On Subclasses of $K(G)$-algebras

K. H. Dar and M. Akram

Abstract

In this paper, we introduce the class of $K(G)$-algebras as a super class of the classes of $B C H / B C I / B C K$-algebras and the class of B-algebras, when the group (G, \cdot) is abelian and non-abelian respectively.

2000 Mathematics Subject Classification. 06F35.
Key words and phrases. $K(G)$-algebras, Logical algebras, Group.

1. Introduction

Imai and Iséki introduced two classes of logical algebras: $B C K$-algebras and $B C I$ algebras in $[15,16]$. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. Hu and Li introduced a wide class of logical algebras: $B C H$-algebras in [9, 10]. They have demonstrated that the class of $B C I$-algebras is a proper subclass of the class of $B C H$-algebras. Neggers and Kim [17] introduced the notion of B-algebras which is equivalent in some sense to the groups.
Dar and Akram introduced wider class of logical algebras on a group $(G, \cdot): K$-algebras in [1, 2]. A K-algebra was built on the group G (briefly, $K(G)$-algebra) by using the induced binary operation \odot on (G, \cdot) as $x \odot y=x \cdot y^{-1}=x y^{-1}$, for all $x, y \in G$. This paper describes the classes of $B C H / B C I / B C K$-algebras as subclasses of the class of $K(G)$-algebras when (G, \cdot) is an abelian group, and the class of B-algebras as a subclass of $\mathrm{K}(\mathrm{G})$-algebras if (G, \cdot) is a non-abelian group.

2. Preliminaries

In this section we review some elementary aspects that are necessary for this paper:
Definition 2.1. [1] $A K(G)$-algebra $(G ; \cdot, \odot, e)$ is an algebra defined on the group (G, \cdot) in which each non-identity element is not of order 2 with the following axioms:
$(\mathrm{K} 1)(x \odot y) \odot(x \odot z)=\left(x \odot\left(z^{-1} \odot y^{-1}\right)\right) \odot x$,
$(\mathrm{K} 2) x \odot(x \odot y)=\left(x \odot y^{-1}\right) \odot x$,
(K3) $(x \odot x)=e$,
(K4) $(x \odot e)=x$,
(K5) $(e \odot x)=x^{-1}, \forall x, y, z \in G$.
If group (G, \cdot) is an abelian, then the axioms (K1) and (K2) hold respectively as follows:
$(\overline{K 1})(x \odot y) \odot(x \odot z)=z \odot y$.
$(\overline{K 2}) x \odot(x \odot y)=y$.

[^0]Example 2.1. [1] Consider the $K(G)$-algebra (G, \cdot, \odot, e), where $G=\left\{e, a, a^{2}, a^{3}, a^{4}\right\}$ is the cyclic group of order 5 and \odot is given by the following Cayley table:

\odot	e	a	a^{2}	a^{3}	a^{4}
e	e	a^{4}	a^{3}	a^{2}	a
a	a	e	a^{4}	a^{3}	a^{2}
a^{2}	a^{2}	a	e	a^{4}	e^{3}
a^{3}	a^{3}	a^{2}	a	e	e^{4}
a^{4}	a^{4}	a^{3}	a^{2}	a	e

Example 2.2. [1] Consider the $K\left(S_{3}\right)$-algebra $\left(S_{3}, \cdot, \odot, e\right)$ on the symmetric group $S_{3}=\{e, a, b, x, y, z\}$ where $e=(1), a=(123), b=(132), x=(12), y=(13), z=(23)$, and \odot is given by the following Cayley table:

\odot	e	x	y	z	a	b
e	e	x	y	z	b	a
x	x	e	a	b	z	y
y	y	b	e	a	x	z
z	z	a	b	e	y	x
a	a	z	x	y	e	b
b	b	y	z	x	a	e

