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On Endomorphisms of BCH-Algebras
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Abstract. In this paper we introduce the notion of a BCH-endomorphism. It is proved that

L0 is the only non-identity BCH-endomorphism of left type, where L3
0(x) = L0(x) for every

x in a BCH-algebra (X; ∗, 0) and L2
0 is idempotent. Some more properties of left and right

mappings of BCH-algebras are also investigated with BCH-characterization.
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1. Introduction

Y. Imai and K. Iséki introduced two classes of logical algebras: BCK-algebras and
BCI-algebras [9, 10]. It is known that the class of BCI-algebras is a generalization
of the class of BCK-algebras. In [5, 6], Q. P. Hu and X. Li introduced a wider class
of logical algebras: BCH-algebras. They have shown that the class of BCH-algebras
is further a generalization of the class of BCI-algebras. The authors of this paper
introduced a class of K-algebras with extended study in [12-15]. Recently, same
authors have proved in [15] that a class of K-algebras as a generalization of a family
of BCH/BCI/BCK-algebras.
K. H. Dar introduced the notions of left and right mappings over BCK-algebras in
[1] and further discussed in [2]. The notions of left and right mappings over BCI-
algebras have been discussed in [3]. In this paper we introduce the notion of BCH-
endomorphisms. Some more properties of left and right mappings of BCH-algebras
are investigated with special focus on the left map L0.

2. Preliminaries

In this section we cite some elementary aspects that will be used in the sequel of
this paper:

Definition 2.1. [5, 6] An algebra (X; ∗, 0) of type (2, 0) is called a BCH-algebra if,
for all x, y, z ∈ X, the following axioms hold:

(H1) x ∗ x = 0,
(H2) x ∗ y = 0 and y ∗ x = 0 imply x = y,
(H3) (x ∗ y) ∗ z = (x ∗ z) ∗ y.

In a BCH-algebra X, the following hold as immediate deductions.
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(H4) x ∗ 0 = x.
(H5) x ∗ 0 = 0 ⇐⇒ x = 0.
(H6) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y).
(H7) (x ∗ (x ∗ y)) ∗ y = 0.

Definition 2.2. A nonempty subset S of a BCH-algebra (X; ∗, 0) is a called BCH-
subalgebra ifx ∗ y ∈ S , for all x, y ∈ S.

Definition 2.3. A BCH-subalgebra J is called BCH- ideal if x ∗ y and x ∈ J ⇒
y ∈ J for all x, y ∈ X.

Example 2.1. The subset 0 ∗ X = {0 ∗ x : x ∈ X} forms a BCH-subalgebra since
0 ∈ 0 ∗X and (0 ∗ x) ∗ (0 ∗ y) = 0 ∗ (x ∗ y) ∈ 0 ∗X, for every 0 ∗ x, 0 ∗ y ∈ 0 ∗X. It
easily follows that 0 ∗X is a BCH-ideal.

Example 2.2. The subset 0 ∗ (0 ∗ X) = {0 ∗ (0 ∗ x) : x ∈ X} of a BCH-algebra
(X; ∗, 0) is a BCH-ideal.

3. BCH-endomorphisms

Definition 3.1. A mapping φ : X → X on a BCH-algebra (X; ∗, 0) is called a
BCH-endomorphism if φ(x ∗ y) = φ(x) ∗ φ(y), for all x, y ∈ X.

The set End(X) of all endomorphisms of X forms a semigroup, under the binary
operation of their composition (◦). Each φ ∈ End(X) acts the following way on X:

Proposition 3.1. If φ is a BCH-endomorphism of (X; ∗, 0) then
(i) φ(0) = 0.
(ii) φ(0 ∗ x) = 0 ∗ φ(x).
(iii) If x ∗ y = 0 then φ(x) ∗ φ(y) = 0.
(iv) If S is a BCH-subalgebra of X then so is φ(S).
(v) If S is a BCH-ideal of X then so is φ(S).
(vi) Kerφ= {x ∈ X : φ(x) = 0} is an ideal of X, for each φ in End(X).

