Annals of University of Craiova, Math. Comp. Sci. Ser. Volume 33, 2006, Pages 227–234 ISSN: 1223-6934

On Endomorphisms of *BCH***-Algebras**

KARAMAT HUSSAIN DAR AND MUHAMMAD AKRAM

ABSTRACT. In this paper we introduce the notion of a *BCH*-endomorphism. It is proved that L_0 is the only non-identity *BCH*-endomorphism of left type, where $L_0^3(x) = L_0(x)$ for every x in a *BCH*-algebra (X; *, 0) and L_0^2 is idempotent. Some more properties of left and right mappings of *BCH*-algebras are also investigated with *BCH*-characterization.

2000 Mathematics Subject Classification. Primary 06F35; Secondary 08A35. Key words and phrases. endomorphism, left and right mappings, idempotent.

1. Introduction

Y. Imai and K. Iséki introduced two classes of logical algebras: BCK-algebras and BCI-algebras [9, 10]. It is known that the class of BCI-algebras is a generalization of the class of BCK-algebras. In [5, 6], Q. P. Hu and X. Li introduced a wider class of logical algebras: BCH-algebras. They have shown that the class of BCH-algebras is further a generalization of the class of BCI-algebras. They have shown that the class of this paper introduced a class of K-algebras with extended study in [12-15]. Recently, same authors have proved in [15] that a class of K-algebras as a generalization of a family of BCH/BCI/BCK-algebras.

K. H. Dar introduced the notions of left and right mappings over BCK-algebras in [1] and further discussed in [2]. The notions of left and right mappings over BCI-algebras have been discussed in [3]. In this paper we introduce the notion of BCH-endomorphisms. Some more properties of left and right mappings of BCH-algebras are investigated with special focus on the left map L_0 .

2. Preliminaries

In this section we cite some elementary aspects that will be used in the sequel of this paper:

Definition 2.1. [5, 6] An algebra (X; *, 0) of type (2, 0) is called a BCH-algebra if, for all $x, y, z \in X$, the following axioms hold:

- (H1) x * x = 0,
- (H2) x * y = 0 and y * x = 0 imply x = y,
- (H3) (x * y) * z = (x * z) * y.

In a BCH-algebra X, the following hold as immediate deductions.

- (H4) x * 0 = x.
- (H5) $x * 0 = 0 \iff x = 0$.
- (H6) 0 * (x * y) = (0 * x) * (0 * y).
- (H7) (x * (x * y)) * y = 0.

Definition 2.2. A nonempty subset S of a BCH-algebra (X; *, 0) is a called BCH-subalgebra if $x * y \in S$, for all $x, y \in S$.

Definition 2.3. A BCH-subalgebra J is called BCH- ideal if x * y and $x \in J \Rightarrow y \in J$ for all $x, y \in X$.

Example 2.1. The subset $0 * X = \{0 * x : x \in X\}$ forms a BCH-subalgebra since $0 \in 0 * X$ and $(0 * x) * (0 * y) = 0 * (x * y) \in 0 * X$, for every 0 * x, $0 * y \in 0 * X$. It easily follows that 0 * X is a BCH-ideal.

Example 2.2. The subset $0 * (0 * X) = \{0 * (0 * x) : x \in X\}$ of a BCH-algebra (X; *, 0) is a BCH-ideal.

3. BCH-endomorphisms

Definition 3.1. A mapping $\phi : X \to X$ on a BCH-algebra (X; *, 0) is called a BCH-endomorphism if $\phi(x * y) = \phi(x) * \phi(y)$, for all $x, y \in X$.

The set End(X) of all endomorphisms of X forms a semigroup, under the binary operation of their composition (\circ). Each $\phi \in End(X)$ acts the following way on X:

Proposition 3.1. If ϕ is a BCH-endomorphism of (X; *, 0) then

- (i) $\phi(0) = 0$.
- (ii) $\phi(0 * x) = 0 * \phi(x)$.
- (iii) If x * y = 0 then $\phi(x) * \phi(y) = 0$.
- (iv) If S is a BCH-subalgebra of X then so is $\phi(S)$.
- (v) If S is a BCH-ideal of X then so is $\phi(S)$.
- (vi) $Ker\phi = \{x \in X : \phi(x) = 0\}$ is an ideal of X, for each ϕ in End(X).

Proof. Straightforward.

Definition 3.2. For each element $x \in X$ there associates a pair L_x , R_x of left and right mappings respectively, which are defined by $L_x(t) = x * t$ and $R_x(t) = t * x$, for all $t \in X$ (see [1]).

