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Fuzzy ideals of K-algebras
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Abstract. The fuzzy setting of an ideal in a K-algebra is presented and some properties are
investigated. Properties of homomorphic image and inverse image of fuzzy ideals of K-algebras
are discussed. A characterization theorem of fuzzy fully invariant is given. Fuzzy relations on
K-algebras are discussed. A characterization theorem of fuzzy ideals in terms of the strongest
fuzzy relations on K-algebras is also studied.
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1. Introduction

A K-algebra (G, ·,¯, e), introduced by Dar and Akram [4], is an algebra built on a
group (G, ·, e) with identity e and adjoined with an induced binary operation ¯ on G.
It is non-commutative and non-associative with a right identity e. It is proved in [2, 4]
that a K-algebra on an abelian group is equivalent to a p-semisimple BCI-algebra.
For the convenience of study, authors renamed a K-algebra built on a group G as a
K(G)-algebra [5]. The K(G)-algebra has been characterized by using its left and right
mappings in [5]. Recently, Dar and Akram [7] have further proved that the class of
K(G)-algebras is a generalized class of B-algebras [12] when (G, ·, e) is a non-abelian
group, and they also proved that the K(G)-algebra is a generalized class of the class
of BCH/BCI/BCK-algebras [8, 9, 10] when (G, ·, e) is an abelian group.
After the introduction of fuzzy sets by Zadeh [14], the fuzzy set theory developed
by Zadeh himself and others in many directions and found applications in various
areas of sciences. The study of fuzzy algebraic structures started with introduction
of the concept of the fuzzy subgroup of a group in the pioneering paper of Rosenfeld
[13]. Since then many researchers have been engaged in extending the concepts and
results of abstract algebra to broader framework of the fuzzy setting. Akram et al.
introduced the notions of subalgebras and fuzzy (maximal) ideals of K-algebras in
[1] and further studied by Jun et al. in [11]. As a continuation of [1, 11], further
some properties of the fuzzy ideals in a K-algebra are investigated. Properties of
homomorphic image and inverse image of fuzzy ideals of K-algebras are discussed.
A characterization theorem of fuzzy fully invariant is given. Fuzzy relations on a
K-algebra are also discussed.
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2. Preliminaries

In this section we review some elementary aspects that are necessary for this paper:
Let (G, ·, e) be a group with the identity e such that x2 6= e for some x(6= e) ∈ G.
A K-algebra built on G (briefly, K-algebra) is a structure K = (G, ·,¯, e), where “¯”
is a binary operation on G which is induced from the operation “ ·”, that satisfies the
following:
(k1) (∀a, x, y ∈ G) ((a¯ x)¯ (a¯ y) = (a¯ (y−1 ¯ x−1))¯ a),
(k2) (∀a, x ∈ G) (a¯ (a¯ x) = (a¯ x−1)¯ a),
(k3) (∀a ∈ G) (a¯ a = e),
(k4) (∀a ∈ G) (a¯ e = a),
(k5) (∀a ∈ G) (e¯ a = a−1).
If G is abelian, then conditions (k1) and (k2) are replaced by:
(k1′) (∀a, x, y ∈ G) ((a¯ x)¯ (a¯ y) = y ¯ x),
(k2′) (∀a, x ∈ G) (a¯ (a¯ x) = x),
respectively. A nonempty subset H of a K-algebra K is called a subalgebra of K if it
satisfies:
• (∀a, b ∈ H) (a¯ b ∈ H).

Note that every subalgebra of a K-algebra K contains the identity e of the group
(G, ·). A mapping f : K1 → K2 of K-algebras is called a homomorphism if f(x¯ y) =
f(x) ¯ f(y) for all x, y ∈ K1. Note that if f is a homomorphism, then f(e) = e. A
nonempty subset I of a K-algebra K is called an ideal of K if it satisfies:
(i) e ∈ I,
(ii) (∀x, y ∈ G) (x¯ y ∈ I, y ¯ (y ¯ x) ∈ I ⇒ x ∈ I).
Let µ be a fuzzy set on G, i.e., a map µ : G → [0, 1]. A fuzzy set µ in a K-algebra K
is called a fuzzy subalgebra of K if it satisfies:
• (∀x, y ∈ G) (µ(x¯ y) ≥ min{µ(x), µ(y)}).

