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Numerical Study of the Succession of Attractors in the
Periodically Forced Rayleigh System

Petre Băzăvan

Abstract. The autonomous second order nonlinear ordinary differential equation (ODE)
..
x +

.
x3

3
− .

x +x = 0, introduced in 1883 by Lord Rayleigh, is the nonlinear equation in
.
x which

appears to be the closest to the ODE of the harmonic oscillator with dumping [Diener, 1979,

1].

In this paper we present a numerical study of the periodic and chaotic attractors in the dy-

namical system associated with the generalized Rayleigh equation ε
..
x +

.
x3

3
− .

x +ax = g sin ωt.

Numerical results describe the system dynamics changes (in particular bifurcations), when the

forcing frequency is varied and thus, periodic or chaotic behavior regions are predicted.
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1. Introduction

The nonautonomous second order nonlinear ODE with time dependent sinusoidal
forcing term, given by Diener [1979, 1],

ε
..
x +

.
x

3

3
− .

x +ax = g sinωt, (1)

is a generalisation of the Rayleigh equation
..
x +

.
x
3

3 −
.
x +x = 0 [Diener, 1979, 1].

Here, x : R → R, x = x(t) is the unknown function and the dot over x stands for
the differentiation with respect to t. The control parameters are ε, a, g (forcing
amplitude) and and ω (forcing frequency).

Some aspects concerning canard bifurcations are analyzed in [Diener, 1979, 1] and
[Diener, 1979, 2] for the periodically forced generalization of Rayleigh equation (1).
From mathematical perspective the nonautonomous system of nonlinear ODEs asso-
ciated with this equation is one of a class of periodically forced nonlinear oscillators,
as the van der Pol (VP) and Bonhoeffer van der Pol (BVP) systems are. The behavior
of these systems was much numerically investigated in [Flaherty and Hoppensteadt,
1978], [Mettin et al., 1993] and [Barns and Grimshaw, 1997], due to their applications
in electronics and physiology.

With (1), the two-dimensional nonlinear non-autonomous system of ODEs{ .
x1= x2,
.
x2= −a

ε x1 + 1
ε

(
x2 − x3

2
3

)
+ g

ε sinωt,
(2)
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and the three-dimensional nonlinear autonomous system
.
x1= x2,
.
x2= −a

ε x1 + 1
ε

(
x2 − x3

2
3

)
+ g

ε sinx3,
.
x3= ωmod2π,

(3)

are associated. A three-dimensional dynamical system with phase space R2 × S1

can be associated with (3). In [Sterpu et al., 2000], for the unforced case g = 0, the
existence of a unique limit cycle for the dynamical system associated with the system,{ .

x1= x2,
.
x2= −a

ε x1 + 1
ε

(
x2 − x3

2
3

)
,

(4)

for the case a · ε > 0, is proved.
Therefore, the system (3) without periodic forcing (g = 0) exhibits a natural

oscillation and we consider a sinusoidal forcing imposed on it (g 6= 0). Fixing the
parameters ε, a, and g, as ω increases away from zero, the interaction between the
frequencies of these two oscillations determines the resulting dynamics. Periodic as
well as chaotic motion may occur.

Figure 1. Bifurcation diagram for parameters ε=0.1250, a=0.5,
g=0.6666 and 2.7045 ≤ ω ≤ 2.9250.

The lack of equilibria and the great number of parameters make the study of such
a system difficult. Numerical methods often provide a useful and sometimes the only
tool for study.

In this paper the aim of the numerical analysis is to establish ω intervals for which
specific behaviour concerning the attractors of the system (3) could be expected. By
logistic reasons we investigated a region in the four-dimensional parameter space (ε,
a, g, ω) given by 0 < ε ≤ 1, 0 < a ≤ 1, 0 < g ≤ 1 and 2.7045 ≤ ω ≤ 2.9250. ”Canard”
bifurcations in the system (3) were studied in [Diener, 1979, 1] for the case ω = 1 and
g = 0.6666. This is the reason why we choose this value for the g parameter.

