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On Some properties of fractionnal Sobolev Spaces

Jean-Francois Raman

Abstract. In this paper we prove some basic properties of fractionnal Sobolev spaces. First,
we view Ws,p as an intermediate space between Lp and W1,p. Then, classical results of W1,p

may be extended to Ws,p. When Ω is an extension domain, we give a complete proof of the
existence of a bounded linear and surjective mapping tr : W1,p(Ω) → W1−1/p,p(Ω) which

extend the restriction operator defined on the dense subset D(Ω). This was partially done and
suggested in [2].
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1. Fractionnal Sobolev Spaces

Let s be a positive real number such that s /∈ N, 1 ≤ p < ∞ and Ω an open set of
RN . When 0 < s < 1, the fractionnal Sobolev space of order s, p on Ω is defined by

Ws,p(Ω) = {u ∈ Lp(Ω) :
∫

Ω

∫

Ω

|u(x)− u(y)|p
|x− y|N+sp

dxdy < ∞} . (1)

Otherwise, denoting by [s] the integer part of s, let

Ws,p(Ω) = {u ∈ W[s],p(Ω) : ∂αu ∈ Ws−[s],p(Ω),∀α ∈ NN , |α| = [s]} .

In this paper, we only consider the generic case 0 < s < 1. Notice that the definition
(1) is equivalent to the following

Ws,p(Ω) = {u ∈ Lp(Ω) : Λu ∈ Lp(Ω× Ω)} ,

where

Λu(x, y) =
u(x)− u(y)
|x− y|N/p+s

is called the s−derivative of u. The two next properties are trivial : if u is a constant
mapping then the s−derivative of u is equal to 0; if u and v are defined on Ω, then
a.e. Λuv(x, y) = u(x)Λv(x, y) + v(y)Λu(x, y) (product’s rule).

An usual norm on Ws,p(Ω) is given by

‖u‖s,p,Ω = ‖u‖p,Ω + ‖Λu‖p,Ω×Ω . (2)

The quantity ‖Λu‖p,Ω×Ω is called the semi-norm Ws,p of u and is usually denoted by
‖|u|‖s,p,Ω. In order to prove that Ws,p is complete and separable, the definition (2)
suggest to use the same argument as in W1,p by showing that the isometry

A : Ws,p(Ω) → Lp(Ω)× Lp(Ω× Ω) : u → (u, Λu) ,

is such that A(Ws,p(Ω)) is closed in Lp(Ω)× Lp(Ω× Ω). The answer is given by the
following lemma.
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Lemma 1.1. If un → u in Lp(Ω) and Λn → Λ in Lp(Ω × Ω), and if, for all n,
Λn = Λun

, then Λ = Λu.

Proof. Up to a subsequence, one may assume that un → u a.e. and therefore Λn → Λu

a.e., hence Λ = Λu. ¤

As consequence, we give the following corollary.

Corollary 1.1. Ws,p(Ω) is a separable Banach space. Moreover, if 1 < p < ∞, then
Ws,p(Ω) is reflexive.

The notation of fractionnal Sobolev spaces is partially justified by the following
theorem.

Theorem 1.1. The space W1,p(RN ) is continuously injected into Ws,p(RN ). More-
over, if u ∈ W1,p(RN ), then

‖|u|‖s,p ≤
(2vol(SN−1)

ps(1− s)

)1/p

‖∇u‖s
p ‖u‖1−s

p . (3)

Proof. Let u ∈ D(RN ). First write

|‖u|‖p
s,p =

∫

RN

|ξ|−(N+sp)dξ

∫

RN

|u(x + ξ)− u(x)|pdx

=
[ ∫

|ξ|<λ

+
∫

|ξ|>λ

]
|ξ|−(N+sp)dξ

∫

RN

|u(x + ξ)− u(x)|pdx,

where λ is a positive parameter independant of x and ξ wich will be choosen later.
Using polar coordinates,

