On Endomorphisms of BCH -Algebras

Karamat Hussain Dar and Muhammad Akram

Abstract

In this paper we introduce the notion of a BCH -endomorphism. It is proved that L_{0} is the only non-identity $B C H$-endomorphism of left type, where $L_{0}^{3}(x)=L_{0}(x)$ for every x in a $B C H$-algebra $(X ; *, 0)$ and L_{0}^{2} is idempotent. Some more properties of left and right mappings of BCH -algebras are also investigated with BCH -characterization.

2000 Mathematics Subject Classification. Primary 06F35; Secondary 08A35. Key words and phrases. endomorphism, left and right mappings, idempotent.

1. Introduction

Y. Imai and K. Iséki introduced two classes of logical algebras: $B C K$-algebras and $B C I$-algebras $[9,10]$. It is known that the class of $B C I$-algebras is a generalization of the class of $B C K$-algebras. In $[5,6]$, Q. P. Hu and $\mathrm{X} . \mathrm{Li}$ introduced a wider class of logical algebras: BCH -algebras. They have shown that the class of BCH -algebras is further a generalization of the class of $B C I$-algebras. The authors of this paper introduced a class of K-algebras with extended study in [12-15]. Recently, same authors have proved in [15] that a class of K-algebras as a generalization of a family of $\mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}$-algebras.
K. H. Dar introduced the notions of left and right mappings over $B C K$-algebras in [1] and further discussed in [2]. The notions of left and right mappings over BCIalgebras have been discussed in [3]. In this paper we introduce the notion of BCH endomorphisms. Some more properties of left and right mappings of BCH -algebras are investigated with special focus on the left map L_{0}.

2. Preliminaries

In this section we cite some elementary aspects that will be used in the sequel of this paper:

Definition 2.1. [5,6] An algebra $(X ; *, 0)$ of type (2, 0) is called a BCH-algebra if, for all $x, y, z \in X$, the following axioms hold:
(H1) $x * x=0$,
(H2) $x * y=0$ and $y * x=0$ imply $x=y$,
(H3) $(x * y) * z=(x * z) * y$.
In a BCH-algebra X, the following hold as immediate deductions.
(H4) $x * 0=x$.
(H5) $x * 0=0 \Longleftrightarrow x=0$.
(H6) $0 *(x * y)=(0 * x) *(0 * y)$.
(H7) $(x *(x * y)) * y=0$.
Definition 2.2. A nonempty subset S of a BCH-algebra $(X ; *, 0)$ is a called $B C H$ subalgebra if $x * y \in S$, for all $x, y \in S$.

Definition 2.3. A BCH-subalgebra J is called $B C H$ - ideal if $x * y$ and $x \in J \Rightarrow$ $y \in J$ for all $x, y \in X$.

Example 2.1. The subset $0 * X=\{0 * x: x \in X\}$ forms a BCH-subalgebra since $0 \in 0 * X$ and $(0 * x) *(0 * y)=0 *(x * y) \in 0 * X$, for every $0 * x, 0 * y \in 0 * X$. It easily follows that $0 * X$ is a BCH-ideal.

Example 2.2. The subset $0 *(0 * X)=\{0 *(0 * x): x \in X\}$ of a BCH-algebra $(X ; *, 0)$ is a BCH-ideal.

3. BCH -endomorphisms

Definition 3.1. A mapping $\phi: X \rightarrow X$ on a BCH-algebra $(X ; *, 0)$ is called a $B C H$-endomorphism if $\phi(x * y)=\phi(x) * \phi(y)$, for all $x, y \in X$.

The set $\operatorname{End}(X)$ of all endomorphisms of X forms a semigroup, under the binary operation of their composition (०). Each $\phi \in \operatorname{End}(X)$ acts the following way on X :

Proposition 3.1. If ϕ is a $B C H$-endomorphism of $(X ; *, 0)$ then
(i) $\phi(0)=0$.
(ii) $\phi(0 * x)=0 * \phi(x)$.
(iii) If $x * y=0$ then $\phi(x) * \phi(y)=0$.
(iv) If S is a BCH-subalgebra of X then so is $\phi(S)$.
(v) If S is a BCH-ideal of X then so is $\phi(S)$.
(vi) $\operatorname{Ker} \phi=\{x \in X: \phi(x)=0\}$ is an ideal of X, for each ϕ in $\operatorname{End}(X)$.