Note that every fuzzy subalgebra µ of a K-algebra K satisfies the following inequality:

(∀x ∈ G) (µ(e) ≥ µ(x)).

3. Fuzzy ideals of K-algebra

Definition 3.1. A fuzzy set µ in a K-algebra K is called a fuzzy ideal of K if it
satisfies:
(i) (∀x ∈ G) (µ(e) ≥ µ(x)),
(ii) (∀x, y ∈ G) (µ(x) ≥ min{µ(x¯ y), µ(y ¯ (y ¯ x))}).
Example 3.1. Consider the K-algebra K = (G, ·,¯, e) on the cyclic group G =
{0, a, b, c, d, f}, where 0 = e, a = a, b = a2, c = a3, d = a4, f = a5 and ¯ is given by
the following Cayley’s table:

¯ 0 a b c d f
0 0 f d c b a
a a 0 f d c b
b b a 0 f d c
c c b a 0 f d
d d c b a 0 f
f f d c b a 0
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Let µ be a fuzzy set in G defined by µ(e) = t1 and µ(x) = t2 for all x 6= 0 in G, where
t1 > t2 in [0, 1]. Then, by routine verification, it is easy to see that µ is a fuzzy ideal
of K.

The following propositions are obvious.

Proposition 3.1. [1] Let µ be a fuzzy set in a K-algebra K. Then µ is a fuzzy ideal
of K if and only if the set U(µ; t) := {x ∈ G | µ(x) ≥ t}, t ∈ [0, 1], is an ideal of K
when it is nonempty.

Proposition 3.2. Let µ be a fuzzy ideal of a K-algebra K and let x ∈ K. Then
µ(x) = t if and only if x ∈ U(µ; t) and x /∈ U(µ; s) for all s > t.

Proposition 3.3. If µ and λ are fuzzy ideals of K. Then µ∩ λ is also a fuzzy ideals
of K.
Definition 3.2. For a family of fuzzy sets {µi|i ∈ I} in a K-algebra K, define the
join

∨
i∈I µi and meet

∧
i∈I µi of {µi|i ∈ I} as follows:

(
∨

i∈I

µi)(x) = sup{µi(x)|i ∈ I},

(
∧

i∈I

µi)(x) = inf{µi(x)|i ∈ I}

for each x ∈ G.

Theorem 3.1. The family of fuzzy ideals of K is a completely distributive lattice with
respect to the meet and the join.

Proof. Let {µi|i ∈ I} be a family of fuzzy ideals of K. Since [0, 1] is a completely
distributive lattice with respect to the usual ordering in [0, 1], it is sufficient to show
that

∨
i∈I µi and

∧
i∈I µi are fuzzy ideals of K. For any x ∈ K,

(
∨

i∈I

µi)(e) = sup
i∈I

µi(e) ≥ sup
i∈I

µi(x) = (
∨

i∈I

µi)(x),

and
(
∧

i∈I

µi)(e) = inf
i∈I

µi(e) ≥ inf
i∈I

µi(x) = (
∧

i∈I

µi)(x).

Let x, y ∈ K. Then
(
∨

µi)(x) = sup{µi(x)|i ∈ I}
≥ sup{max(µi(x¯ y), µi(y ¯ (y ¯ x)))|i ∈ I}
= max(sup{µi(x¯ y)|i ∈ I}, sup{µi(y ¯ (y ¯ x))|i ∈ I})
= max((

∨
µi)(x¯ y), (

∨
µi)(y ¯ (y ¯ x))),

(
∧

µi)(x) = inf{µi(x)|i ∈ I}
≥ inf{min(µi(x¯ y), µi(y ¯ (y ¯ x)))|i ∈ I}
= min(inf{µi(x¯ y)|i ∈ I}, inf{µi(y ¯ (y ¯ x))|i ∈ I})
= min((

∧
µi)(x¯ y), (

∧
µi)(y ¯ (y ¯ x))).