The diagnostics used to establish structural changes of the system (3) involve rep-
resentations of solutions in the phase space R2 × S1, time series, Poincaré sections
at intervals of forcing period 2π

ω , bifurcation diagrams with ω − x2 coordinates, eval-
uations of the eigenvalues of the linearized Poincaré map-matrix, evaluations of the
Lyapunov exponents. All the numerical computations were carried out through the
application of a variable step-size four order Runge-Kutta method [Băzăvan, 1999].
The 3D-representation uses a centre projection [Băzăvan, 1994].
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The bifurcation diagram plotted in Fig. 1, for the case ε = 0.1250, a = 0.5,
g = 0.6666 and ω in the interval 2.7045 ≤ ω ≤ 2.9250 shows the typical system
behaviour which will be interpreted in the next sections.

The asymptotic results for g � 1 in (2), presented in Sec. 2, justify some results
outlined in Secs. 4 and 5. The mathematical model used in our numerical study is
presented in Sec. 3. The Sec. 4 is concerned with the numerical study of alternating
periodic and chaotic attractors in the behaviour of the system (3). Aspects concerning
metamorphoses of basin boundaries of co-existing periodic attractors are presented in
Sec. 5.

2. Asymptotic results for g � 1

Here we put the nonautonomous system (2) in a form to which we can apply
the averaging Theorem 4.1.1, [Guckenheimer and Holmes, 1983]. Then, from the
dynamics of the averaged system we deduce results concerning the local dynamics of
(2).

Figure 2. Stable (s) and unstable (u) limit cycles for (2) for param-
eter values ε=0.1250, a=0.5, g=0.6666 and ω=2.7802.

First, we prove the following proposition.

Proposition 2.1. [Băzăvan, 2001] The averaged system associated with the periodi-
cally forced system (2) for g � 1 is the unforced system (4).

Proof Performing the time change τ = t/g and introducing the notation x̂1 (τ, g) =
x1 (gτ, g), x̂2 (τ, g) = x2 (gτ, g) the system (2) reads{

dx̂1
dτ = gx̂1,
dx̂2
dτ = g

(
−a

ε x̂1 + 1
ε x̂2 − 1

3ε x̂2
2

)
+ g2 sinωτg.

(5)

According to Guckenheimer [1983], the autonomous averaged system associated with
(5) is {

dx̃1
dτ = gx̃1,
dx̃2
dτ = g

(
−a

ε x̃1 + 1
ε x̃2 − 1

3ε x̃2
2

)
.

(6)

Next, performing in (6) the inverse time change t = τ · g, we obtain the system (4).
In [Sterpu et al., 2000] we proved that, for a > 0, ε > 0 the unforced system (4)

possesses a unique hyperbolic equilibrium point x = 0, which is a repulsor, and a
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unique hyperbolic attractive limit cycle Γ0 surrounding the equilibrium. Based on
Proposition 2.1 and Theorem 4.1.1 [Guckenheimer and Holmes, 1983], we obtain the
following results.

Proposition 2.2. [4] (i) There exists g0 > 0 such that for all 0 < g ≤ g0, the system
(2) possesses a unique unstable hyperbolic periodic orbit Γg (τ) = 0+0 (g). (ii) There
exists g1 > 0 such that for all 0 < g ≤ g1, the system (3) has a hyperbolic invariant
torus Tg near Γ0 × S1.

Numerical computations showed that, for the parameter values chosen by us, such
an unstable orbit exists indeed. In Fig. 2 the unstable periodic orbit is plotted
together with the two co-existing stable orbits for the parameter values ε = 0.1250,
a = 0.5, g = 0.6666, ω = 2.7802. For g = 0.6666 and various ω values, the existence
of invariant torus is numerically proved by the 3D-representations from Secs. 4 and
5.

