Annals of University of Craiova, Math. Comp. Sci. Ser.
Volume 33, 2006, Pages 208215
ISSN: 1223-6934

On g-Semi-Homeomorphism in Topological Spaces

NEELAMEGARAJAN RAJESH, ERDAL EKICI AND MARIAM LELLIS THIVAGAR

ABSTRACT. In this paper, we first introduce a new class of closed maps called gs-closed maps
also introduce a new class of homeomorphisms called gs*-homeomorphisms and prove that
the set of all gs*-homeomorphisms forms a group under the operation composition of maps.
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1. Introduction

The notion homeomorphism plays a very important role in topology. By definition,
a homeomorphism between two topological spaces X and Y is a bijective map f :
X — Y when both f and f~! are continuous. Malghan [3] introduced the concept of
generalized closed maps in topological spaces. In this paper, we first introduce a new
class of closed maps called gs-closed maps in topological space and then we introduce
and study gs*-homeomorphisms and prove that the set of all gs*-homeomorphisms
forms a group under the operation composition of functions.

2. Preliminaries

Throughout this paper (X,7) and (Y,0) represent topological spaces on which
no separation axioms are assumed unless otherwise mentioned. For a subset A of a
space (X, 1), Cl(A4), Int(A4) and A® denote the closure of A, the interior of A and the
complement of A in X, respectively.

We recall the following definitions and some results, which are used in the sequel

Definition 2.1. A subset A of a space (X, T) is called:
(i) semi-open [2] if A C Cl(Int(A)).
(ii) semi-closed [2] if Int(Cl(A)) C A.

The semi-closure [1] of a subset A of X, denoted by sClx(A) briefly s CIl(A), is
defined to be the intersection of all semi-closed sets containing A.

Definition 2.2. A subset A of a space (X, 7) is called:
(i) a g-closed set 7] if Cl(A) C U whenever A C U and U is semi-open in (X,T).

The complement of a g-closed set is called g-open.

(ii) a *g-closed set [8] if C1(A) C U whenever A C U and U is g-open in (X, 7). The
complement of a *g-closed set is called *g-open.

(iii) a #g-semi-closed (briefly # gs-closed) set [9] if s Cl(A) C U whenever A C U and
U is *g-open in (X, 7). The complement of a ¥ gs-closed set is called # gs-open.

(iv) g-semi-closed set (briefly gs-closed) [6] if s CI(A) C U whenever A C U and U
is #gs-open in (X, 7). The complement of a gs-closed set is called gs-open.
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Definition 2.3. A function f: (X,7) — (Y, 0) is called:
(i) gs-continuous [5] if f~1(V) is gs-closed in (X, T) for every closed set V in (Y, o).
(ii) gs-irresolute [5] if f=1(V) is gs-closed in (X,T) for every gs-closed set V in
(Y, o).
Proposition 2.1. [5] If a map [ : (X,7) — (Y,0) is gs-irresolute, then it is gs-
contInuous.

Definition 2.4. Let (X, 7) be a topological space and E C X. We define the gs-
closure [4] of E (briefly gs-Cl(E)) to be the intersection of all gs-closed sets containing
E. In symbols, gs-CI(E)= (1 {A: EC A and A€ GSC(X,7)}.

Proposition 2.2. [4] Let (X,7) be a topological space and E C X. The following
properties are hold:

(i) gs-Cl(E) is the smallest gs-closed set containing E and

(ii) E is gs-closed if and only if gs-CI(E) = E.
Proposition 2.3. [4] For any two subsets A and B of (X, ),

(i) If A C B, then gs-Cl(A) C gs-Cl(B),

(ii) gs-Cl(AN B) C gs-Cl(A4) N gs-CI(B).
Theorem 2.1. [6] Suppose that B C A C X, B is a gs-closed set relative to A and
that A is open and gs-closed in (X, 7). Then B is gs-closed in (X, ).
Corollary 2.1. [6] If A is a gs-closed set and F is a closed set, then ANF is a
gs-closed set.
Theorem 2.2. [6] A set A is gs-open in (X, 7) if and only if F C sInt(A) whenever
F is #gs-closed in (X,7) and F C A.

Definition 2.5. [4] Let (X,7) be a topological space and E C X. We define the
gs-interior of E (briefly gs-Int(E)) to be the union of all gs-open sets contained in
E.