Proposition 2.1. [2] If $K(G)=(G ; \cdot, \odot, e)$ is a $K(G)$-algebra on an abelian group G, then
(a) $(e \odot x) \odot(e \odot y)=y \odot x=e \odot(x \odot y)$,
(b) $(x \odot z) \odot(y \odot z)=x \odot y$,
(c) $e \odot(e \odot x)=x$,
(d) $x \odot(e \odot y)=y \odot(e \odot x)$,
for any $x, y, z \in G$.
Definition 2.2. [17] A groupoid $(X ; *, 0)$ with a special element 0 is called a B-algebra if , for all $x, y, z \in X$ the following axioms hold:
(B1) $x * x=0$,
(B2) $x * 0=x$,
(B3) $(x * y) * z=x *(z *(0 * y))$.
In B-algebras, the following identities hold:
(B4) $0 *(0 * x)=x$. $\quad[17]$
(B5) $0 *(x * y)=y * x$. [18]
(B6) $x *(x *(0 * x))=0 * x$. [17]
(B7) $x *(y * z)=(x *(0 * z)) * y$. [18]
(B8) $x *(z *(0 * x))=(0 * x) *(z * x)=0 * z$. [18]
(B9) $(x * y) *(0 * y)=x$. [17].
Definition 2.3. [17] A B-algebras $(X ; *, 0)$ is said to be commutative if, $x *(0 * y)=$ $y *(0 * x)$, for all $x, y \in X$.

We characterize commutative B-algebras in the following proposition:
Proposition 2.2. In B-algebras $(X ; *, 0)$, the following statements are equivalent:
(a) B-algebra $(X ; *, 0)$ is commutative,
(b) $x *(0 * y)=y *(0 * x)$,
(c) $x *(x * y)=y$,
(d) $(x * y) * z=(x * z) * y$,
(e) $(0 * x) *(0 * y)=0 *(x * y)$,
(f) $(x * y) *(x * z)=z * y$,
for all $x, y, z \in X$.
Definition 2.4. [9] A groupoid $(X ; *, 0)$ with a special element 0 is called a $B C H$ algebra if, for all $x, y, z \in X$, the following axioms hold:
(BCH1) $x * x=0$,
(BCH2) $x * y=0$ and $y * x=0$ imply $x=y$,
(BCH3) $(x * y) * z=(x * z) * y$.
The following identities hold in BCH -algebras:
(BCH4) $x * 0=x$.
(BCH5) $x * 0=0 \Rightarrow x=0$.
(BCH6) $0 *(x * y)=(0 * x) *(0 * y)$.
(BCH7) $0 *(0 *(0 * x))=0 * x$.
(BCH8) $\{x *(x * y)\} * y=0$.
Definition 2.5. An algebra $(X ; *, 0)$ of type (2, 0) is called a BCI-algebra if, for all $x, y, z \in X$ the following axioms hold:
(BCI1) $((x * y) *(x * z)) *(z * y)=0$,
(BCI2) $(x *(x * y)) * y=0$,
(BCI3) $x * x=0$,
(BCI4) $x * y=0$ and $y * x=0 \Rightarrow x=y$.
In $B C I$-algebras, the following hold:
(BCI5) $(x * y) * z=(x * z) * y$.
(BCI6) $(x * 0)=x$.
(BCI7) $(x * y) * z=x *(y *(0 * z))$.
(BCI8) $0 *(y * x)=(0 * y) *(0 * x)=x * y$.
(BCI9) $0 *(0 * x)=x$.
(BCI10) $x *(0 * y)=y *(0 * x)$.
Definition 2.6. A BCI-algebra $(X ; *, 0)$ is a $B C K$-algebra, if it satisfies (BCK) $0 * x=0$, for all $x \in X$.

3. B-algebra as a subclass

It is realized in [17] that a B-algebra $(X ; *, 0)$ admits the structure of a group (X, \circ), where $x \circ y=x *(0 * y)$, for all $x, y \in X$. It is easy to remark that :
(B 10) B-algebra is commutative if and only if the group (X, \circ) is commutative.
(B11) B-algebra is not proper if each non-identity element of the group (X, \circ) is its own inverse.
(B12) $x^{-1}=0 * x$.
(B13) $x \circ y=x *(0 * y)=x * y^{-1}$.
(B14) 0 is the identity of the group.
Theorem 3.1. Let $(X ; *, 0)$ be a B-algebra and (X, \circ) be the group admissible on B algebra. Then B-algebra $(X ; *, 0)$ is equivalent to a $K(G)$-algebra built on the group $G=(X, \circ)$.