∫

|ξ|>λ

|ξ|−(N+sp)dξ

∫

RN

|u(x + ξ)− u(x)|pdx ≤ 2p vol(SN−1)λ−sp

sp
‖u‖p

p ,

Similarly, ∫

|ξ|<λ

|ξ|−(N+sp)dξ

∫

RN

|u(x + ξ)− u(x)|pdx

=
∫

|ξ|<λ

|ξ|−(N+sp)dξ

∫

RN

∣∣∣
∫ 1

0

d

dt
u(x + tξ)dt

∣∣∣
p

dx

≤
∫

|ξ|<λ

|ξ|p−(N+sp)dξ

∫

RN

( ∫ 1

0

|∇u(x + tξ)|dt
)p

dx

≤
∫

|ξ|<λ

|ξ|p−(N+sp)dξ

∫

RN

|∇u(y)|pdy ,

where the last inequality is obtained by using Holder’s inequality. Finally, using again
polar coordinates

∫

|ξ|<λ

|ξ|−(N+sp)dξ

∫

RN

|u(x + ξ)− u(x)|pdx ≤ vol(SN−1)λp(1−s)

p(1− s)
‖∇u‖p

p .

Combining these two estimates,

‖|u|‖p
s,p ≤ 2p vol(SN−1)λ−sp

sp
‖u‖p

p +
vol(SN−1)λp(1−s)

p(1− s)
‖∇u‖p

p . (4)

Let u ∈ Ws,p(RN ) and consider a sequence (un) ⊂ D(RN ) such that un → u in W1,p.
Since un satisfies, for all n, inequality (4), by applying Fatou’s lemma, one gets the
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inequality (4). The proof is concluded by choosing λ = 2 ‖u‖p

‖∇u‖p
, which minimize the

r.h.s. of (4). ¤

This theorem remains true where RN is replaced by any extension domain Ω
for W1,p (i.e. Ω is such that there exists a bounded linear extension operator to
W1,p(RN )) .

Corollary 1.2. Let Ω be an C1-open subset of RN with bounded boundary ∂Ω or the
product of N open intervals. The space W1,p(Ω) is continuously injected in Ws,p(Ω).

Now, we turn to the problem of density of test functions. Theorem 1.1 partially
suggest to transpose the proof of the corresponding result in W1,p.

Theorem 1.2. D(RN ) is dense in Ws,p(RN ).

Proof. Let u be a map in Ws,p(RN ) and η ∈ C∞(R) be such that η = 1 on ]−∞, 1],
0 ≤ η ≤ 1, supp η ⊂]−∞, 2]. Set ηn(x) = η(|x|/n). Notice that the sequence (ηn) ⊂
D(RN ) is such that for all n, 0 ≤ ηn ≤ 1, ηn = 1 on B(0, n), supp(ηn) ⊂ B[0, 2n]
and |∇ηn| ≤ C/n where C > 0 is independant of n. To prove that un = uηn ∈ Ws,p

and ‖u − un‖s,p → 0 when n → ∞, we use an argument of dominated convergence.
Clearly, ‖u− un‖p → 0, so that one only has to prove that ‖Λu − Λun‖p → 0. Since
Λun(x, y) = Λuηn(x, y) = u(x)Ληn(x, y) + ηn(y)Λu(x, y) a.e. ,

|Λun(x, y)| ≤ C|u(x)|
|x− y|N/p+s−1

1B(x,1)(y) +
2|u(x)|

|x− y|N/p+s
1Bc(x,1)(y) + |Λu(x, y)| , (5)

where one has used, in the first term, the mean-value theorem. The use of polar
coordinates clearly show that the r.h.s. in (5) is Lp-integrable.
Thus, we may now assume that supp u is a compact of RN . The end of the proof rely
on an argument of regularization. Let (ρn) be a regularized sequence. We want to
prove that ρn∗u → u in Ws,p. By analogy with W1,p, we expect that Λρn∗u = ρn∗Λu,
this can be easily verified. The proof is concluded by a classical result of regularization
in Lp. ¤

Let Ω be an open subset of RN . The writing U ⊂⊂ Ω means that U is open and
Ū is a compact subset of Ω.
We define

Ws,p
loc(Ω) = {u ∈ Lp

loc(Ω) : for all U ⊂⊂ Ω, u
∣∣
U
∈ Ws,p(U)} .

