σ) for each open set A in (X, τ).

Proposition 3.3. For any bijective f : (X, τ) → (Y, σ), the following statements are
equivalent:
(i) f−1 : (Y, σ) → (X, τ) is g̃s-continuous,
(ii) f is a g̃s-open map and
(iii) f is a g̃s-closed map.

Proof. (i) ⇒ (ii): Let U be an open set of (X, τ). By assumption (f−1)−1(U) = f(U)
is g̃s-open in (Y, σ) and so f is g̃s-open.

(ii) ⇒ (iii): Let F be a closed set of (X, τ). Then F c is open in (X, τ). By
assumption, f(F c) is g̃s-open in (Y, σ). i.e., f(F c) = (f(F ))c is g̃s-open in (Y, σ) and
therefore f(F ) is g̃s-closed in (Y, σ). Hence f is g̃s-closed.

(iii) ⇒ (i): Let F be a closed set in (X, τ). By assumption f(F ) is g̃s-closed in
(Y, σ). But f(F ) = (f−1)−1(F ) and therefore f−1 is g̃s-continuous on Y . ¤
Definition 3.3. Let x be a point of (X, τ) and V be a subset of X. Then V is called
a g̃s-neighbourhood of x in (X, τ) if there exists a g̃s-open set U of (X, τ) such that
x ∈ U ⊆ V .

Theorem 3.4. Let f : (X, τ) → (Y, σ) be a mapping. Then the following statements
are equivalent:
(i) f is a g̃s-open mapping.
(ii) For a subset A of (X, τ), f(int(A) ⊆ g̃s-Int(f(A))).
(iii) For each x ∈ X and for each neighborhood U of x in (X, τ), there exists a

g̃s-neighbourhood W of f(x) in (Y, σ) such that W ⊆ f(U).

Proof. (i) ⇒ (ii): Suppose f is g̃s-open. Let A ⊆ X. Since Int(A) is open in (X, τ),
f(Int(A)) is g̃s-open in (Y, σ). Hence f(Int(A)) ⊆ f(A) and we have, f(Int(A)) ⊆ g̃s-
Int(f(A)).

(ii) ⇒ (iii): Suppose (ii) holds. Let x ∈ X and U be an arbitrary neighborhood of
x in (X, τ). Then there exists an open set G such that x ∈ G ⊆ U . By assumption,
f(G) = f(Int(G)) ⊆ g̃s-Int(f(G)). This implies f(G) = g̃s-Int(f(G)). Therefore,
f(G) is g̃s-open in (Y, σ). Further, f(x) ∈ f(G) ⊆ f(U) and so (iii) holds, by taking
W = f(G).
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(iii) ⇒ (i): Suppose (iii) holds. Let U be any open set in (X, τ), x ∈ U and f(x)
= y. Then for each x ∈ U , y ∈ f(U), by assumption there exists a g̃s-neighbourhood
Wy of y in (Y, σ) such that Wy ⊆ f(U). Since Wy is a g̃s-neighbourhood of y,
there exists a g̃s-open set Vy in (Y, σ) such that y ∈ Vy ⊆ Wy. Therefore, f(U) =⋃{Vy : y ∈ f(U)}. Since any union of g̃s-open sets is g̃s-open set, f(U) is a g̃s-open
set of (Y, σ). Thus, f is a g̃s-open mapping. ¤

Theorem 3.5. A function f : (X, τ) → (Y, σ) is g̃s-open if and only if for any subset
B of (Y, σ) and for any closed set S containing f−1(B), there exists a g̃s-closed set
A of (Y, σ) containing B such that f−1(A) ⊆ S.

Proof. Similar to Theorem 3.1. ¤

Corollary 3.1. A function f : (X, τ) → (Y, σ) is g̃s-open if and only if f−1(g̃s-
Cl(B)) ⊆ Cl(f−1(B)) for every subset B of (Y, σ).

Proof. Suppose that f is g̃s-open. Then for any B ⊆ Y , f−1(B) ⊆ Cl(f−1(B)). By
Theorem 3.5, there exists a g̃s-closed set A of (Y, σ) such that B ⊆ A and f−1(A) ⊆
Cl(f−1(B)). Therefore, f−1(g̃s-Cl(B)) ⊆ f−1(A) ⊆ Cl(f−1(B)), since A is a g̃s-
closed set in (Y, σ).

Conversely, let S be any subset of (Y, σ) and F be any closed set containing f−1(S).
Put A = g̃s-Cl(S). Then A is a g̃s-closed set and S ⊆ A. By assumption, f−1(A) =
f−1(g̃s-Cl(S)) ⊆ Cl(f−1(S)) ⊆ F and therefore by Theorem 3.5, f is g̃s-open. ¤

Finally in this section, we define another new class of maps called g̃s∗-closed maps
which are stronger than g̃s-closed maps.

Definition 3.4. A map f : (X, τ) → (Y, σ) is said to be a g̃s∗-closed map if the
image f(A) is g̃s-closed in (Y, σ) for every g̃s-closed set A in (X, τ).

For example, the map f in Example 3.1 is a g̃s∗-closed map.