Proof. Straightforward.
Definition 3.2. For each element $x \in X$ there associates a pair L_{x}, R_{x} of left and right mappings respectively, which are defined by $L_{x}(t)=x * t$ and $R_{x}(t)=t * x$, for all $t \in X$ (see [1]).

If $L=\left\{L_{x}: x \in X\right\}$ and $R=\left\{R_{x}: x \in X\right\}$. Then L and R both are in one-toone corresponding with BCH-algebra X where $L_{x}(t)=R_{t}(x)$ for all $x, t \in X$. The mappings of L and R compose together the following way:

Proposition 3.2. The mappings L and R on a $B C H$-algebra $(X ; *, 0)$ compose by the following properties.
(a) $R_{y} \circ L_{0}=L_{0 * y}$.
(b) $R_{x} \circ R_{y}=R_{y} \circ R_{x}$.
(c) $L_{0} \circ R_{y}=R_{0 * y} \circ L_{0}=L_{0 *(0 * y)}$.
(d) $L_{x} \circ R_{0}=L_{x}=R_{0} \circ L_{x}$.
(e) $R_{y} \circ L_{x}=L_{x * y}$.
(f) $L_{0} \circ L_{x}=L_{0 * x} \circ L_{0}$.

Proof. Routine.
Remark 3.1. It is an important to note that L_{0} is an endomorphism of BCH algebras $(X ; *, 0)$ with its powers by the following Cayley table:

\circ	I	L_{0}	L_{0}^{2}
I	I	L_{0}	L_{0}^{2}
L_{0}	L_{0}	L_{0}^{2}	L_{0}
L_{0}^{2}	L_{0}^{2}	L_{0}	L_{0}^{2}

Proposition 3.3. In a BCH-algebra $(X ; *, 0)$, for all x, y

$$
L_{0} \circ\left(L_{x} \circ R_{y}\right)=L_{0 * x} \circ L_{0 *(0 * y)}
$$

Proof.

$$
\begin{aligned}
L_{0} \circ\left(L_{x} \circ R_{y}\right) & =\left(L_{0} \circ L_{x}\right) \circ R_{y} \\
& =\left(L_{0 * x} \circ L_{0}\right) \circ R_{y} \\
& =L_{0 * x} \circ\left(L_{0} \circ R_{y}\right) \\
& =L_{0 * x} \circ L_{0 *(0 * y)} .
\end{aligned}
$$

Corollary 3.1. For $x, y \in X$,
(a) $L_{0} \circ\left(R_{y} \circ L_{x}\right)=\left(R_{0 * y} \circ L_{0 * x}\right) \circ L_{0}=L_{0} \circ L_{x * y}$.
(b) $L_{0} \circ\left(L_{y} \circ L_{x}\right)=L_{0}^{2} \circ L_{x * y}$.

Theorem 3.1. L_{0} is the only BCH-endomorphism of X in L.
Proof. Let $x, y \in X$. Then

$$
\begin{aligned}
L_{0}(x) * L_{0}(y) & =L_{(x * y) *(x * y)}(x) * L_{0}(y) \\
& =(((x * y) * x) *(x * y)) * L_{0}(y) \\
& =((0 * y) *(x * y)) *(0 * y) \\
& =0 *(x * y) \\
& =L_{0}(x * y)
\end{aligned}
$$

which proves the axiom (6) of BCH -algebra that L_{0} in L is an endomorphism of X. L_{0} is unique $B C H$-endomorphism since, for non-zero x in X, L_{x} is not a $B C H$ endomorphism by the contradiction, $x=L_{x}(0)=L_{x}(0 * 0)=L_{x}(0) * L_{x}(0)=0$.

Corollary 3.2. L_{0} is a central BCH-endomorphism.