Now, we give some elementary and useful results in fractionnal Sobolev spaces. Cor-
respondant results are well-known for W1,p (see [1] or [4] for example).

Lemma 1.2. Let Ω be open in RN and u ∈ Ws,p
loc(Ω). If φ ∈ C1(Ω), then φu ∈

Ws,p
loc(Ω) and moreover, for all U ⊂⊂ Ω,

‖φu‖s,p,U ≤ γ ‖u‖s,p,U , (6)

where γ depend only over N, s, p, U and φ.

Proof. Let U ⊂⊂ Ω. Using product’s rule, elementary majorations and Minkowski’s
inequality,

‖Λφu‖p,U×U ≤ ‖φ‖∞,U ‖u‖s,p,U + C ‖∇φ‖∞,U ‖u‖p,U ,

where C depends only of N, s and p and result from an integration in polar coordi-
nates. ¤

In the same spirit, we give the trivial following result.
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Lemma 1.3. Let Ω be open in RN . Ws,p(Ω) ∩ L∞ is an algebra. Moreover, the
product map is continuous.

Now, we present a lemma of change of variables.

Lemma 1.4. Let G : Ω → ω be a diffeomorphism of class C1 between two open set
of RN . If u ∈ Ws,p

loc(ω), then u ◦G ∈ Ws,p
loc(Ω), and moreover, for all U ⊂⊂ Ω,

‖u ◦G‖s,p,U ≤ γ ‖u‖s,p,G(U) ,

where γ depend only over N, s, p, U and G.

Proof. Let U ⊂⊂ Ω and set V = G(U). Since G is lipschitzian on U and G−1 is C1

on V ,
∫

U

∫

U

|u(G(x))− u(G(y))|p
|x− y|N+sp

dxdy

=
∫

V

∫

V

|u(x)− u(y)|p
|G−1(x)−G−1(y)|N+sp

JG−1(x)JG−1(y) dxdy

≤ C

∫

V

∫

V

|u(x)− u(y)|p
|x− y|N+sp

dxdy .

¤

Here is the same kind of result concerning left-composition. The proof is straight-
forward.

Lemma 1.5. Let Ω be open in RN and u ∈ Ws,p(Ω). If L is globally lipschitzian on
R, then L ◦ u ∈ Ws,p(Ω) .

2. An Extension theorem

We begin with some notations. Let ω be open in RN−1 and 0 < δ ≤ ∞. We consider
open sets of RN of the form Q = ω×] − δ, δ[, Q+ = ω×]0, δ[ and Q− = ω×] − δ, 0[.
For all (x′, xN ) ∈ Q, set σ(x′, xN ) = (x′,−xN ). If u is defined on Q+, one define on
Q the extension ū by reflection of u by ū(x) = u(x) when x ∈ Q+ and ū(x) = u(σ(x))
when x ∈ Q−.
The next result is easy to prove.

Lemma 2.1. If u ∈ Ws,p(Q+), then ū ∈ Ws,p(Q) and moreover

‖ū‖p,Q ≤ 21/p‖u‖p,Q+ , |‖ū|‖s,p,Q ≤ 41/p|‖u|‖s,p,Q+ .

Proof. First inequality is trivial. Writing

|‖ū|‖p
s,p,Q =

[ ∫

Q+

∫

Q+
+

∫

Q−

∫

Q−
+

∫

Q+

∫

Q−
+

∫

Q−

∫

Q+

] |ū(x)− ū(y)|p
|x− y|sp+N

dxdy ,

it is easy to observe that one only has to study the two last terms of the r.h.s. This
can be easily done as follow, first write

∫

Q−

∫

Q+

|u(σ(x))− u(y)|p
|x− y|sp+N

dxdy =
∫

Q+

∫

Q+

|u(x)− u(y))|p
|σ(x)− y|sp+N

dxdy ,

and then notice that for all x, y ∈ Q+, |x− y| ≤ |σ(x)− y|. ¤

If u is defined on an open subset of RN then the extension of u by 0 on RN \ Ω is
denoted by ũ.
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Lemma 2.2. Let Ω be open in RN , u ∈ Ws,p(Ω) and K ⊂ Ω be compact. If supp u ⊂
K, then ũ ∈ Ws,p(RN ), and moreover

‖ũ‖s,p,RN ≤ γ ‖u‖s,p,Ω ,

where γ depend only over N, s, p, K and Ω.