3. The mathematical model

In order to present the mathematical model used in the numerical study from Secs.
4 and 5, we shortly write (3) in the form

.
x= f (x) , (7)

where f is defined on the R2 × S1 cylinder.
We define the Poincaré map as follows. Let∑

=
{

(x1, x2, x3) ∈ R2 × S1, x3 = 0mod
2π

ω

}
be a surface of section [Băzăvan, 2001], which is transversally crossed by the orbits of
(7). The Poincaré map P :

∑
→

∑
is defined by

P (x0) = x (t,x0) =
∫ 2π

ω

0

f (x (t,x0)) dt, (8)

where x0 ∈
∑

and x(t, x0) is the solution of the Cauchy problem x(0) = x0 for (7).
We denote by Pn the n-times iterated map.

Let ξ(t, x0) be a periodic solution of (7) with period T = n · 2π
ω , lying on a closed

orbit and consider the map P of the initial point x0. Then, to this closed orbit
an n-periodic orbit of P corresponds. Numerically, the period T (i.e. n from the
expression of T ) can be determined by integrating Eq. (7) with the initial condition
x0 and sampling the orbit points xk = P (xk−1), k ≥ 1 at discrete times tk = k · 2π

ω ,
until P k(x0) = x0. Then, n = k [Băzăvan, 2001].

The stability discussion of the periodic orbit ξ(t, x0) is reduced to the stability
discussion of the fixed point x0 of Pn, i.e. Pn(x0) = x0. The linear stability of
the n-periodic orbit of P is determined from the linearized-map matrix DPn of Pn.
Using the Floqet theory [Reithmeier, 1991], [Glendinning, 1995] the matrix DPn of
Pn can be obtained by integrating the linearized system (7) for a small perturbation
y ∈ R2 × S1. The time history of the initial perturbation y(0) = y0 is described by
the linearized ODE around the periodic solution ξ.

The stability of the periodic solution ξ(t, x0) is determined by the eigenvalues of
the matrix DPn [Reithmeier, 1991], [Glendinning, 1995], [Kuznetsov, 1998]. We note
that one of the eigenvalues of this matrix always equals 1 [Glendinning, 1995], and
that the remained two eigenvalues, also called the Poincaré map multipliers, influence
the stability. We denote these eigenvalues by λ1 and λ2.
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4. Bifurcations. Periodic and chaotic attractors

Figure 3. The largest Lyapunov exponent for (3), for parameter
values ε=0.1250, a=0.5, g=0.6666 and 2.7045 ≤ ω ≤ 2.9250.

Figure 4. Bifurcation diagram for parameter values ε=0.1250,
a=0.5, g=0.6666 and 2.7045 ≤ ω ≤ 2.7120.

In this section, by varying the parameter ω and keeping constant ε, a and g we study
bifurcations associated with changes of stability in the periodically forced Rayleigh
system (3).

The multipliers of the Poincaré map Pn, computed for ε = 0.1250, a = 0.5,
g = 0.6666 and various ω values in the interval 2.7045 ≤ ω ≤ 2.9250, give infor-
mation about the stability changes of an n-periodic orbit of (3) for which the map P
is associated (see Sec. 3). Thus, the periodic orbit is stable only if |λ1,2| < 1, [Rei-
thmeier, 1991], [Glendinning, 1995], [Kuznetsov, 1998]. If, for a critical ω value, the
multipliers satisfy λ1 = −1, −1 < λ2 < 0, [Reithmeier, 1991], [Glendinning, 1995],
[Kuznetsov, 1998], the periodic orbit loses its stability through a period-doubling
bifurcation. The motion becomes chaotic if, monotonically increasing ω, for suffi-
ciently values, this process is repeated. This period doubling sequence leading to a
chaotic state was reported in [Mettin, et al., 1993], [Barnes and Grimshaw, 1997] and
[Sang-Yoon and Bumbi, 1998] for VP and BVP oscillators and inverted pendulum
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respectively. We also note that the reverse process can occur for the case of an un-
stable orbit. That is, when a multiplier λ of an unstable orbit increases through −1
the orbit becomes stable via period-doubling bifurcations.