Proof. Straightforward. ¤

Definition 3.2. For each element x ∈ X there associates a pair Lx , Rx of left and
right mappings respectively, which are defined by Lx(t) = x ∗ t and Rx(t) = t ∗ x, for
all t ∈ X (see [1]).

If L= {Lx : x ∈ X} and R= {Rx : x ∈ X}. Then L and R both are in one-to-
one corresponding with BCH-algebra X where Lx(t) = Rt(x) for all x, t ∈ X. The
mappings of L and R compose together the following way:

Proposition 3.2. The mappings L and R on a BCH-algebra (X; ∗, 0) compose by
the following properties.
(a) Ry ◦ L0 = L0∗y.
(b) Rx ◦Ry = Ry ◦Rx.
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(c) L0 ◦Ry = R0∗y ◦ L0 = L0∗(0∗y).
(d) Lx ◦R0 = Lx = R0 ◦ Lx.
(e) Ry ◦ Lx = Lx∗y.
(f) L0 ◦ Lx = L0∗x ◦ L0.

Proof. Routine. ¤

Remark 3.1. It is an important to note that L0 is an endomorphism of BCH-
algebras (X; ∗, 0) with its powers by the following Cayley table:

◦ I L0 L2
0

I I L0 L2
0

L0 L0 L2
0 L0

L2
0 L2

0 L0 L2
0

Proposition 3.3. In a BCH-algebra (X; ∗, 0), for all x, y

L0 ◦ (Lx ◦Ry) = L0∗x ◦ L0∗(0∗y).

Proof.

L0 ◦ (Lx ◦Ry) = (L0 ◦ Lx) ◦Ry

= (L0∗x ◦ L0) ◦Ry

= L0∗x ◦ (L0 ◦Ry)

= L0∗x ◦ L0∗(0∗y).

¤

Corollary 3.1. For x, y ∈ X,
(a) L0 ◦ (Ry ◦ Lx) = (R0∗y ◦ L0∗x) ◦ L0 = L0 ◦ Lx∗y.

(b) L0 ◦ (Ly ◦ Lx) = L2
0 ◦ Lx∗y.

Theorem 3.1. L0 is the only BCH-endomorphism of X in L.

Proof. Let x, y ∈ X. Then

L0(x) ∗ L0(y) = L(x∗y)∗(x∗y)(x) ∗ L0(y)

= (((x ∗ y) ∗ x) ∗ (x ∗ y)) ∗ L0(y)

= ((0 ∗ y) ∗ (x ∗ y)) ∗ (0 ∗ y)

= 0 ∗ (x ∗ y)

= L0(x ∗ y),

which proves the axiom (6) of BCH-algebra that L0 in L is an endomorphism of X.
L0 is unique BCH-endomorphism since , for non-zero x in X, Lx is not a BCH-
endomorphism by the contradiction, x = Lx(0) = Lx(0 ∗ 0) = Lx(0) ∗ Lx(0) = 0. ¤

Corollary 3.2. L0 is a central BCH-endomorphism.
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Proof. Let φ be an arbitrary endomorphism of (X; ∗, 0). Then

φ ◦ L0(x) = φ(0 ∗ x) = 0 ∗ φ(x) = L0 ◦ φ(x),

for all x ∈ X. Hence φ ◦ L0 = L0 ◦ φ. ¤

In order to exhibit action of L0 on a BCH-algebra (X; ∗, 0) , we define 0∗x = 01∗x,
0 ∗ (0 ∗ x) = 02 ∗ x, 0 ∗ (0 ∗ (0 ∗ x)) = 03 ∗ x, 0 ∗ (0 ∗ (0 ∗ · · · (n− times) ∗ x) = 0n ∗ x

for any positive integer n. If x ∈ X, we observe that:
(a) 0 ∗ (0k ∗ x) = 0k+1 ∗ x.
(b) 0l ∗ (0m ∗ x) = 0l+m ∗ x.
(c) (0l ∗ x) ∗ (0l ∗ y) = 0l ∗ (x ∗ y) for positive integers l, m, k and x, y ∈ X.

We exhibit that:

Proposition 3.4. [4] In a BCH-algebra (X; ∗, 0),
(d) 03 ∗ x = 0 ∗ x for all x ∈ X.