Proof. Let δK > 0 be such that K + B(0, δK) ⊂ Ω and write
∫

RN

∫

RN

|ũ(x)− ũ(y)|p
|x− y|N+sp

dxdy =
[ ∫

Ω

∫

Ω

+
∫

RN\Ω

∫

RN\Ω
+2

∫

RN\Ω

∫

Ω

] |ũ(x)− ũ(y)|p
|x− y|N+sp

dxdy .

The first term is ‖|u|‖p
s,p,Ω, the second one is equal to 0 and the last term is computed

using polar coordinates so that

|‖ũ|‖s,p,RN ≤ |‖u|‖s,p,Ω +
(2σN

sp

)1/p
δ−s
K ‖u‖p,Ω ,

which ends the proof. ¤

Now, we turn to the following fundamental theorem.

Theorem 2.1. Let Ω be an C1-open subset of RN with bounded boundary ∂Ω or the
product of N open intervals. There exists a bounded linear operator

P : Ws,p(Ω) → Ws,p(RN ) ,

such that Pu
∣∣
Ω

= u.

Before beginning the proof of this theorem, we introduce some notations and re-
marks. In the case where Ω is a C1-open subset of RN with bounded boundary, we
may consider a finite covering of ∂Ω by open bounded sets U1, . . . , Uk of RN such
that to each Uj , we may associate an open bounded subset ωj of RN−1, a real num-
ber δj > 0, and a C1-diffeomorphism Gj : Qj → Uj where Qj = ωj×] − δj , δj [ such
that Gj ∈ C1(Qj), G−1

j ∈ C1(Uj) and Gj(Q+
j ) = Uj ∩ Ω, Gj(Q0

j ) = Uj ∩ ∂Ω where
Q+

j = ωj×]0, δj [ and Q0
j = ωj × {0}.

A classical result of partition of unity (see [4] for example) allow us to consider pos-
itive mapping ψ0, . . . , ψk with ψ0 ∈ D(RN \ ∂Ω), ψj ∈ D(Uj) where 1 ≤ j ≤ k and∑k

j=0 ψ̃j = 1.

Theorem 2.1 is established by adapting the corresponding proof in W1,p.

Proof. Assume that Ω is of class C1 with bounded boundary. Let u ∈ Ws,p(Ω) and
1 ≤ j ≤ k. Set G+

j = Gj

∣∣
Q+

j

. By lemma’s 1.4 and 2.1, vj = u ◦G+
j ◦ G−1

j ∈
Ws,p(Uj). Furthermore, ‖vj‖s,p,Uj ≤ γ1 ‖u‖s,p,Ω. By lemma’s 1.2 and 2.2, uj =
ψ̃jvj ∈ Ws,p(RN ) and ‖uj‖s,p ≤ γ2 ‖u‖s,p,Ω. Set u0 = ψ̃0. The operator P defined
by Pu =

∑k
j=0 uj is a suitable extension. In the case where Ω is the product of

N open intervals it suffices to use a finite number of extension by reflection and a
truncature. ¤

An easy consequence is the following.

Corollary 2.1. Let Ω be an C1-open subset of RN with bounded boundary ∂Ω or the
product of N open intervals. D(Ω) is dense in Ws,p(Ω).
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3. Traces in Sobolev Spaces

Let Ω be a C1-open subset of RN with bounded boundary. Using the notations
introduced above, we set, for all 1 ≤ j ≤ k, G0

j = Gj

∣∣
Q0

j

. Remember that the integral
of u on ∂Ω is defined by

∫

∂Ω

u(x)dσ(x) =
k∑

j=1

∫

ωj

(ψju) ◦G0
j (x

′)JG0
j
(x′)dx′ .