Proof. Let ϕ be an arbitrary endomorphism of $(X ; *, 0)$. Then

$$
\phi \circ L_{0}(x)=\phi(0 * x)=0 * \phi(x)=L_{0} \circ \phi(x)
$$

for all $x \in X$. Hence $\phi \circ L_{0}=L_{0} \circ \phi$.
In order to exhibit action of L_{0} on a $B C H$-algebra $(X ; *, 0)$, we define $0 * x=0^{1} * x$, $0 *(0 * x)=0^{2} * x, 0 *(0 *(0 * x))=0^{3} * x, 0 *\left(0 *(0 * \cdots(n-\right.$ times $) * x)=0^{n} * x$ for any positive integer n. If $x \in X$, we observe that:
(a) $0 *\left(0^{k} * x\right)=0^{k+1} * x$.
(b) $0^{l} *\left(0^{m} * x\right)=0^{l+m} * x$.
(c) $\left(0^{l} * x\right) *\left(0^{l} * y\right)=0^{l} *(x * y)$ for positive integers l, m, k and $x, y \in X$.

We exhibit that:
Proposition 3.4. [4] In a BCH-algebra $(X ; *, 0)$,
(d) $0^{3} * x=0 * x$ for all $x \in X$.

Proof. Since

$$
\begin{aligned}
(0 * x) *(0 * x) & =\left(0^{2} * x\right) * x=0 \\
\text { therefore, } 0^{3} * x & =0 *\left(0^{2} * x\right) \\
& =\left(\left(0^{2} * x\right) * x\right) *\left(0^{2} * x\right) \\
& =0 * x\left[b y H_{3}\right]
\end{aligned}
$$

Corollary 3.3. L_{0} is a periodic map of period 2.
Corollary 3.4. L_{0}^{2} is identity on $L_{0}(X)=\{0 * x: x \in X\}$.
Corollary 3.5. L_{0} is an epimorphism on X.
Proposition 3.5. The following equalities are valid in a BCH-algebra $(X ; *, 0)$ for all $x, y, z \in X$.
(e) $0 *(x * y)=0^{2} *(y * x)$.
(f) $\left(0^{2} * z\right) *(y * x)=0^{2} *(x *(y * z))$.

Proof. (e)

$$
\begin{aligned}
0 *(x * y) & =0^{3} *(x * y) \\
& =0^{2} *(0 *(x * y))[b y H 6] \\
& =0^{2} *((0 * x) *(0 * y))[b y H 3] \\
& =0^{2} *((0 *(0 * y)) * x)[b y(a)] \\
& =0^{2} *\left(\left(0^{2} * y\right) * x\right)[b y \text { remark }] \\
& =0^{2} *\left(\left(0^{2} * y\right)\right) *\left(0^{2} * x\right)[b y \text { Proposition } 3.9] \\
& =\left(0^{2} * y\right) *\left(0^{2} * x\right) \\
& =0^{2} *(y * x) .
\end{aligned}
$$

(f)

$$
\begin{aligned}
\left(0^{2} * z\right) *(y * x) & =(0 *(0 * z)) *(y * x) \\
& =(0 *(y * x)) *(0 * z) \\
& =0 *((y * x) * z) \\
& =0 *((y * z) * x) \\
& =0^{2} *(x *(y * z)) .
\end{aligned}
$$

This ends the proof.

Corollary 3.6.

$$
0 *(x *(x * y))=0 * y \forall x, y \in X
$$

Corollary 3.7.

$$
0 *((x * y) *(x * z))=0 *(z * y) \forall x, y, z \in X
$$

Corollary 3.8.

$$
\left(0^{2} * y\right) * x=(0 *(x * y)) \forall x, y \in X
$$

It is known that a $B C H$-algebra $(X ; *, 0)$ is not $B C I$-algebra,if

$$
((x * y) *(x * z)) *(z * y) \neq 0
$$

for at least one trio x, y, z of elements of $B C H$-algebra X.
Theorem 3.2. The BCH-subalgebras $L_{0}(X)=\{0 * x: x \in X\}$ and $L_{0}^{2}(X)=$ $\{0 *(0 * x): x \in X\}$ of $(X ; *, 0)$ are its BCI-subalgebras.