Hence
∨
∈I µi and

∧
i∈I µi are fuzzy ideals of K. ¤

Theorem 3.2. If µ is a fuzzy ideal of a K-algebra K, then for all x ∈ G

µ(x) = sup{t ∈ [0, 1] | x ∈ U(µ; t)}.



14 M. AKRAM AND K.H. DAR

Proof. Let s := sup{t ∈ [0, 1] | x ∈ U(µ; t)}, and let ε > 0. Then s − ε < t for some
t ∈ [0, 1] such that x ∈ U(µ; t), and so s− ε < µ(x). Since ε is an arbitrary, it follows
that s ≤ µ(x). Now let µ(x) = v, then x ∈ U(µ; v) and so v ∈ {t ∈ [0, 1] | x ∈ U(µ; t)}.
Thus µ(x) = v ≤ sup{t ∈ [0, 1] | x ∈ U(µ; t)} = s. Hence µ(x) = s. This completes
the proof. ¤

We now consider the converse of Theorem 3.2.

Theorem 3.3. Let Ω be a nonempty finite subset of [0, 1]. Let {Gw | w ∈ Ω} be a
collection of ideals of a K-algebra K such that
(i) G =

⋃
w∈Ω Gw,

(ii) α > β if and only if Gα ⊂ Gβ for all α, β ∈ Ω.
Then a fuzzy set µ in G defined by

µ(x) = sup{w ∈ Ω | x ∈ Gw}
is a fuzzy ideal of K.
Proof. In view of Proposition 3.1, it is sufficient to show that every nonempty level
set U(µ; α) is an ideal of K. Assume U(µ; α) 6= α for some α ∈ [0; 1]. Then the
following cases arise:

1. α = sup{β ∈ Ω | β < α} = sup{β ∈ Ω | Gα ⊂ Gβ},
2. α 6= sup{β ∈ Ω | β < α} = sup{β ∈ Ω | Gα ⊂ Gβ}.

Case(1) implies that

x ∈ U(µ;α) ⇔ x ∈ Gw ∀ w < α

⇔ x ∈
⋂

w<α

Gw.

Hence U(µ; α) =
⋂

w<α Gw, which is an ideal of K.
For case (2), there exists ε > 0 such that (α − ε, α)

⋂
Ω = ∅. We claim that in this

case U(µ;α) =
⋃

β≥α Gβ . Indeed, if x ∈ ⋃
β≥α Gβ , then x ∈ Gβ for some β ≥ α,

which gives µ(x) ≥ β ≥ α. Thus x ∈ U(µ; α), i.e.,
⋃

β≥α Gβ ⊆ U(µ;α). On the other
hand, if x /∈ ⋃

β≥α Gβ , then x /∈ Gβ for all β ≥ α, which implies that x /∈ Gβ for
all β > α − ε, i.e., if x ∈ Gβ then β ≤ α − ε. Thus µ(x) ≤ α − ε. So x /∈ U(µ;α).
Thus U(µ; α) ⊆ ⋃

β≥α Gβ . Hence U(µ;α) =
⋃

β≥α Gβ , which is an ideal of K. This
completes the proof. ¤

Theorem 3.4. Let f : K1 → K2 be an epimorphism of K-algebras. If ν is a fuzzy
ideal of K2 and µ is the pre-image of ν under f . Then µ is a fuzzy ideal of K1.

Proof. It is easy to see that µ(e) ≥ µ(x) for all x ∈ K1. For any x, y ∈ K1,

µ(x) = ν(f(x)) ≥ min(ν(f(x¯ y)), ν(f(y ¯ (y ¯ x))))
= min(µ(x¯ y), µ(y ¯ (y ¯ x))).