Lemma 2.1. [4] For any F C X, Int(E) C gs-Int(F) C E.

Proof. Since every open set is gs-open, the proof follows immediately. O
3. gs-Closed Maps

In this section, we introduce the notions of gs-closed maps, gs-open maps, gs*-
closed maps, gs*-open maps in topological spaces and obtain certain characterizations
of these maps.

Definition 3.1. The map f : (X,7) — (Y, 0) is called gs-closed if the image of every
closed set in (X, 1) is gs-closed in (Y, o).

Example 3.1. Let X =Y = {a,b,c}, 7 ={9,{a}, X} and 0 = {@,{b},Y}. Define
amap f:(X,7) = (Y,0) by f(a) =b, f(b) =a and f(c) =c . Then f is a gs-closed
map.

Proposition 3.1. A mapping f : (X,7) — (Y,0) is gs-closed if and only if gs-
CI(f(A)) C f(CL(A)) for every subset A of (X, ).

Proof. Suppose that f is gs-closed and A C X. Then f(Cl(A)) is gs-closed in
(Y,0). We have f(A) C f(Cl(A)) and by Propositions 2.2 and 2.3, gs-Cl(f(A))
€ gs-Cl(f(CI(A))) = F(CI(A)).
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Conversely, let A be any closed set in (X, 7). Then A = Cl(A) and so f(A) =
f(CI(A)) D gs-Cl(f(A)), by hypothesis. We have f(A) C gs-Cl(f(A)) by Proposition
2.2. Therefore, f(A) = gs-Cl(f(A)). i.e., f(A) is gs-closed by Proposition 2.2 and
hence f is gs-closed. O

Theorem 3.1. A map f: (X,7) — (Y,0) is gs-closed if and only if for each subset
S of (Y,0) and for each open set U containing f~*(S) there exists a gs-open set V
of (Y,0) such that SCV and f~1(V) CU.

Proof. Suppose that f is a gs-closed map. Let S C Y and U be an open subset of
(X, 7) such that f~1(S) CU. Then V = (f(U¢)) is a gs-open set containing S such
that f~1(V) C U.

For the converse, let S be a closed set of (X, 7). Then f~1((f(5))¢) C S¢ and S°¢
is open. By assumption, there exists a gs-open set V of (Y, o) such that (f(S))* CV
and f~Y(V) C 8¢ and so S C (f~1(V))e. Hence V¢ C f(S) C f((f~1(V))°) C Ve
which implies f(S) = V. Since V¢ is gs-closed, f(S) is gs-closed and therefore f is
gs-closed. O

The following example shows that the composition of two gs-closed maps need not
be gs-closed.

Example 3.2. Let X =Y =7 ={a,b,c}, 7 ={2,{a},{b,c}, X}, 0 ={2,{a,c}, Y}
and n = {@, {b}, {a,c},Z}. Define a map [ : (X,7) — (Y,0) by f(a) = f(b) =
and f(c¢) =a and a map g: (Y,0) — (Z,n) by g(a) = ¢, g(b) =b and g(c) = a. Then
both f and g are gs-closed maps but their composition go f: (X,7) — (Z,n) is not a
gs-closed map, since for the closed set {b,c} in (X,7), (go f)({b,c}) = {a,b}, which
is not a gs-closed set in (Z,n).

Proposition 3.2. Let f: (X,7) — (Y,0) be a closed map and g : (Y,0) — (Z,n) be
a gs-closed map, then their composition go f : (X,7) — (Z,n) is gs-closed.

Proof. Obvious. O

Remark 3.1. If f : (X,7) — (Y, 0) is gs-closed and g : (Y,0) — (Z,n) is closed, then
their composition need not be a gs-closed map as seen from the following example.

Example 3.3. Let X =Y =Z={a,b,c}, 7 ={9,{a},{b,c}, X}, 0 ={9,{a,c}, Y}
and n = {@,{b},{a,c},Z}. Define a map f: (X,7) — (Y,0) by f(a) = f(b) =b and
fle) =aand g: (Y,0) — (Z,n) be the identity map. Then f is a gs-closed map and
g is a closed map. But their composition go f : (X,7) — (Z,0) is not a gs-closed
map, since for the closed set {b,c} in (X,7), (go f)({b,c}) = {a,b}, which is not
gs-closed in (Z,0).