Proof. If the binary operation ${ }^{\prime} *^{\prime}$ introduced on the group (X, \circ) which is defined by $x * y=x \circ y^{-1}$, for all $x, y \in X$, then the properties $K 3, K 4$ and $K 5$ of definition
2.1 are easily verified by the algebra $(X ; \circ, *)$ built on the group $(X, \circ), K 1$ and $K 2$ are verified by the B-algebra $(X ; *, \circ)$ since

$$
\begin{aligned}
(x * y) *(x * z) & =x *((x * z) *(0 * y)) \\
& =x *(x *((0 * y) *(0 * z)) \quad[b y \text { B3 }] \\
& =x *\left(x *\left(y^{-1} \circ z\right)\right) \quad[(X, \circ) \text { is a group }] \\
& =\left(x *\left(0 *\left(y^{-1} \circ z\right)\right)\right) * x \quad[b y \text { B3] } \\
& =\left(x *\left(y^{-1} \circ z\right)^{-1}\right) * x \quad\left[0 * x=x^{-1}\right] \\
& =\left(x *\left(z^{-1} \circ y\right)\right) * x \quad[\circ \quad \text { is a group operation }] \\
& =\left(x *\left(z^{-1} * y^{-1}\right)\right) * x, \quad \text { for allx, } y, z \in X
\end{aligned}
$$

and

$$
\begin{aligned}
x *(x * y) & =(x *(0 * y)) * x \quad[\text { by } B 3] \\
& =\left(x * y^{-1}\right) * x, \quad \text { for all } x, y, z \in X
\end{aligned}
$$

Thus B-algebras is the desired $K(G)$-algebra built on the group $G=(X, \circ)$.
Corollary 3.1. The binary operations ${ }^{\prime} o^{\prime}$ and ${ }^{\prime} *^{\prime}$ are right inverses of each other.

4. $B C H$-algebra as a subclass

From the definition 2.6 and Proposition $2.2(\mathrm{~d})$, it is seen that every BCH -algebras is a commutative B-subalgebra and hence admits an abelian group $(X, *)$, where $x * y=x \cdot y^{-1}=x *(0 * y)=y *(0 * x)$, for all $x, y \in X$. Thus

Theorem 4.1. A BCH-algebra $(X ; *, \circ)$ is $K(G)$-algebra built on an abelian group (X, \circ), for all $x, y \in X$.

Proof. Let (X, \circ) be an abelian group. Then B-algebra as $K(G)$-subalgebra built on (X, \circ) has to be abelian [by B10]. By proposition $2.2(\mathrm{~d})$, it implies that $K(G)$-algebra $(X ; \circ, \odot)$ is equivalent to a $B C H$-algebra $(X, \circ, *)$,
where $x \odot y=x \circ y^{-1}=x *(0 * y)$.

5. BCI-algebra as a subclass

It is known that a $B C I$-algebra admits the structure of an abelian group (X, \cdot) by an induced binary operation $x \cdot y=x *(0 * y)$ for all $x, y \in X$.
deduced by

$$
\begin{equation*}
x * y=x \cdot y^{-1} \quad \forall x, y \in X \tag{1}
\end{equation*}
$$

The (1)-equation admits the structure of $K(G)$-algebra [1] on the $B C I$-group (X, \cdot). We prove that a class of $B C I$-algebras is equivalent to a class of $K(G)$-algebra built on an abelian $B C I$-group ($X, \cdot)$.
Theorem 5.1. Let (X, \cdot) be BCI-group having identity element 0 . Then the BCIalgebra $(X ; *, 0)$ is equivalent to a $K(G)$-algebra $(X ; \odot, 0)$ built on the BCI-group (X, \cdot).