As Fig. 1 shows, the system (3) exhibits the mentioned period-doubling sequences.
Obvious chaotic regions interrupt periodic windows and then, chaotic attractors re-
place periodic attractors due to a destabilisation process through a period-doubling
sequence. The reverse process, the stabilisation one, determines that periodic attrac-
tors replace chaotic attractors [Băzăvan, 2001].

Figure 5. Closed trajectories, time series and Poincaré sections for
system (3).

In order to ascertain these alternating regular and chaotic regions, the largest Lya-
punov exponent measuring the convergence or divergence of neighbouring trajectories
[Ott, 1993], [Barnes and Grimshaw, 1997] was plotted in Fig. 3 for the same param-
eter values as in Fig. 1. Negative values of this exponent correspond to periodic
windows and positive values to chaotic regions.

Figure 6. The points Xn+5 = P 5 (Xn) for parameter values (a)
ω=2.7225, (b) ω=2.7230, (c) ω=2.7235, (d) ω=2.7240.

In Fig. 4, which is a magnification of the bifurcation diagram in Fig. 1, for
2.7045 ≤ ω ≤ 2.7120, the typical route to chaotic state through a period-doubling
sequence is more clearly seen. For 2.7045 ≤ ω < 2.7083 two period-3 attractors
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are present. The simultaneous presence of two attractors and the ”jump” of the
trajectories from one attractor to the other are characteristic to this system and is
analysed in Sec. 5. Phase space with one of these period-3 solutions is represented on
an invariant torus in Fig. 5a for ω = 2.7045. For the solution in Fig. 5a, corresponding
time series and Poincaré section with the three intersecting points are plotted in Figs.
5b-c. At ω ≈ 2.7083 the function curves split and the two solutions double their
period as shows Fig. 4. The doubled periodic orbit, corresponding to those from Fig.
5a, is represented in Fig. 5d for ω = 2.7090. From the time series and the Poincaré
section, plotted in Figs. 5e-f, the period six of the limit cycle is obvious.

The first period-doubling bifurcation at ω ≈ 2.7083 is followed by many subsequent
period-doubling bifurcations. The length of the intervals of ω between these bifur-
cations decreases. Using magnifications of bifurcation diagram in Fig. 4, smaller ω
step (i.e. 10−6 ) and computing the λ1,2 multipliers, for this period-doubling cascade
the first five terms of the Feigenbaum progression ωi−ωi−1

ωi+1−ωi
, [Kuznetsov, 1998], were

estimated : 5.25, 5.18, 4.95, 4.81 and 4.72 [Băzăvan, 2001]. The convergence to the
universal constant 4.6692 of this decreasing sequence is followed.

For 2.7106 < ω < 2.7240 the behaviour of the system is chaotic. The chaotic
attractor, corresponding time series and Poincaré section are represented in Figs. 5g-
i for ω = 2.7120. At this ω value the largest Lyapunov exponent was computed to be
0.1812 [Băzăvan, 2001] providing the chaotic state of the system. As Fig. 1 shows,
for ω ≈ 2.7240, the chaotic attractor is replaced by a period-5 attractor. In order to
illustrate this change from a chaotic attractor to a periodic attractor, the sequences
of x2 coordinates of the points Xn+5 = P 5 (Xn) are plotted in Figs. 6a-d [Băzăvan,
2001].

For ω = 2.7225 the diagonal xn+5
2 = xn

2 is intersected in three separate locations.
Here xn

2 represents the x2 coordinate of the point Xn. A channel between the di-
agonal and the return map curve is observed. As ω increases, the return map curve
approaches the diagonal and at ω = 2.7240 it is tangent in five distinct locations. A
saddle-node bifurcation is encountered. The chaotic attractor is abruptly destroyed
and replaced by a period-5 attractor. Note that, as the ω parameter increases, the
density of the return points grows in the regions of the future attractor and diminishes
in the other ones. This measure of the return points changes continuously with the
continuous variation in the control parameter.