Theorem 3.2. Let f : (X,7) — (Y,0) and g : (Y,0) — (Z,n) be two mappings
such that their composition go f : (X,7) — (Z,n) be a gs-closed mapping. Then the
following statements are true.

(i) If f is continuous and surjective, then g is gs-closed.

(ii) If g is gs-irresolute and injective, then f is gs-closed.

Proof. (i). Let A be a closed set of (Y, ). Since f is continuous, f~1(A) is closed in
(X, 7) and since g o f is gs-closed, (go f)(f~1(A)) is gs-closed in (Z,0). i.e., g(A) is
gs-closed in (Z, ), since f is surjective. Therefore, g is a gs-closed map.

(ii). Let B be a closed set of (X, 7). Since go f is gs-closed, (go f)(B) is gs-closed
in (Z,0). Since g is gs-irresolute, g=((g o f)(B)) is gs-closed in (Y, o). i.e., f(B) is
gs-closed in (Y, 0), since g is injective. Thus, f is a gs-closed map. O
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As for the restriction f4 of a map f: (X,7) — (Y,0) to a subset A of (X, 7), we
have the following;:

Theorem 3.3. Let (X,7) and (Y, o) be any topological spaces. Then
W) If f: (X,7) — (Y,0) is gs-closed and A is a closed subset of (X,T), then
fa:(A,m4) = (Y,0) is gs-closed.
(i) If f : (X,7) — (Y, 0) is gs-closed (resp. closed) and A = f=1(B) for some closed
(resp. gs-closed) set B of (Y,0), then fa: (A,74) — (Y, 0) is gs-closed.

Proof. (i). Let B be a closed set of A. Then B = AN F for some closed set F' of
(X,7) and so B is closed in (X, 7). By hypothesis, f(B) is gs-closed in (Y, o). But
f(B) = fa(B) and therefore f4 is a gs-closed map.

(ii). Let D be a closed set of A. Then D = AN H for some closed set H in (X, 7).
Now fa(D) = f(D) = f(ANH) = f(f"Y(B)NH) = BN f(H). Since f is gs-closed,
f(H) is gs-closed and so BN f(H) is gs-closed in (Y, o) by Corollary 2.1. Therefore,
fa is a gs-closed map. |

Analogous to a gs-closed map, we define a gs-open map as follows:

Definition 3.2. A map [ : (X,7) — (Y,0) is said to a gs-open map if the image
f(A) is gs-open in (Y, o) for each open set A in (X, ).

Proposition 3.3. For any bijective f : (X,7) — (Y, 0), the following statements are
equivalent:
(i) f71:(Y,0) = (X,7) is gs-continuous,
(ii) f 4s a gs-open map and
(iii) f is a gs-closed map.

Proof. (i) = (ii): Let U be an open set of (X, 7). By assumption (f~1)~1(U) = f(U)
is gs-open in (Y, o) and so f is gs-open.

(ii) = (iii): Let F be a closed set of (X,7). Then F° is open in (X,7). By
assumption, f(F°) is gs-open in (Y, 0). i.e., f(F°) = (f(F))° is gs-open in (Y, o) and
therefore f(F') is gs-closed in (Y, o). Hence f is gs-closed.

(iii) = (i): Let F be a closed set in (X, 7). By assumption f(F) is gs-closed in
(Y,0). But f(F) = (f~')"Y(F) and therefore f~! is gs-continuous on Y. O

Definition 3.3. Let x be a point of (X, 7) and V' be a subset of X. Then V is called
a gs-neighbourhood of x in (X, T) if there exists a gs-open set U of (X, T) such that
zreUCV.

Theorem 3.4. Let f: (X,7) — (Y,0) be a mapping. Then the following statements
are equivalent:
(i) f is a gs-open mapping.
(ii) For a subset A of (X,7), f(int(A) C gs-Int(f(A))).
(iil) For each x € X and for each neighborhood U of x in (X, 1), there exists a
gs-neighbourhood W of f(x) in (Y,0) such that W C f(U).