Proof. The properties (K3), (K4) and (K5) of $K(G)$-algebra can easily be verified from the properties (BCI3), (BCI6) and (1)-equation of BCI-algebra ($X ; *, 0$). The properties $\overline{K 1}$ and $\overline{K 2}$ are verified in $B C I$-algebra since

$$
\begin{aligned}
& (x * y) *(x * z) \quad=\quad x *(y *(0 *(x * z))) \quad[b y B C I 7] \\
& =x *(y *(z * x)) \quad[b y B C I 8] \\
& =x *((y * z) *(0 * x)) \quad[b y B C I 7] \\
& =(x *(y * z)) *(0 *(0 * x)) \quad[b y B C I 7] \\
& =(x *(y * z)) * x \quad[b y \text { BCI9] } \\
& =(x * x) *(y * z) \quad[b y \text { BCI5] } \\
& =0 *(y * z) \quad[b y \text { BCI3] } \\
& =z * y \text {. [by BCI8] }
\end{aligned}
$$

The axiom $\overline{K 2}$ can also be verified directly from $B C I 2$ of definition 2.5. This ends the proof.

Corollary 5.1. All the classes of BCK-algebras form subclasses of $K(G)$-algebras built on abelian groups.

References

[1] K. H. Dar and M. Akram, On a K-algebra built on a group, SEA Bull. Math., 29(1)(2005) 49-57.
[2] K. H. Dar and M. Akram, Characterization of a $K(G)$-algebra by self maps, SEA Bull. Math., 28(4)(2004)601-610.
[3] K. H. Dar, M. Akram and A. Farooq, A note on a left $K(G)$-algebra, SEA Bull. Math. $30(2006)$.
[4] M. Akram and S. H. Kim , On K-algebras and BCI-algebras, Int. Math. Jour. (To appear).
[5] K. H. Dar, M. A. Chaudhary and B. Ahmad, A note on BCI-algebras, J. Nat. Sci. and Math., 27(1987) 21-32.
[6] K. H. Dar, B. Ahmad and M. A. Chaudhary, On (r, l)-system of BCI--algebras, J. Nat. Sci. and Math., 26(1985) 1-6.
[7] M. A. Chaudhary and H. Fakhar-ud-din, On some classes of BCH-algebras, IJMMS 27 (2003) 1739-1750.
[8] W. A. Dudek and J. Thomys , On decomposition of BCH-algebras, Math. Japoica, 35(1991) 1131-1138.
[9] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, 11 (1983) 313-320.
[10] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985) 659-661.
[11] E. H. Roh, S. Y. Kim and Y. B. Jun, On a problem in BCH-algebras, Math. Japonica 52 (2000) 279-283.
[12] J. Meng, BCI-algebras and abelian groups, Math. Japonica, 32 (1987) 693-696.
[13] C. S. Hoo, BCI-algebras with condition(S), Math. Japonica 32 (1987) 749-756.
[14] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Co., Seoul, 1994.
[15] Y. Imai and K. Iseki :, On axiom system of propositional calculi XIV, Proc., Japon Acad., 42 (1966) 19-22.
[16] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26-29.
[17] J. Neggers and H. S. Kim, On B-algebras, Matematicki Vesnik, 54(2002) 21-29.
[18] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca, 55(2005).
[19] J. Meng, Some notes on BCK-algebras, J. Northwest Uni., 16(1986) 8-11.
[20] M. A. Chaudhary, On BCH-algebras, Math. Japonica, 36(1991) 665-676.
(K. H. Dar) Govt. College University Lahore,

Department of Mathematics,
Katchery Road, Lahore-54000, Pakistan
E-mail address: prof_khdar@yahoo.com
(M. Akram) Punjab University College of Information Technology, University of the Punjab, Old Campus,
Lahore-54000, Pakistan
E-mail address: m.akram@pucit.edu.pk

[^0]: Received: March 31, 2006.
 The research work of first author is supported by HEC-Islamabad, Pakistan.
 The second author is supported by Punjab University College of Information Technology.