It is possible to show that this definition is independant of the choice of the ωj , ψj

and Gj . Set

Ws,p(∂Ω) = {u ∈ Lp(∂Ω) :
∫

∂Ω

∫

∂Ω

|u(x)− u(y)|p
|x− y|N+sp

dσ(x)dσ(y) < ∞} .

or equivalently,

Ws,p(∂Ω) = {u ∈ Lp(∂Ω) :
k∑

j=1

∫

ωj

∫

ωj

ψj(G0
j (x

′))ψj(G0
j (y

′))
|u(G0

j (x
′))− u(G0

j (y
′))|p

|G0
j (x′)−G0

j (y′)|N+sp
JG0

j
(x′)JG0

j
(y′) dx′dy′ < ∞} .

Proofs concerning previous results about Ws,p(Ω) where Ω is an open subset of RN

may easy be adapted in the case of Ws,p(∂Ω) using local coordinates.

Lemma 3.1. Let Ω be an C1-open subset of RN with bounded boundary ∂Ω, K ⊂ ∂Ω
be compact and ϕ ∈ Ws,p(V ) where V is an open subset of ∂Ω. If supp ϕ ⊂ K, then1

ϕ̃ ∈ Ws,p(∂Ω), and moreover

‖ϕ̃‖s,p,∂Ω ≤ γ ‖ϕ‖s,p,V ,

where γ depend only over N, s, p, K and U .

The aim of this section is to prove the next theorem.

Theorem 3.1. Let 1 < p < ∞ and Ω be an C1-open subset of RN with bounded
boundary ∂Ω. There is an unique bounded linear mapping

tr : W1,p(Ω) → W1−1/p,p(∂Ω) ,

which coincide with the restriction operator on D(Ω). Moreover, this application is
surjective.

First, we show that this result is a corollary of the next theorem.

Theorem 3.2. Let 1 < p < ∞. There is an unique bounded linear mapping

tr : W1,p(RN
+ ) → W1−1/p,p(RN−1) ,

which coincide with the restriction operator on D(RN
+ ). Moreover, this application is

surjective.

This trace application is defined by using a density argument. Notice that if
u ∈ C(RN

+ )∩W1,p(RN
+ ), then the trace of u is simply the restriction to RN−1. Indeed,

let (un) ⊂ D(RN
+ ) with un → u in W1,p, then un

∣∣
RN−1 = tr un → tr u in Lp, so that,

up to a subsequence, tr u = u
∣∣
RN−1 .

1Where ϕ̃ denotes the extension of ϕ by 0 on ∂Ω \ V .
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Using theorem 3.2, we may define a trace operator

tr : W1,p(ω×]0, δ[) → W1−1/p,p(ω) : v → tr v = (tr Pv)
∣∣
ω

, (7)

where ω is a bounded open set of RN−1 and δ > 0. This definition don’t depend of the
choice of the continous extension operator P . Indeed, let P1 and P2 be two continous
extension operator and (vn), (wn) ⊂ D(RN ) be such that vn → P1v and wn → P2v
in Lp. By eventually passing to subsequences, vn − wn → 0 a.e. on ω×]0, δ[ so that
vn(·, 0)− wn(·, 0) → 0 a.e., hence tr P1v = tr P2v on ω.
Notice that, by construction, the trace of the restriction is the restriction of the trace.
Using theorem 2.1, it is not difficult to observe that theorem 3.2 may be adapted to
the trace operator defined by (7).

Now, we present the proof of theorem 3.1.

Proof. Existence. The trace application is defined as follow : if u ∈ W1,p(Ω), then

tr u =
k∑

j=1

ξ̃j , (8)

where ξj = tr (φju◦Gj)◦(G0
j )
−1 and φj = ψj

∣∣
Uj∩Ω

. Using classical results in W1,p(Ω),
previous remarks, a variant of lemma 1.4, and also lemma 3.1, one clearly see that
the map tr : W1,p(Ω) → W1−1/p,p(∂Ω) is linear and continuous and that tr u = u

∣∣
∂Ω

,
for all u ∈ D(Ω). The first part of the proof is completed by some remarks.