Proof. (i) = (ii): Suppose f is gs-open. Let A C X. Since Int(A) is open in (X, 1),
f(Int(A)) is gs-open in (Y, o). Hence f(Int(A)) C f(A) and we have, f(Int(A4)) C gs-
Tnt(£(4)).
( i) = (iii): Suppose (ii) holds. Let € X and U be an arbitrary neighborhood of
n (X,7). Then there exists an open set G such that + € G C U. By assumption,
= f(Int( )) € gs-Int(f(G)). This implies f(G) = gs-Int(f(G)). Therefore,
is gs-open in (Y, o). Further, f(z) € f(G) C f(U) and so (iii) holds, by taking
= /(@)

f(G)
f(G)
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(iii) = (i): Suppose (iii) holds. Let U be any open set in (X, 7), z € U and f(x)
= y. Then for each x € U, y € f(U), by assumption there exists a gs-neighbourhood
Wy of y in (Y,0) such that W, C f(U). Since W, is a gs-neighbourhood of y,
there exists a gs-open set V, in (Y, o) such that y € V,, C W,. Therefore, f(U) =
U{Vy : y € f(U)}. Since any union of gs-open sets is gs-open set, f(U) is a gs-open
set of (Y, o). Thus, f is a gs-open mapping. O

Theorem 3.5. A function [ : (X,7) — (Y, 0) is gs-open if and only if for any subset
B of (Y,0) and for any closed set S containing f~*(B), there exists a gs-closed set
A of (Y,0) containing B such that f~1(A) C S.

Proof. Similar to Theorem 3.1. O

Corollary 3.1. A function f : (X,7) — (Y,0) is gs-open if and only if f=1(gs-
CI(B)) C CI(f~Y(B)) for every subset B of (Y,o).

Proof. Suppose that f is gs-open. Then for any B C Y, f~1(B) C CI(f~1(B)). By
Theorem 3.5, there exists a gs-closed set A of (Y, o) such that B C A and f~1(A4) C
Cl(f~%(B)). Therefore, f~1(gs-Cl(B)) C f~1(A) C CI(f~(B)), since A is a gs-
closed set in (Y, 0).

Conversely, let S be any subset of (Y, o) and F be any closed set containing f~1(.5).
Put A = §s-CI(S). Then A is a gs-closed set and S C A. By assumption, f~1(4) =
f71(gs-C1(S)) C CI(f~1(9)) C F and therefore by Theorem 3.5, f is gs-open. O

Finally in this section, we define another new class of maps called gs*-closed maps
which are stronger than gs-closed maps.

Definition 3.4. A map f : (X,7) — (Y,0) is said to be a gs*-closed map if the
image f(A) is gs-closed in (Y, o) for every gs-closed set A in (X, 7).

For example, the map f in Example 3.1 is a gs*-closed map.
Remark 3.2. Since every closed set is a gs-closed set, we have every gs*-closed map

is a gs-closed map. The converse is not true in general as seen from the following
example.

Example 3.4. Let X =Y = {a,b,c}, 7 = {2,{a,b}, X}, 0 = {2,{a},{a,b},Y}
and f : (X,7) — (Y,0) be the identity map. Then f is a gs-closed map but not
a gs*-closed map, since {a,c} is a gs-closed set in (X,7), but its image under f is
{a, c}, which is not gs-closed in (Y, o).

Proposition 3.4. A mapping f : (X,7) — (Y,0) is gs*-closed if and only if gs-
CI(f(A)) C f(gs-Cl(A)) for every subset A of (X,T).

Proof. Similar to Proposition 3.1 O
Analogous to gs*-closed map we can also define gs*-open map.

Proposition 3.5. For any bijection f : (X,7) — (Y, 0), the following are equivalent:
() f71:(Y,0) — (X,7) is gs-irresolute,

(ii) f is a gs*-open and

(iii) f is a gs*-closed map.

Proof. Similar to Proposition 3.3. O

Lemma 3.1. Let A be a subset of X. Then p € gs-Cl(A) if and only if for any
gs-neighborhood N of p in X, ANN # &.
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Definition 3.5. Let A be a subset of X. A maplication r : X — A is called a
gs-continuous retraction if r is gs-continuous and the restriction ra is the identity
mapping on A.

Definition 3.6. A topological space (X, T) is called a gs-Hausdorff if for each pair
x, y of distinct points of X, there exists gs-neighborhoods Uy and Us of x and y,
respectively, that are disjoint.

Theorem 3.6. Let A be a subset of X andr: X — A be a gs-continuous retraction.
If X is gs-Hausdorff, then A is a gs-closed set of X.