If $L = \{L_x : x \in X\}$ and $R = \{R_x : x \in X\}$. Then L and R both are in one-toone corresponding with BCH-algebra X where $L_x(t) = R_t(x)$ for all $x, t \in X$. The mappings of L and R compose together the following way:

Proposition 3.2. The mappings L and R on a BCH-algebra (X; *, 0) compose by the following properties.

- (a) $R_y \circ L_0 = L_{0*y}$.
- (b) $R_x \circ R_y = R_y \circ R_x$.

- (c) $L_0 \circ R_y = R_{0*y} \circ L_0 = L_{0*(0*y)}.$
- (d) $L_x \circ R_0 = L_x = R_0 \circ L_x$.
- (e) $R_y \circ L_x = L_{x*y}$.
- (f) $L_0 \circ L_x = L_{0*x} \circ L_0$.

Proof. Routine.

Remark 3.1. It is an important to note that L_0 is an endomorphism of BCHalgebras (X; *, 0) with its powers by the following Cayley table:

0	Ι	L_0	L_0^2
Ι	Ι	L_0	L_0^2
L_0	L_0	L_0^2	L_0
L_0^2	L_{0}^{2}	L_0	L_0^2

Proposition 3.3. In a BCH-algebra (X; *, 0), for all x, y

$$L_0 \circ (L_x \circ R_y) = L_{0*x} \circ L_{0*(0*y)}.$$

Proof.

$$L_0 \circ (L_x \circ R_y) = (L_0 \circ L_x) \circ R_y$$
$$= (L_{0*x} \circ L_0) \circ R_y$$
$$= L_{0*x} \circ (L_0 \circ R_y)$$
$$= L_{0*x} \circ L_{0*(0*y)}.$$

_		
L		L
L		L

Corollary 3.1. For $x, y \in X$, (a) $L_0 \circ (R_y \circ L_x) = (R_{0*y} \circ L_{0*x}) \circ L_0 = L_0 \circ L_{x*y}$. (b) $L_0 \circ (L_y \circ L_x) = L_0^2 \circ L_{x*y}$.

Theorem 3.1. L_0 is the only BCH-endomorphism of X in L.

Proof. Let $x, y \in X$. Then

$$L_{0}(x) * L_{0}(y) = L_{(x*y)*(x*y)}(x) * L_{0}(y)$$

= $(((x*y)*x)*(x*y))*L_{0}(y)$
= $((0*y)*(x*y))*(0*y)$
= $0*(x*y)$
= $L_{0}(x*y),$

which proves the axiom (6) of *BCH*-algebra that L_0 in *L* is an endomorphism of *X*. L_0 is unique *BCH*-endomorphism since , for non-zero *x* in *X*, L_x is not a *BCH*-endomorphism by the contradiction, $x = L_x(0) = L_x(0 * 0) = L_x(0) * L_x(0) = 0$. \Box

Corollary 3.2. L_0 is a central BCH-endomorphism.

Proof. Let ϕ be an arbitrary endomorphism of (X; *, 0). Then

$$\phi \circ L_0(x) = \phi(0 * x) = 0 * \phi(x) = L_0 \circ \phi(x),$$

for all $x \in X$. Hence $\phi \circ L_0 = L_0 \circ \phi$.

In order to exhibit action of L_0 on a *BCH*-algebra (X; *, 0), we define $0 * x = 0^1 * x$, $0 * (0 * x) = 0^2 * x$, $0 * (0 * (0 * x)) = 0^3 * x$, $0 * (0 * (0 * \cdots (n - times) * x)) = 0^n * x$ for any positive integer n. If $x \in X$, we observe that:

- (a) $0 * (0^k * x) = 0^{k+1} * x$.
- (b) $0^l * (0^m * x) = 0^{l+m} * x.$
- (c) $(0^l * x) * (0^l * y) = 0^l * (x * y)$ for positive integers l, m, k and $x, y \in X$. We exhibit that:

Proposition 3.4. [4] In a BCH-algebra (X; *, 0), (d) $0^3 * x = 0 * x$ for all $x \in X$.

Proof. Since

$$(0 * x) * (0 * x) = (0^{2} * x) * x = 0$$

therefore, $0^{3} * x = 0 * (0^{2} * x)$
 $= ((0^{2} * x) * x) * (0^{2} * x)$
 $= 0 * x [by H_{3}].$

Corollary 3.3. L_0 is a periodic map of period 2.

Corollary 3.4. L_0^2 is identity on $L_0(X) = \{0 * x : x \in X\}.$

Corollary 3.5. L_0 is an epimorphism on X.

Proposition 3.5. The following equalities are valid in a BCH-algebra (X; *, 0) for all $x, y, z \in X$.

(e) $0 * (x * y) = 0^2 * (y * x)$. (f) $(0^2 * z) * (y * x) = 0^2 * (x * (y * z))$.