Proof. $L_{0}(X)$ and $L_{0}^{2}(x)$ are images of X under L_{0} and L_{0}^{2} respectively. They form subalgebras of X since

$$
L_{0}(x) * L_{0}(y)=L_{0}(x * y) \in L_{0}(X)
$$

and

$$
L_{0}^{2}(x) * L_{0}^{2}(y)=L_{0}^{2}(x * y) \in L_{0}^{2}(X)
$$

for all $x, y \in X . L_{0}(X)$ is a BCI-algebra since, for all $L_{0}(x), L_{0}(y), L_{0}(z) \in L_{0}(X)$

$$
\begin{aligned}
L_{0}(((x * y) *(x * z)) *(z * y)) & =L_{0}((x * y) *(x * z)) * L_{0}(z * y) \\
& =L_{0}(z * y) * L_{0}(z * y) \\
& =0 .
\end{aligned}
$$

Similarly, $L_{0}^{2}(X)$ is a $B C I$-algebra.

4. Order relations on a BCH -algebra

On a $B C H$-algebra $(X ; *, 0)$, a natural order \sim is defined by $x \sim y$ if and only if $x * y=0$. This order is reflexive, antisymmetric but not transitive in general. It is locally transitive at 0 , since if $0 \sim x$ and $x \sim y$ then $0 \sim y$. We introduce another relation \approx which is symmetric and transitive closure of \sim and is defined by $x \approx y$ if and only if $x * y \in \operatorname{Ker} L_{0}$, then:

Lemma 4.1. Let $(X ; *, 0)$ be a BCH-algebra and relation \approx be defined on X. Then $x \approx y$ if and only if $0 * x=0 * y, x, y \in X$.

Proof. Suppose that $x \approx y$. Then $x * y \in \operatorname{Ker} L_{0}$ and hence,

$$
\begin{aligned}
0 *(x * y) & =0 \\
(0 * x) *(0 * y) & =0(I) \\
(0 *(0 * y)) * x & =0 \\
0 *((0 *(0 * y)) * x) & =0 \\
(0 *(0 *(0 * y))) *(0 * x) & =0 \\
(0 * y) *(0 * x) & =0(I I)
\end{aligned}
$$

From (I) and (II) it follows that $0 * x=0 * y$.
Conversely, if $0 * x=0 * y$ then

$$
0=(0 * x) *(0 * y)=0 *(x * y)
$$

Corollary 4.1. The relation \approx is symmetric on X.
Corollary 4.2. The relation \approx is generally transitive on X.
Definition 4.1. Let there be a relation \sim on $X . A$ relation \approx on X is called an equivalence closure on X if
(i) $\sim \subseteq \approx$,
(ii) \approx is an equivalence relation.

Theorem 4.1. Let $(X ; *, 0)$ be a BCH-algebra and a relation \sim be defined on X by, $x \sim y$ if and only if $x * y=0$. Then there exists an equivalence closure \approx of \sim on X , as defined by $x \approx y$ if and only if $x * y \in \operatorname{Ker} L_{0}$.

Proof. We see that the relation \approx on X is reflexive since $x \approx x=0 \in \operatorname{Ker} L_{0}$, for all $x \in X$. The symmetric and transitive properties of \approx on X follow from the Lemma 4.1. Hence the assertion of the theorem is proved.

Corollary 4.3. If $\operatorname{Ker} L_{0}=X$ then the equivalence class $C_{0}=X$ and the BCH quotient algebra $X / \operatorname{Ker} L_{0}$ is trivial.

If $\operatorname{Ker} L_{0} \subset X$ and there is one element in X invariant by L_{0}, then there exists an elementary abelian 2-group in X as a $B C H$-subalgebra. We characterize that:

Theorem 4.2. In a BCH-algebra $(X ; *, 0)$ if $0 * x=x$, for all $x \in X$ then $(X ; *, 0)$ forms an elementary abelian 2-group .

Definition 4.2. A BCH-algebra is said to be $*$-commutative if $x * y=y * x$, for all $x, y \in X$.

Theorem 4.3. A BCH-algebra $(X ; *, 0)$ forms an elementary abelian 2-group if and only if $B C H$-algebra $(X ; *, 0)$ is $*$-commutative.