Proof. Since

(0 ∗ x) ∗ (0 ∗ x) = (02 ∗ x) ∗ x = 0

therefore, 03 ∗ x = 0 ∗ (02 ∗ x)

= ((02 ∗ x) ∗ x) ∗ (02 ∗ x)

= 0 ∗ x [by H3].

¤

Corollary 3.3. L0 is a periodic map of period 2.

Corollary 3.4. L2
0 is identity on L0(X) = {0 ∗ x : x ∈ X}.

Corollary 3.5. L0 is an epimorphism on X.

Proposition 3.5. The following equalities are valid in a BCH-algebra (X; ∗, 0) for
all x, y, z ∈ X.
(e) 0 ∗ (x ∗ y) = 02 ∗ (y ∗ x) .
(f) (02 ∗ z) ∗ (y ∗ x) = 02 ∗ (x ∗ (y ∗ z)).

Proof. (e)

0 ∗ (x ∗ y) = 03 ∗ (x ∗ y)

= 02 ∗ (0 ∗ (x ∗ y)) [by H6]

= 02 ∗ ((0 ∗ x) ∗ (0 ∗ y)) [by H3]

= 02 ∗ ((0 ∗ (0 ∗ y)) ∗ x) [by (a)]

= 02 ∗ ((02 ∗ y) ∗ x) [by remark]

= 02 ∗ ((02 ∗ y)) ∗ (02 ∗ x) [by Proposition 3.9]

= (02 ∗ y) ∗ (02 ∗ x)

= 02 ∗ (y ∗ x).
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(f)

(02 ∗ z) ∗ (y ∗ x) = (0 ∗ (0 ∗ z)) ∗ (y ∗ x)

= (0 ∗ (y ∗ x)) ∗ (0 ∗ z)

= 0 ∗ ((y ∗ x) ∗ z)

= 0 ∗ ((y ∗ z) ∗ x)

= 02 ∗ (x ∗ (y ∗ z)).

This ends the proof.
¤

Corollary 3.6.

0 ∗ (x ∗ (x ∗ y)) = 0 ∗ y ∀ x , y ∈ X.

Corollary 3.7.

0 ∗ ((x ∗ y) ∗ (x ∗ z)) = 0 ∗ (z ∗ y) ∀ x , y, z ∈ X.

Corollary 3.8.

(02 ∗ y) ∗ x = (0 ∗ (x ∗ y)) ∀ x , y ∈ X.

It is known that a BCH-algebra (X; ∗, 0) is not BCI-algebra,if

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) 6= 0

for at least one trio x, y, z of elements of BCH-algebra X.

Theorem 3.2. The BCH-subalgebras L0(X) = {0 ∗ x : x ∈ X} and L2
0(X) =

{0 ∗ (0 ∗ x) : x ∈ X} of (X; ∗, 0) are its BCI-subalgebras.

Proof. L0(X) and L2
0(x) are images of X under L0 and L2

0 respectively. They form
subalgebras of X since

L0(x) ∗ L0(y) = L0(x ∗ y) ∈ L0(X)

and

L2
0(x) ∗ L2

0(y) = L2
0(x ∗ y) ∈ L2

0(X)

for all x, y ∈ X. L0(X) is a BCI-algebra since, for all L0(x), L0(y), L0(z) ∈ L0(X)

L0(((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y)) = L0((x ∗ y) ∗ (x ∗ z)) ∗ L0(z ∗ y)

= L0(z ∗ y) ∗ L0(z ∗ y)

= 0.

Similarly, L2
0(X) is a BCI-algebra. ¤
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4. Order relations on a BCH-algebra

On a BCH-algebra (X; ∗, 0), a natural order ∼ is defined by x ∼ y if and only if
x ∗ y = 0. This order is reflexive, antisymmetric but not transitive in general. It is
locally transitive at 0, since if 0 ∼ x and x ∼ y then 0 ∼ y. We introduce another
relation ≈ which is symmetric and transitive closure of ∼ and is defined by x ≈ y if
and only if x ∗ y ∈ KerL0, then:

Lemma 4.1. Let (X; ∗, 0) be a BCH-algebra and relation ≈ be defined on X. Then
x ≈ y if and only if 0 ∗ x = 0 ∗ y, x, y ∈ X.