0

Proof. (e)

$$\begin{array}{rcl} * (x * y) &=& 0^3 * (x * y) \\ &=& 0^2 * (0 * (x * y)) \; [by \; H6] \\ &=& 0^2 * ((0 * x) * (0 * y)) \; [by \; H3] \\ &=& 0^2 * ((0 * (0 * y)) * x) \; [by \; (a)] \\ &=& 0^2 * ((0^2 * y) * x) \; [by \; remark] \\ &=& 0^2 * ((0^2 * y)) * (0^2 * x) \; [by \; Proposition \; 3.9] \\ &=& (0^2 * y) * (0^2 * x) \\ &=& 0^2 * (y * x). \end{array}$$

230

(f)

$$(0^{2} * z) * (y * x) = (0 * (0 * z)) * (y * x)$$

= $(0 * (y * x)) * (0 * z)$
= $0 * ((y * x) * z)$
= $0 * ((y * z) * x)$
= $0^{2} * (x * (y * z)).$

This ends the proof.

Corollary 3.6.

$$0 * (x * (x * y)) = 0 * y \ \forall \ x \ , y \in X.$$

Corollary 3.7.

$$0 * ((x * y) * (x * z)) = 0 * (z * y) \forall x, y, z \in X$$

Corollary 3.8.

$$(0^2 * y) * x = (0 * (x * y)) \forall x, y \in X.$$

It is known that a *BCH*-algebra (X; *, 0) is not *BCI*-algebra, if

 $((x * y) * (x * z)) * (z * y) \neq 0$

for at least one trio x, y, z of elements of BCH-algebra X.

Theorem 3.2. The BCH-subalgebras $L_0(X) = \{0 * x : x \in X\}$ and $L_0^2(X) = \{0 * (0 * x) : x \in X\}$ of (X; *, 0) are its BCI-subalgebras.

Proof. $L_0(X)$ and $L_0^2(x)$ are images of X under L_0 and L_0^2 respectively. They form subalgebras of X since

$$L_0(x) * L_0(y) = L_0(x * y) \in L_0(X)$$

and

$$L_0^2(x) * L_0^2(y) = L_0^2(x * y) \in L_0^2(X)$$

for all $x, y \in X$. $L_0(X)$ is a *BCI*-algebra since, for all $L_0(x), L_0(y), L_0(z) \in L_0(X)$

$$\begin{split} L_0(((x*y)*(x*z))*(z*y)) &= & L_0((x*y)*(x*z))*L_0(z*y) \\ &= & L_0(z*y)*L_0(z*y) \\ &= & 0. \end{split}$$

Similarly, $L_0^2(X)$ is a *BCI*-algebra.

231

4. Order relations on a *BCH*-algebra

On a *BCH*-algebra (X; *, 0), a natural order \sim is defined by $x \sim y$ if and only if x * y = 0. This order is reflexive, antisymmetric but not transitive in general. It is locally transitive at 0, since if $0 \sim x$ and $x \sim y$ then $0 \sim y$. We introduce another relation \approx which is symmetric and transitive closure of \sim and is defined by $x \approx y$ if and only if $x * y \in KerL_0$, then:

Lemma 4.1. Let (X; *, 0) be a BCH-algebra and relation \approx be defined on X. Then $x \approx y$ if and only if 0 * x = 0 * y, $x, y \in X$.

Proof. Suppose that $x \approx y$. Then $x * y \in KerL_0$ and hence,

$$0 * (x * y) = 0$$

$$(0 * x) * (0 * y) = 0 (I)$$

$$(0 * (0 * y)) * x = 0$$

$$0 * ((0 * (0 * y)) * x) = 0$$

$$(0 * (0 * (0 * y))) * (0 * x) = 0$$

$$(0 * y) * (0 * x) = 0 (II)$$

From (I) and (II) it follows that 0 * x = 0 * y. Conversely, if 0 * x = 0 * y then

$$0 = (0 * x) * (0 * y) = 0 * (x * y).$$

Corollary 4.1. The relation \approx is symmetric on X.

Corollary 4.2. The relation \approx is generally transitive on X.

Definition 4.1. Let there be a relation \sim on X. A relation \approx on X is called an equivalence closure on X if

- (i) $\sim \subseteq \approx$,
- (ii) \approx is an equivalence relation.

Theorem 4.1. Let (X; *, 0) be a BCH-algebra and a relation \sim be defined on X by, $x \sim y$ if and only if x * y = 0. Then there exists an equivalence closure \approx of \sim on X , as defined by $x \approx y$ if and only if $x * y \in KerL_0$.

Proof. We see that the relation \approx on X is reflexive since $x \approx x = 0 \in KerL_0$, for all $x \in X$. The symmetric and transitive properties of \approx on X follow from the Lemma 4.1. Hence the assertion of the theorem is proved.