Corollary 4.4. There exists no *-commutative proper BCH-subalgebra.
We have proved that L_{0} is the only endomorphism of a $B C H$-algebra $(X ; *, 0)$ with homomorphic image $L_{0}(X) . L_{0}$ is in fact an epimorphism on X. If $\operatorname{Ker} L_{0}=$ $\{x \in X: 0 * x=0\}$ is proper ideal of X then the quotient algebra $X / \operatorname{Ker} L_{0}$ is a $B C H$-algebra and $n_{0}: X \rightarrow X / \operatorname{Ker} L_{0}$ is a natural $B C H$-homomorphism defined by $n_{0}(x)=x * \operatorname{Ker} L_{0}, x \in X$ where

$$
n_{0}(x * y)=(x * y) * \operatorname{Ker} L_{0}=\left(x * \operatorname{Ker} L_{0}\right) *\left(y * \operatorname{Ker} L_{0}\right)
$$

for all $x, y \in X$. Since $X / \operatorname{Ker} L_{0}$ and $L_{0}(X)$ are $B C H$-algebras and a map η : $X / \operatorname{Ker} L_{0} \rightarrow L_{0}(X)$ is defined by $\eta\left(x * \operatorname{Ker} L_{0}\right)=0 * x$, for all $x \in X$ is well-defined, since the map η is a $B C H$-isomorphism where

$$
\begin{aligned}
\eta\left(\left(x * \operatorname{Ker} L_{0}\right) *\left(y * \operatorname{Ker} L_{0}\right)\right) & =\eta\left((x * y) * \operatorname{Ker} L_{0}\right)=0 *(x * y) \\
& =(0 * x) *(0 * y) \\
& =\eta\left(x * \operatorname{Ker} L_{0}\right) * \eta\left(y * \operatorname{Ker} L_{0}\right)
\end{aligned}
$$

and $\operatorname{Ker} \eta=\operatorname{Ker} L_{0}$. Thus we establish the fundamental Theorem:
Theorem 4.4. Let $(X ; *, 0)$ be a $B C H$-algebra and L_{0} an epimorphism on X. Then

$$
X / \operatorname{Ker} L_{0} \cong L_{0}(X)
$$

Proof. The proof is exhibited by the following commutative diagram:

References

[1] K. H. Dar, A characterization of positive implicative BCK-algebras by self-maps, Math. Japonica 31(2), (1986) 197-199.
[2] K. H. Dar and B. Ahmad, On endomorphisms of BCK-algebras, Math. Japonica, Vol. 31(6)(1986), 855-857.
[3] K. H. Dar, B. Ahmad and M. A. Chaudhary, On (r, l)-system of BCI-algebras, J.Nat. Sciences and Math., 26 (1985), 1-6.
[4] M. A. Chaudhary and H. Fakhar-ud-din, On some classes of BCH-algebras, IJMMS 27 (2003), 1739-1750.
[5] Q. P. Hu and X. Li , On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
[6] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
[7] W. A. Dudek and R. Rousseau, Remarks on set-theoretic relations connected with BCH-algebras, PNWSPC, Mathematyka II, Czestochowa, 1996, 83-87.
[8] H. Yutani, Characterization of positive implicative algebras by ideals, Maths. Seminar Notes, 8(2), (1980), 403-406.
[9] Y. Imai, and K. Iseki, On axiom System of propositional calculi XIV, Proc., Japonica Academy, 42 (1966), 19-22.
[10] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
[11] K. H. Dar and M. Akram, On a K-algebra built on a group, SEA Bull. Math. 29(1)(2005), 41-49.
[12] K. H. Dar and M. Akram, Characterization of a $K(G)$-algebra by self maps, SEA Bull. Math. 28(4) (2004), 601-610.
[13] K. H. Dar, M. Akram and A. Farooq, On left $K(G)$-algebras, SEA Bull. Math., (2006).
[14] K. H. Dar and M. Akram, On subclasses of $K(G)$-algebras, Annals of University of Craiova, Math. Comp. Sci. Ser, (2006).
(Karamat Hussain Dar) Department of Mathematics, Govt. College University Lahore, Katchery Road, Lahore-54000, Pakistan
E-mail address: prof_khdar@yahoo.com
(Muhammad Akram) University College of Information Technology, University of the Punjab,
Old Campus, Lahore-54000, Pakistan
E-mail address: m.akram@pucit.edu.pk