Let U be a bounded open set of RN be such that U ∩ ∂Ω 6= ∅, ω be a bounded open
set of RN−1, δ > 0 and G+ : ω×]0, δ[→ U ∩ Ω be a C1-diffeomorphism such that
G+ ∈ C1(Q+) where Q+ = ω×]0, δ[, and (G+)−1 ∈ C1(U ∩ Ω). The beginning of the
proof suggest to define a trace operator

tr : W1,p(U ∩ Ω) → W1−1/p,p(U ∩ ∂Ω) : u → (tr (u ◦G+)) ◦ (G+)−1
∣∣∣
U∩∂Ω

. (9)

By construction, if v ∈ W1,p(ω×]0, δ[), then

tr (v ◦ (G+)−1) = (tr v) ◦ (tr (G+)−1) = (tr v) ◦ (G+)−1
∣∣∣
U∩∂Ω

,

i.e. the trace of a composition is equal to the composition of the traces. Again,
theorem 3.2 may easily be adapted to the trace operator defined in (9). Furthermore,
the trace of the restriction is the restriction of the trace. More precisely, if u ∈
W1,p(Ω), then

tr (u
∣∣
U∩Ω

) = (tr u)
∣∣
U∩∂Ω

.

It results from the equality of two continuous mapping in u on a dense subset of
W1,p(Ω).

If φ ∈ D(Ω) and u ∈ W1,p(Ω), it is easy to show, by using a density argument2, that
tr φu = (tr φ)(tr u) . This stay true for the trace operators defined in (7) and (9).

Surjectivity. Using previous remarks, establishing the surjectivity become more ob-
vious. Let ϕ ∈ W1− 1

p ,p(∂Ω) and 1 ≤ j ≤ k. Set, for all 1 ≤ j ≤ k, ϕj =

2Indeed, let (un) ⊂ D(Ω) be such that un → u in W1,p so that by definition tr un → tr u. One
immediately verify that φun → φu in W1,p, hence tr (φun) = (tr φ)(tr un) → (tr φ)(tr u).
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ϕ
∣∣
Uj∩∂Ω

. Using a variant of lemma 1.4, and by an estimate of the jacobian JG0
j

on Q0
j , ϕj ◦ G0

j ∈ W1−1/p,p(ωj), so that one may choose vj ∈ W1,p(Q+
j ) such that

tr vj = ϕj ◦ G0
j . By the theorem of change of variables in Sobolev spaces, uj =

vj ◦ (G+
j )−1 ∈ W1,p(Uj ∩ Ω). Furthermore, tr uj = ϕj . Set u =

∑k
j=1 ũj ∈ W1,p(Ω).

Since tr (φjuj) = (tr φj) (tr uj) = φj

∣∣
∂Ω∩Uj

ϕj , inserting u in the r.h.s of (8), we get

tr u =
k∑

j=1

˜tr φjuj =
k∑

j=1

φ̃j

∣∣
∂Ω∩Uj

ϕ = ϕ ,

which ends the proof. ¤

Now, we give the proof of theorem 3.2 which is considered [2]. A continuous version
of Minkowski’s inequality is needed.

Lemma 3.2. Let {X,A, µ} and {Y,B, ν} be two measured spaces and 1 ≤ p < ∞. If
u ∈ Lp(X × Y ), then

( ∫

X

∣∣
∫

Y

u(x, y)dν
∣∣pdµ

)1/p

≤
∫

Y

‖u(·, y)‖p,Xdν . (10)

The proof of this lemma rely on an argument of duality, see [2]. Here is the proof
of theorem 3.2.

Proof. Existence . Let u be in D(RN
+ ). By the fundamental theorem of calculus and

using Holder’s inequality,

‖u(·, 0)‖p
p,RN−1 ≤ p ‖u‖p−1

p,RN
+

∥∥∂Nu
∥∥

p,RN
+
≤ p ‖u‖p

1,p,RN
+

. (11)

We are now looking to the same kind of majoration concerning the semi-norm
|‖u(·, 0)|‖1− 1

p ,p. For all x, y ∈ RN−1, set z = (x+y
2 , λ|ξ|) where ξ = x−y

2 and λ > 0 is
independant of x and y and will be fixed later. First, write

|u(z)− u(x, 0)| =
∣∣∣
∫ 1

0

d

dρ
u(x− ρξ, λρ|ξ|)dρ

∣∣∣

=
∣∣∣
∫ 1

0

( N−1∑

i=1

∂iu(x− ρξ, λρ|ξ|)(−ξi) + λ|ξ|∂Nu(x− ρξ, λρ|ξ|)
)
dρ

∣∣∣

≤ |ξ|
∫ 1

0

|∇N−1u(x− ρξ, λρ|ξ|)|dρ + λ|ξ|
∫ 1

0

|∂Nu(x− ρξ, λρ|ξ|)|dρ .