Proof. Suppose that x ≈ y. Then x ∗ y ∈ KerL0 and hence,

0 ∗ (x ∗ y) = 0

(0 ∗ x) ∗ (0 ∗ y) = 0 (I)

(0 ∗ (0 ∗ y)) ∗ x = 0

0 ∗ ((0 ∗ (0 ∗ y)) ∗ x) = 0

(0 ∗ (0 ∗ (0 ∗ y))) ∗ (0 ∗ x) = 0

(0 ∗ y) ∗ (0 ∗ x) = 0 (II)

From (I) and (II) it follows that 0 ∗ x = 0 ∗ y.
Conversely, if 0 ∗ x = 0 ∗ y then

0 = (0 ∗ x) ∗ (0 ∗ y) = 0 ∗ (x ∗ y).

¤

Corollary 4.1. The relation ≈ is symmetric on X.

Corollary 4.2. The relation ≈ is generally transitive on X.

Definition 4.1. Let there be a relation ∼ on X. A relation ≈ on X is called an
equivalence closure on X if
(i) ∼⊆≈,
(ii) ≈ is an equivalence relation.

Theorem 4.1. Let (X; ∗, 0) be a BCH-algebra and a relation ∼ be defined on X by,
x ∼ y if and only if x ∗ y = 0. Then there exists an equivalence closure ≈ of ∼ on X

, as defined by x ≈ y if and only if x ∗ y ∈ KerL0.

Proof. We see that the relation ≈ on X is reflexive since x ≈ x = 0 ∈ KerL0, for all
x ∈ X. The symmetric and transitive properties of ≈ on X follow from the Lemma
4.1. Hence the assertion of the theorem is proved. ¤

Corollary 4.3. If KerL0 = X then the equivalence class C0 = X and the BCH-
quotient algebra X/KerL0 is trivial.
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If KerL0 ⊂ X and there is one element in X invariant by L0, then there exists an
elementary abelian 2-group in X as a BCH-subalgebra. We characterize that:

Theorem 4.2. In a BCH-algebra (X; ∗, 0) if 0 ∗ x = x, for all x ∈ X then (X; ∗, 0)
forms an elementary abelian 2-group .

Definition 4.2. A BCH-algebra is said to be ∗-commutative if x ∗ y = y ∗ x, for all
x, y ∈ X.

Theorem 4.3. A BCH-algebra (X; ∗, 0) forms an elementary abelian 2-group if and
only if BCH-algebra (X; ∗, 0) is ∗-commutative.

Corollary 4.4. There exists no ∗-commutative proper BCH-subalgebra.

We have proved that L0 is the only endomorphism of a BCH-algebra (X; ∗, 0)
with homomorphic image L0(X). L0 is in fact an epimorphism on X. If KerL0 =
{x ∈ X : 0 ∗ x = 0} is proper ideal of X then the quotient algebra X/KerL0 is a
BCH-algebra and n0 : X → X/KerL0 is a natural BCH-homomorphism defined by
n0(x) = x ∗KerL0, x ∈ X where

n0(x ∗ y) = (x ∗ y) ∗KerL0 = (x ∗KerL0) ∗ (y ∗KerL0)

for all x, y ∈ X. Since X/KerL0 and L0(X) are BCH-algebras and a map η :
X/KerL0 → L0(X) is defined by η(x ∗KerL0) = 0 ∗ x, for all x ∈ X is well-defined,
since the map η is a BCH-isomorphism where

η((x ∗KerL0) ∗ (y ∗KerL0)) = η((x ∗ y) ∗KerL0) = 0 ∗ (x ∗ y)

= (0 ∗ x) ∗ (0 ∗ y)

= η(x ∗KerL0) ∗ η(y ∗KerL0)

and Kerη = KerL0. Thus we establish the fundamental Theorem:

Theorem 4.4. Let (X; ∗, 0) be a BCH-algebra and L0 an epimorphism on X. Then

X/KerL0
∼= L0(X).

Proof. The proof is exhibited by the following commutative diagram:

X

n0

²²

L0

// L0(X)

X
KerL0

η

;;vvvvvvvvv

¤
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