Hence µ is a fuzzy ideal of K1. ¤

Definition 3.3. Let K1 and K2 be two K-algebras and let f be a function from K1

into K2. If ν is a fuzzy set in K2, then the preimage of ν under f is the fuzzy set in
K1 defined by

f−1(ν)(x) = ν(f(x)) ∀ x ∈ G.

Theorem 3.5. Let f : K1 → K2 be an epimorphism of K-algebras. If ν is a fuzzy
ideal in K2, then f−1(ν) is a fuzzy ideal in K1.
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Proof. It is easy to see that f−1(ν)(e) ≥ f−1(ν)(x) for all x ∈ K. Let x, y ∈ K, then
f−1(ν)(x) = ν(f(x))

≥ min(ν(f(x¯ y), f(y ¯ (y ¯ x)))
= min(ν(f(x¯ y)), ν(f(y ¯ (y ¯ x))))
= min(f−1(ν)(x¯ y), f−1(ν)(y ¯ (y ¯ x))).

Hence f−1(ν) is a fuzzy ideal in K1. ¤

Definition 3.4. Let a mapping f : K1 → K2 from K1 into K2 of K-algebras and
let µ be a fuzzy set of K2. The map µf is called the pre-image of µ under f , if
µf (x) = µ(f(x)), for all x ∈ G.

Theorem 3.6. Let f : K1 → K2 be an epimorphism of K-algebras. If µ is a fuzzy
ideal of K2, then µf is a fuzzy ideal of K1.

Proof. For any x ∈ K, we have µf (e1) = µ(f(e1)) = µ(e2) ≥ µ(f(x)) = µf (x). For
any x, y ∈ K, since µ is a fuzzy ideal of K1,

µf (x) = µ(f(x))
≥ min{µ(f(x¯ y)), µ(f(y)¯ f(y ¯ x))}
= min{µ(f((x¯ y)), µ(f(y ¯ (y ¯ x)))}
= min{µf ((x¯ y)), µf (y ¯ (y ¯ x))}

proving that µf is a fuzzy ideal of K1. ¤

Theorem 3.7. Let f : K1 → K2 be an epimorphism of K-algebras. If µf is a fuzzy
ideal of K2, then µ is a fuzzy ideal of K1.

Proof. Since there exists x ∈ K1 such that y = f(x) for any y ∈ K2, µ(y) = µ(f(x)) =
µf (x) ≤ µf (e1) = µ(f(e1)) = µ(e2).
For any x, y ∈ K2, there exist a, b, c ∈ K1 such that x = f(a) and y = f(b). It follows
that

µ(x) = µ(f(a))

= µf (a)

≥ min{µf ((a¯ b)), µf (b¯ (b¯ a))}
= min{µ(f(a¯ b)), µ(f(b¯ (b¯ a)))}
= min{µ((f(a)¯ f(b))), µ(f(b)¯ (f(b)¯ f(a)))}
= min{µ((x¯ y)), µ(y ¯ (y ¯ x))}

proving that µ is a fuzzy ideal of K1. ¤

Definition 3.5. An ideal H of K-algebra is said to be fully invariant if f(H) ⊆ H,
for all f ∈ End(K), where End(K) is the set of all endomorphisms of a K-algebra K.
A fuzzy ideal µ of a K-algebra K is called a fuzzy fully invariant if µf (x) ≤ µ(x) for
all x ∈ G and f ∈ End(K).

Theorem 3.8. A fuzzy ideal is fully invariant if and only if each its level set is a
fully invariant ideal.
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Proof. Suppose that µ is fuzzy fully invariant and let t ∈ Im(µ), f ∈ End(K) and
x ∈ U(µ, t). Then

µf (x) ≤ µ(x) ≥ t

⇒ µ(f(x)) ≥ t

⇒ f(x) ∈ U(µ; t).