Similarly,

|u(z)− u(y, 0)| ≤ |ξ|
∫ 1

0

|∇N−1u(y + ρξ, λρ|ξ|)|dρ + λ|ξ|
∫ 1

0

|∂Nu(y + ρξ, λρ|ξ|)|dρ ,

(12)
and then, using triangular inequality

|Λu(·,0)| =
|u(x, 0)− u(y, 0)|
|x− y|1+(N−2)/p

≤
(
|ξ|

∫ 1

0

|∇N−1u(x− ρξ, λρ|ξ|)|
|x− y|1+(N−2)/p

dρ + λ|ξ|
∫ 1

0

|∂Nu(x− ρξ, λρ|ξ|)|
|x− y|1+(N−2)/p

dρ + . . .
)

≤
(∫ 1

0

1
2
|∇N−1u(x− ρξ, λρ|ξ|)|

|x− y|(N−2)/p
dρ +

∫ 1

0

λ

2
|∂Nu(x− ρξ, λρ|ξ|)|
|x− y|(N−2)/p

dρ + . . .
)

,
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where the two terms coming for (12) are explicitly omitted. By Minkowski’s inequality,

|‖u(·, 0)|‖1− 1
p ,p,RN−1 ≤

[ ∫

RN−1×RN−1

( ∫ 1

0

1
2
|∇N−1u(x− ρξ, λρ|ξ|)|

|x− y|(N−2)/p
dρ

)p

dxdy
]1/p

+
[ ∫

RN−1×RN−1

( ∫ 1

0

λ

2
|∂Nu(x− ρξ, λρ|ξ|)|
|x− y|(N−2)/p

dρ
)p

dxdy
]1/p

+ . . . ,

therefore, by lemma 3.2 and symmetry,

|‖u(·, 0)|‖1− 1
p ,p,RN−1 ≤

∫ 1

0

( ∫

RN−1×RN−1

|∇N−1u(x− ρξ, λρ|ξ|)|p
|x− y|N−2

dxdy
)1/p

dρ

+
∫ 1

0

λ
( ∫

RN−1×RN−1

|∂Nu(x− ρξ, λρ|ξ|)|p
|x− y|N−2

dxdy
)1/p

dρ .

Using natural changes of variables,
∫

RN−1
dy

∫

RN−1

|∇N−1u(x− ρξ, λρ|ξ|)|p
|x− y|N−2

dx

= 2
∫

RN−1
dξ

∫

RN−1

|∇N−1u(x− ρξ, λρ|ξ|)|p
|ξ|N−2

dx

= 2
∫

SN−1
dσ

∫ ∞

0

dr

∫

RN−1
|∇N−1u(x− ρrσ, λρr)|pdx

=
2σN

λρ

∫ ∞

0

dx′N

∫

RN−1
|∇N−1u(x′, x′N )|pdx′

=
2σN

λρ
‖∇N−1u‖p

p,RN
+

.

Similarly,
∫

RN−1

∫

RN−1

|∂Nu(x− ρξ, λρ|ξ|)|p
|x− y|N−2

dxdy =
2σN

λρ
‖∂Nu‖p

p,RN
+

,

hence,

|‖u(·, 0)|‖1− 1
p ,p,RN−1

≤
(
(2σN )1/p

∫ 1

0

ρ−1/pdρ
)[

λ−1/p ‖∇N−1u‖p,RN
+

+ λ1−1/p ‖∂Nu‖p,RN
+

]

= (2σN )1/p p

p− 1
[
λ−1/p ‖∇N−1u‖p,RN

+ ) + λ1−1/p ‖∂Nu‖p,RN
+

]
.