Remark 3.2. Since every closed set is a g̃s-closed set, we have every g̃s∗-closed map
is a g̃s-closed map. The converse is not true in general as seen from the following
example.

Example 3.4. Let X = Y = {a, b, c}, τ = {∅, {a, b}, X}, σ = {∅, {a}, {a, b}, Y }
and f : (X, τ) → (Y, σ) be the identity map. Then f is a g̃s-closed map but not
a g̃s∗-closed map, since {a, c} is a g̃s-closed set in (X, τ), but its image under f is
{a, c}, which is not g̃s-closed in (Y, σ).

Proposition 3.4. A mapping f : (X, τ) → (Y, σ) is g̃s∗-closed if and only if g̃s-
Cl(f(A)) ⊆ f(g̃s-Cl(A)) for every subset A of (X, τ).

Proof. Similar to Proposition 3.1 ¤

Analogous to g̃s∗-closed map we can also define g̃s∗-open map.

Proposition 3.5. For any bijection f : (X, τ) → (Y, σ), the following are equivalent:
(i) f−1 : (Y, σ) → (X, τ) is g̃s-irresolute,
(ii) f is a g̃s∗-open and
(iii) f is a g̃s∗-closed map.

Proof. Similar to Proposition 3.3. ¤

Lemma 3.1. Let A be a subset of X. Then p ∈ g̃s-Cl(A) if and only if for any
g̃s-neighborhood N of p in X, A ∩N 6= ∅.
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Definition 3.5. Let A be a subset of X. A maplication r : X → A is called a
g̃s-continuous retraction if r is g̃s-continuous and the restriction rA is the identity
mapping on A.

Definition 3.6. A topological space (X, τ) is called a g̃s-Hausdorff if for each pair
x, y of distinct points of X, there exists g̃s-neighborhoods U1 and U2 of x and y,
respectively, that are disjoint.

Theorem 3.6. Let A be a subset of X and r : X → A be a g̃s-continuous retraction.
If X is g̃s-Hausdorff, then A is a g̃s-closed set of X.

Proof. Suppose that A is not g̃s-closed. Then there exists a point x in X such that
x ∈ g̃s-Cl(A) but x /∈ A. It follows that r(x) 6= x because r is g̃s-continuous retraction.
Since X is g̃s-Hausdorff, there exists disjoint g̃s-open sets U and V in X such that
x ∈ U and r(x) ∈ V . Now let W be an arbitrary g̃s-neighborhood of x. Then W ∩U
of x. Since x ∈ g̃s-Cl(A), by Lemma 3.1, we have (W ∩ U) ∩A 6= ∅. Therefore there
exists a point y in W ∩U ∩A. Since y ∈ A, we have r(y) = y ∈ U and hence r(y) /∈ V .
This implies that r(W ) * V because y ∈ W . This is contrary to the g̃s-continuity of
r. Consequently, A is a g̃s-closed set of X. ¤

Theorem 3.7. Let {Xi|i ∈ I} be any family of topological spaces. If f : X → ΠXi

is a g̃s-continuous mapping, then Pri ◦ f : X → Xi is g̃s-continuous for each i ∈ I,
where Pri is the projection of ΠXj on Xi.

Proof. We shall consider a fixed i ∈ I. Suppose Ui is an arbitrary open set in Xi.
Then P−1

ri
(Ui) is open in ΠXi. Since f is g̃s-continuous, we have f−1(P−1

ri
(Ui)) =

(Pri ◦ f)−1(Ui) g̃s-open in X. Therefore, Pri ◦ f is g̃s-continuous. ¤

4. g̃s∗-Homeomorphisms

In this section we introduce the following definition.

Definition 4.1. A bijection f : (X, τ) → (Y, σ) is said to be g̃s∗-homeomorphisms if
both f and f−1 are g̃s-irresolute.

We denote the family of all g̃s∗-homeomorphism of a topological space (X, τ) onto
itself by g̃s∗-h(X, τ).

Proposition 4.1. If f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) are g̃s∗-homeomorphisms,
then their composition g ◦ f : (X, τ) → (Z, η) is also g̃s∗-homeomorphism.

Proof. Let U be g̃s-open set in (Z, η). Now, (g ◦ f)−1(U) = f−1(g−1(U)) = f−1(V ),
where V = g−1(U). By hypothesis, V is g̃s-open in (Y, σ) and so again by hypothesis,
f−1(V ) is g̃s-open in (X, τ). Therefore, g ◦ f is g̃s-irresolute.

Also for a g̃s-open set G in (X, τ), we have (g◦f)(G) = g(f(G)) = g(W ), where W
= f(G). By hypothesis f(G) is g̃s-open in (Y, σ) and so again by hypothesis, g(f(G))
is g̃s-open in (Z, η). i.e., (g ◦ f)(G) is g̃s-open in (Z, η) and therefore (g ◦ f)−1 is
g̃s-irresolute. Hence g ◦ f is a g̃s∗-homeomorphism. ¤

Theorem 4.1. The set g̃s∗-h(X, τ) is a group under the composition of maps.