Proof. Suppose that A is not gs-closed. Then there exists a point z in X such that
x € gs-Cl(A) but « ¢ A. Tt follows that r(x) # = because r is gs-continuous retraction.
Since X is gs-Hausdorff, there exists disjoint gs-open sets U and V in X such that
z € U and r(x) € V. Now let W be an arbitrary gs-neighborhood of z. Then W NU
of z. Since x € gs-Cl(A), by Lemma 3.1, we have (W NU) N A # &. Therefore there
exists a point y in WNUNA. Since y € A, we have r(y) =y € U and hence r(y) ¢ V.
This implies that (W) € V because y € W. This is contrary to the gs-continuity of
r. Consequently, A is a gs-closed set of X. O

Theorem 3.7. Let {X;|i € I} be any family of topological spaces. If f : X — TIX;
is a gs-continuous mapping, then P, o f : X — X, is gs-continuous for each i € I,
where P, is the projection of I1X; on X;.

Proof. We shall consider a fixed i € I. Suppose U; is an arbitrary open set in Xj.
Then P! (U;) is open in IIX;. Since f is gs-continuous, we have f~' (P *(U;)) =

(P,, o f)~1(U;) gs-open in X. Therefore, P,, o f is gs-continuous. O
4. gs*-Homeomorphisms

In this section we introduce the following definition.

Definition 4.1. A bijection f: (X,7) — (Y,0) is said to be gs*-homeomorphisms if
both f and f~' are gs-irresolute.

We denote the family of all gs*-homeomorphism of a topological space (X, 7) onto
itself by gs*-h(X, 7).

Proposition 4.1. If f : (X,7) — (Y,0) and g : (Y,0) — (Z,n) are gs*-homeomorphisms,
then their composition go f : (X, 7) — (Z,n) is also gs*-homeomorphism.

Proof. Let U be gs-open set in (Z,n). Now, (go f)~YU) = f~Y g~ (U)) = f~H(V),
where V = ¢=}(U). By hypothesis, V is gs-open in (Y, o) and so again by hypothesis,
f~1(V) is gs-open in (X, 7). Therefore, g o f is gs-irresolute.

Also for a gs-open set G in (X, 7), we have (go f)(G) = g(f(G)) = g(W), where W
= f(G). By hypothesis f(G) is gs-open in (Y, o) and so again by hypothesis, g(f(G))
is gs-open in (Z,n). i.e., (go f)(G) is gs-open in (Z,n) and therefore (go f)~! is
gs-irresolute. Hence g o f is a gs*-homeomorphism. ]

Theorem 4.1. The set gs*-h(X,T) is a group under the composition of maps.

Proof. Define a binary operation * : gs*-h(X, 7) x gs*-h(X,7) — gs*-h(X,7) by fxg
=go fforall f, g € gs*-h(X,7) and o is the usual operation of composition of maps.
Then by Proposition 4.1, g o f € gs*-h(X,7). We know that the composition of
maps is associative and the identity map I: (X, 7) — (X, 7) belonging to gs*-h(X, 1)
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servers as the identity element. If f € gs*-h(X,7), then f~! € gs*-h(X,7) such that
fof~t= f~lof = I and so inverse exists for each element of gs*-h(X, 7). Therefore,
(gs*-h(X,7),0) is a group under the operation of composition of maps. |

Theorem 4.2. Let f: (X,7) — (Y, 0) be a gs*-homeomorphism. Then f induces an
isomorphism from the group gs*-h(X,T) onto the group gs*-h(Y, o).

Proof. Using the map f, we define a map 0y: gs*-h(X,7) — gs*-(Y,0) by 87(h) =
foho f~! for every h € gs*-h(X, 7). Then 0y is a bijection Further, for all hy, hy €
Gs*-h(X,7), O;(hohs) = fo(hyohs)o f=1 = (fohio 1) o (fohgo f~1) = O (hy)
o f¢(ha). Therefore, 0 is a homeomorphism and so it is an isomorphism induced by

|

Theorem 4.3. gs*-homeomorphism is an equivalence relation in the collection of all
topological spaces.

Proof. Reflexivity and symmetry are immediate and transitivity follows from Propo-
sition 4.1. (]

Theorem 4.4. If f : (X,7) — (Y, 0) is a gs*-homeomorphism, then gs-Cl(f~1(B))
= f~Ygs-CI(B)) for all BC Y.