5. Metamorphoses of basin boundaries

It is known that, dynamical systems associated with nonlinear ODEs may possess
more than one periodic or/and chaotic attractors who exist simultaneously [Barnes
and Grimshaw, 1997]. Thus, for particular parameter combinations the response of
the dynamical system is sensitively dependent on the initial conditions and the result-
ing motion could be on any of these attractors. In addition, separatrices between the
attraction basins may be nonsmooth curves (i.e. fractal basin boundaries). In such
cases, predictability becomes impossible because small variations in the initial condi-
tions may determine different dynamics on distinct attractors [Barnes and Grimshaw,
1997].

Basin boundaries metamorphoses, reported in [Grebogi et al., 1986], [Barnes and
Grimshaw, 1997], can be also observed in the case of dynamical system associated with
(3) [Băzăvan, 2001]. In the bifurcation diagram in Fig. 8, two period-2 attractors,
denoted by A1 and A2, are present for 2.7680 < ω < 2.8382. Both limit cycles
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Figure 7. Closed trajectories, time series and Poincaré sections for
parameters ε=0.1250, a=0.5, g=0.6666 and ω=2.7802 and initial
points (a)-(c) (1,0,0) and (0.4577,0,0) ; (d)-(f) (1,1,0) and
(0.5231,0,0).

Figure 8. Bifurcation diagram for (3) for parameters ε=0.1250,
a=0.5, g=0.6666 and ω=2.7802 and initial points (a)(1,0,0) ; (b)
(1,1,0).

situated on invariant tori, corresponding time series and Poincaré section points are
plotted in Figs. 7a-c and 7d-f for ω = 2.7802.

More precisely, we started with ω = 2.7680. For a small (of order 10−4) increase
in ω, the trajectory ”jumps” from A2 to A1 and conversely, from A1 to A2. This
phenomenon is observed in Figs. 8a-b where Poincaré section points of trajectory
starting from (1, 0, 0) and (1, 1, 0), respectively, are represented in the ω − x2 plane.
For the interval 2.6820 ≤ ω < 2.7712 the trajectory starting from (1, 0, 0) is on the
attractor A2 and at ω ≈ 2.7712 it ”jumps” on A1.

The reverse jump is observed at ω ≈ 2.7764. Note that, the values of ω for these
”jumps” are very much sensitive on the initial conditions. See Figs. 8a-b for the
difference. Also, as observed in Figs. 7a-b and 7d-e, trajectories starting at the closed
points (0.4577, 0, 0) and (0.5231, 0, 0) are on the attractor A1 and A2 respectively.

The ”jumping” phenomenon follows from a discontinuous structural change of basin
boundaries associated with the attractors A1 and A2.
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Figure 9. Basins of attraction for two limit cycles of (3), for pa-
rameters values (a) ω=2.7710, (b) ω=2.7720, (c) ω=2.7770, (d)
ω=2.7800.

In Figs. 9a-d a sequence of diagrams of the basins of attraction associated with
A1 and A2 are plotted for ω = 2.7710, ω = 2.7720, ω = 2.7770 and ω = 2.7800.
In each case the black circles represent the basin of attraction for A1 and the white
circles the basin of attraction for A2. Significant changes of the basin boundaries are
observed when ω increases. The behavior of the system is periodic although the basin
boundaries seem to be fractal in nature. This fact is also outlined in [Grebogi et al.,
1986] in the case of a forced damped pendulum.

Conclusions

The numerical study in this paper shows that the periodically forced Rayleigh
system possesses a lot of phenomena encountered in many other nonlinear systems.
Some of them as period-doubling and saddle-node bifurcations, alternating periodic
and chaotic attractors, simultaneous presence of more than one periodic attractors
and metamorphoses of their basin boundaries were outlined here. In particular, the
existence of standard attractors with fractal boundaries is emphasized.

References

[1] B. Barnes and R. Grimshaw [1997], Numerical studies of the periodically forced Bonhoeffer
van der Pol oscillator, Int. J. Bifurcation and Chaos, 7(12), pp. 2653–2689.
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