Corollary 4.3. If $KerL_0 = X$ then the equivalence class $C_0 = X$ and the BCHquotient algebra $X/KerL_0$ is trivial.

If $KerL_0 \subset X$ and there is one element in X invariant by L_0 , then there exists an elementary abelian 2-group in X as a *BCH*-subalgebra. We characterize that:

Theorem 4.2. In a BCH-algebra (X; *, 0) if 0 * x = x, for all $x \in X$ then (X; *, 0) forms an elementary abelian 2-group.

Definition 4.2. A BCH-algebra is said to be *-commutative if x * y = y * x, for all $x, y \in X$.

Theorem 4.3. A BCH-algebra (X; *, 0) forms an elementary abelian 2-group if and only if BCH-algebra (X; *, 0) is *-commutative.

Corollary 4.4. There exists no *-commutative proper BCH-subalgebra.

We have proved that L_0 is the only endomorphism of a BCH-algebra (X; *, 0)with homomorphic image $L_0(X)$. L_0 is in fact an epimorphism on X. If $KerL_0 = \{x \in X : 0 * x = 0\}$ is proper ideal of X then the quotient algebra $X/KerL_0$ is a BCH-algebra and $n_0 : X \to X/KerL_0$ is a natural BCH-homomorphism defined by $n_0(x) = x * KerL_0, x \in X$ where

$$n_0(x * y) = (x * y) * KerL_0 = (x * KerL_0) * (y * KerL_0)$$

for all $x, y \in X$. Since $X/KerL_0$ and $L_0(X)$ are BCH-algebras and a map $\eta : X/KerL_0 \to L_0(X)$ is defined by $\eta(x * KerL_0) = 0 * x$, for all $x \in X$ is well-defined, since the map η is a BCH-isomorphism where

$$\eta((x * KerL_0) * (y * KerL_0)) = \eta((x * y) * KerL_0) = 0 * (x * y)$$
$$= (0 * x) * (0 * y)$$
$$= \eta(x * KerL_0) * \eta(y * KerL_0)$$

and $Ker\eta = KerL_0$. Thus we establish the fundamental Theorem:

Theorem 4.4. Let (X; *, 0) be a BCH-algebra and L_0 an epimorphism on X. Then

$$X/KerL_0 \cong L_0(X)$$

Proof. The proof is exhibited by the following commutative diagram:

References

 K. H. Dar, A characterization of positive implicative BCK-algebras by self-maps, Math. Japonica 31(2), (1986) 197 - 199.

K. H. DAR AND M. AKRAM

- [2] K. H. Dar and B. Ahmad, On endomorphisms of BCK-algebras, Math. Japonica, Vol. 31(6)(1986), 855-857.
- [3] K. H. Dar, B. Ahmad and M. A. Chaudhary, On (r, l)-system of BCI-algebras, J.Nat. Sciences and Math., 26 (1985), 1-6.
- [4] M. A. Chaudhary and H. Fakhar-ud-din, On some classes of BCH-algebras, IJMMS 27 (2003), 1739-1750.
- [5] Q. P. Hu and X. Li , On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- [6] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
- [7] W. A. Dudek and R. Rousseau, Remarks on set-theoretic relations connected with BCH-algebras, PNWSPC, Mathematyka II, Czestochowa, 1996, 83-87.
- [8] H. Yutani, Characterization of positive implicative algebras by ideals, Maths. Seminar Notes, 8(2), (1980), 403-406.
- [9] Y. Imai, and K. Iseki, On axiom System of propositional calculi XIV, Proc., Japonica Academy, 42(1966), 19-22.
- [10] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
- [11] K. H. Dar and M. Akram, On a K-algebra built on a group, SEA Bull. Math. 29(1)(2005), 41-49.
- [12] K. H. Dar and M. Akram, Characterization of a K(G)-algebra by self maps, SEA Bull. Math. 28(4) (2004), 601-610.
- [13] K. H. Dar, M. Akram and A. Farooq, On left K(G)-algebras, SEA Bull. Math., (2006).
- [14] K. H. Dar and M. Akram, On subclasses of K(G)-algebras, Annals of University of Craiova, Math. Comp. Sci. Ser, (2006).

(Karamat Hussain Dar) DEPARTMENT OF MATHEMATICS, GOVT. COLLEGE UNIVERSITY LAHORE, KATCHERY ROAD, LAHORE-54000, PAKISTAN *E-mail address*: prof_khdar@yahoo.com

(Muhammad Akram) UNIVERSITY COLLEGE OF INFORMATION TECHNOLOGY, UNIVERSITY OF THE PUNJAB,

OLD CAMPUS, LAHORE-54000, PAKISTAN *E-mail address:* m.akram@pucit.edu.pk