Proof. Since f is a gs*-homeomorphism, f is gs-irresolute. Since gs-Cl(f(B)) is a gs-
closed set in (Y, o), f~1(gs-Cl(f(B))) is gs-closed in (X,T). Now, f~1(B) C f~1(gs-
C1(B)) and so by Proposition 2.3, gs-Cl(f~(B )) C f~Y(gs-ClI(B)).

Again since f is a ¢gs*-homeomorphism, f~! is gs-irresolute. Since gs- Cl( Y(B))
is gs-closed in (X,7), (f~1)"1(gs-Cl(f~1(B))) = f(gs-Cl(f~1(B))) is gs-closed in
(¥.0). Now, B € ()7 (B)) € (7) " (3s-CUs 1 (B)) = f(3s-CU7~(B)
and so gs-C1(B) C f(gs-Cl(f~*(B))). Therefore, f~1(gs-C1(B)) C f~(f(gs-Cl(f~*(B
C gs-Cl(f~Y(B)) and hence the equality holds. O

)

Corollary 4.1. If f: (X,7) — (Y,0) is a gs*-homeomorphism, then gs-C1(f(B)) =
f(gs-Cl(B)) for all BC X.

Proof. Since f : (X,7) — (Y,0) is a gs*-homeomorphism, f*1 : (Y, ) (X, 7)
is also a gs* homeomorphlsm Therefore, by Theorem 4.4, gs-C1((f~1)~ (B)) =
(f~H71(gs-CI(B)) for all B C X. i.e., gs- Cl(f( ) = f(gs- Cl( ). O

Corollary 4.2. If f : (X,7) — (Y,0) is a gs*-homeomorphism, then f(gs-Int(B))
gs-Int(f(B)) for all B C X.

Proof. For any set B C X, gs-Int(B) = (gs-Cl(B°))°.
Thus, f(gs —Int(B)) = f((gs — CI(B))°)
= (f(gs = CI(B)))"
= (gs— CI(f(B9)))¢, by Corollary 4.1
= (95 = CU((f(B))9))" = gs — Int(f(B)).

O

Corollary 4.3. If f : (X,7) — (Y, 0) is a gs*-homeomorphism, then f~1(gs-Int(B))
= gs-Int(f~Y(B)) for all BC Y.

Proof. Since f~!: (Y,0) — (X, 7) is a gs*-homeomorphism, the proof follows from
Corollary 4.2. O



ON g-SEMI-HOMEOMORPHISM 215

References

[1] Crossley S.G and Hildebrand S. K, Semi-closure, Texas J. Sci. 22(1971), 99-112.

[2] Levine N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly,
70(1963), 36-41.

[3] Malghan S. R, Generalized closed maps, J. Karnataka Univ. Sci., 27(1982), 82-88.

[4] Rajesh N, Thivagar M. L and Ekici E, On g-Locally semi-closed sets, g-LSC* sets and g-LSC**
sets (Submitted).

[5] Rajesh N, Thivagar M. L and Ekici E, On g-semi continuous functions, J. Appl. Func. and Diff.
Eqtns. (to appear).

[6] Sundaram P, Rajesh N, Thivagar M. L and Duszynski Z, On g-Semi-closed sets in topological
spaces, to appear in Math. Pannonica (2007 issue).

[7] Veera Kumar M.K.R.S, g-closed sets in topological spaces, Bulletin Allahabad Math. Soc.,
18(2003), 99-112.

[8] Veera Kumar M.K.R.S, Between g*-closed sets and g-closed sets, Antarctica J. Math, Reprint.

[9] Veera Kumar M.K.R.S, #g-Semi-closed sets in topological spaces, Antarctica J. Math, 2(2)

(2005), 201-222.

(Neelamegarajan Rajesh) DEPARTMENT OF MATHEMATICS, KONGU ENGINEERING COLLEGE,
PERUNDURAI, ERODE-638 052, TAMILNADU, INDIA
E-mail address: nrajesh_topology@yahoo.co.in

(Erdal Ekici) DEPARTMENT OF MATHEMATICS, CANAKKALE ONSEKIZ MART UNIVERSITY,
TERZIOGLU CAMPUS, 17020 CANAKKALE, TURKEY
E-mail address: eekici@comu.edu.tr

(Mariam Lellis Thivagar) DEPARTMENT OF MATHEMATICS, ARUL ANANDHAR COLLEGE,
KARUMATHUR, MADURAI, TAMILNADU, INDIA
E-mail address: mlthivagar@yahoo.co.in