By choosing λ = p
p−1

‖∇N−1u‖p

‖∂N u‖p
, which minimize the r.h.s. of the previous inequality,

|‖u(·, 0)|‖1− 1
p ,p,RN−1 ≤ (

2σN (p− 1)
)1/p(p− 1

p

)2

‖∇N−1u‖1−1/p

p,RN
+
‖∂Nu‖1/p

p,RN
+

≤ (
2σN (p− 1)

)1/p(p− 1
p

)2

‖u‖1,p,RN
+

.

The first part of the proof is concluded by density.

Surjectivity . Let ϕ be in W1− 1
p ,p(RN−1). We denote by v the Poisson’s integral

of ϕ. First, we prove the two following inequalities

‖v(·, t)‖p,RN−1 ≤ ‖ϕ‖p,RN−1 (13)
‖∇v‖p,RN

+
≤ γ |‖ϕ|‖1−1/p,p,RN−1 , (14)
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where γ only depend of N and p. The first inequality is trivial, it relies on elemen-
tary properties of Poisson’s kernels. The second one requires more work. Again by
elementary properties of Poisson’s kernels, for all α ∈ NN with |α| = 1,

∂αv(x, t) =
∫

RN−1
∂αH(x− y, t)ϕ(y)dy =

∫

RN−1
∂αH(x− y, t)(ϕ(y)− ϕ(x))dy .

Using classical majorations on the partial derivatives of H and polar coordinates, one
thus finds

|∇v(x, t)| ≤ C

∫

RN−1

|ϕ(y)− ϕ(x)|
(|x− y|+ t)N

dy

≤ C

∫

RN−1

|ϕ(x + tz)− ϕ(x)|
t(|z|+ 1)N

dz

≤ C

∫

SN−1
dσ

∫ ∞

0

rN−2

(1 + r)N

|ϕ(x + trσ)− ϕ(x)|
t

dr ,

where C depend only over N . Then by continuous version of Minkowski’s inquality
(lemma 3.2) and using some natural changes of variables,

‖∇v‖p,RN
+

≤ C
[ ∫

RN
+

dxdt
( ∫

SN−1
dσ

∫ ∞

0

rN−2

(1 + r)N

|ϕ(x + trσ)− ϕ(x)|
t

dr
)p]1/p

≤ C

∫

SN−1
dσ

∫ ∞

0

rN−2

(1 + r)N
dr

( ∫

RN
+

|ϕ(x + trσ)− ϕ(x)|p
tp

dxdt
)1/p

≤ C

∫

SN−1
dσ

∫ ∞

0

rN−1−1/p

(1 + r)N
dr

( ∫

RN
+

|ϕ(x + ρσ)− ϕ(x)|p
ρp

dxdρ
)1/p

≤ C ′
∫

SN−1
dσ

( ∫

RN
+

|ϕ(x + ρσ)− ϕ(x)|p
ρp

dxdρ
)1/p

≤ γ
( ∫

SN−1
dσ

∫

RN
+

|ϕ(x + ρσ)− ϕ(x)|p
ρp

dxdρ
)1/p

= γ
( ∫

RN−1×RN−1

|ϕ(x)− ϕ(y)|p
|x− y|N+p−2

dx dy
)1/p

= γ |‖ϕ|‖1−1/p,p,RN−1 ,

where the last inequality is obtained using Jensen’s inequality applied to the convex
map x → −x1/p and by taking care to normalize the mesure on SN−1. This establishes
(14). It becomes obvious to finish the proof. Taking u(x, t) = e−t/pv(x, t), we prove
that tr u = ϕ. By density (see theorem 1.2), consider a sequence (ϕn) ⊂ D(RN−1)
such that ϕn → ϕ in W1−1/p,p. Let (un) ⊂ C∞(RN

+ ) ∩W1,p(RN
+ ) be the associated

sequence given by un = e−t/p vn where vn(x, t) is the Poisson’s integral (or the
harmonic extension to RN

+ ) of ϕn . Using inequalities 13 and 14, one easily prove that
un → u in W1,p. Since tr vn = tr un = ϕn, the proof is concluded. ¤
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