Proof. Define a binary operation ∗ : g̃s∗-h(X, τ)× g̃s∗-h(X, τ) → g̃s∗-h(X, τ) by f ∗ g
= g ◦f for all f , g ∈ g̃s∗-h(X, τ) and ◦ is the usual operation of composition of maps.
Then by Proposition 4.1, g ◦ f ∈ g̃s∗-h(X, τ). We know that the composition of
maps is associative and the identity map I: (X, τ) → (X, τ) belonging to g̃s∗-h(X, τ)
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servers as the identity element. If f ∈ g̃s∗-h(X, τ), then f−1 ∈ g̃s∗-h(X, τ) such that
f ◦f−1 = f−1 ◦f = I and so inverse exists for each element of g̃s∗-h(X, τ). Therefore,
(g̃s∗-h(X, τ), ◦) is a group under the operation of composition of maps. ¤

Theorem 4.2. Let f : (X, τ) → (Y, σ) be a g̃s∗-homeomorphism. Then f induces an
isomorphism from the group g̃s∗-h(X, τ) onto the group g̃s∗-h(Y, σ).

Proof. Using the map f , we define a map θf : g̃s∗-h(X, τ) → g̃s∗-(Y, σ) by θf (h) =
f ◦ h ◦ f−1 for every h ∈ g̃s∗-h(X, τ). Then θf is a bijection. Further, for all h1, h2 ∈
g̃s∗-h(X, τ), θf (h1 ◦h2) = f ◦ (h1 ◦h2)◦ f−1 = (f ◦h1 ◦ f−1) ◦ (f ◦h2 ◦ f−1) = θf (h1)
◦ θf (h2). Therefore, θf is a homeomorphism and so it is an isomorphism induced by
f . ¤

Theorem 4.3. g̃s∗-homeomorphism is an equivalence relation in the collection of all
topological spaces.

Proof. Reflexivity and symmetry are immediate and transitivity follows from Propo-
sition 4.1. ¤

Theorem 4.4. If f : (X, τ) → (Y, σ) is a g̃s∗-homeomorphism, then g̃s-Cl(f−1(B))
= f−1(g̃s-Cl(B)) for all B ⊆ Y .

Proof. Since f is a g̃s∗-homeomorphism, f is g̃s-irresolute. Since g̃s-Cl(f(B)) is a g̃s-
closed set in (Y, σ), f−1(g̃s-Cl(f(B))) is g̃s-closed in (X, τ). Now, f−1(B) ⊆ f−1(g̃s-
Cl(B)) and so by Proposition 2.3, g̃s-Cl(f−1(B)) ⊆ f−1(g̃s-Cl(B)).

Again since f is a g̃s∗-homeomorphism, f−1 is g̃s-irresolute. Since g̃s-Cl(f−1(B))
is g̃s-closed in (X, τ), (f−1)−1(g̃s-Cl(f−1(B))) = f(g̃s-Cl(f−1(B))) is g̃s-closed in
(Y, σ). Now, B ⊆ (f−1)−1(f−1(B)) ⊆ (f−1)−1(g̃s-Cl(f−1(B))) = f(g̃s-Cl(f−1(B)))
and so g̃s-Cl(B)⊆ f(g̃s-Cl(f−1(B))). Therefore, f−1(g̃s-Cl(B))⊆ f−1(f(g̃s-Cl(f−1(B))))
⊆ g̃s-Cl(f−1(B)) and hence the equality holds. ¤

Corollary 4.1. If f : (X, τ) → (Y, σ) is a g̃s∗-homeomorphism, then g̃s-Cl(f(B)) =
f(g̃s-Cl(B)) for all B ⊆ X.

Proof. Since f : (X, τ) → (Y, σ) is a g̃s∗-homeomorphism, f−1 : (Y, σ) → (X, τ)
is also a g̃s∗-homeomorphism. Therefore, by Theorem 4.4, g̃s-Cl((f−1)−1(B)) =
(f−1)−1(g̃s-Cl(B)) for all B ⊆ X. i.e., g̃s-Cl(f(B)) = f(g̃s-Cl(B)). ¤

Corollary 4.2. If f : (X, τ) → (Y, σ) is a g̃s∗-homeomorphism, then f(g̃s-Int(B)) =
g̃s-Int(f(B)) for all B ⊆ X.

Proof. For any set B ⊆ X, g̃s-Int(B) = (g̃s-Cl(Bc))c.

Thus, f(g̃s− Int(B)) = f((g̃s− Cl(Bc))c)
= (f(g̃s− Cl(Bc)))c

= (g̃s− Cl(f(Bc)))c, by Corollary 4.1
= (g̃s− Cl((f(B))c))c = g̃s− Int(f(B)).

¤

Corollary 4.3. If f : (X, τ) → (Y, σ) is a g̃s∗-homeomorphism, then f−1(g̃s-Int(B))
= g̃s-Int(f−1(B)) for all B ⊆ Y .

Proof. Since f−1 : (Y, σ) → (X, τ) is a g̃s∗-homeomorphism, the proof follows from
Corollary 4.2. ¤
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