Thus f(U(µ; t)) ⊆ U(µ; t), i.e., U(µ; t) is fully invariant.
Conversely, suppose that each level ideal of µ is fully invariant and let x ∈ G, f ∈
End(K) and µ(x) = t. Then, by virtue of Proposition 3.2 , x ∈ U(µ; t) and x /∈ U(µ; s)
, for all s > t. It follows from the assumption that f(x) ∈ f(U(µ; t)) ≤ U(µ; t), so
that µf (x) ≤ µ(x) ≥ t. Let s = µf (x) and assume that s > t. Then f(x) ∈ U(µ; s) =
f(U(µ; s)), which implies from the injectivity of f that x ∈ U(µ; s), a contradiction.
Hence µf (x) = µ(f(x)) ≤ µ(x) = t showing that µ is fuzzy fully invariant. ¤

Definition 3.6. Let µ be a fuzzy ideal of K-algebra K and x ∈ K. The fuzzy subset
µ∗x of K defined by

µ∗x(a) = µ(a¯ x) ∀a ∈ K
is termed as the fuzzy coset determined by x and µ.

Proposition 3.4. Let µ be a fuzzy ideal of K. Then K/µ, the set of all fuzzy cosets
of µ in K, is a K-algebra under the following operation:

µ∗x ¯ µ∗y = µ∗x¯y ∀x, y ∈ K.

Proof. Straightforward. ¤

Theorem 3.9. Let f : K1 → K2 be homomorphism of K-algebras and let µ be fuzzy
ideal of K1 and λ of K2 such that f(µ) ⊆ λ, there is a homomorphism of K-algebras
f∗ : K1/µ → K2/λ where f∗(µ∗x) = λ∗f(x) such that the following diagram commutes.

K1
f //

²²

K2

²²
K1
µ f∗

// K2
λ

.

Proof. Let µ∗x = µ∗y then µ(x¯ y) = µ(e). Thus

λ(f(x)¯ f(y)) = λ(f(x¯ y)) = f−1(λ)(x¯ y)
≥ µ(x¯ y) = µ(e).

That is λ(f(x)) = λ(f(y)). Hence f∗ is well-defined. Finally, f∗ is homomorphism
because

f∗(µ∗x ¯ µ∗y) = f∗(µ∗x¯y) = λ∗f(x)¯f(y)

= λ∗f(x) ¯ λ∗f(y) = f∗(µ∗x)¯ f∗(λ∗f(y)).

This completes the proof. ¤
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4. Cartesian product of fuzzy ideals

Definition 4.1. [3] A fuzzy relation on any set G is a fuzzy set µ : G×G → [0, 1].

Definition 4.2. [3] If µ is a fuzzy relation on a set G and λ is a fuzzy set in G, then
µ is a fuzzy relation on λ if

µ(x, y) ≤ min{λ(x), λ(y)} ∀ x, y G.

Definition 4.3. [3] Let µ and λ be the fuzzy sets in a set G. The cartesian product
of µ and λ is defined by (µ× λ)(x, y) = min{µ(x), λ(x)}, ∀ x, y ∈ G.

Lemma 4.1. [3] Let µ and λ be fuzzy sets in a set G. Then
(i) µ× λ is a fuzzy relation on G,
(ii) U(µ× λ; t) = U(µ; t)× U(λ; t) for all t ∈ [0, 1].

Definition 4.4. [3] Let λ be a fuzzy set in a set G, the strongest fuzzy relation on
G that is fuzzy relation on λ is µλ, given by µλ(x, y) = min{λ(x), λ(y)} for all x, y
∈ G.

Lemma 4.2. [3] For a given fuzzy set λ in a set G, let µλ be the strongest fuzzy
relation on G. Then U(µλ; t) = U(λ; t)× U(λ; t) for t ∈ [0, 1].

Proposition 4.1. For a given fuzzy set λ in a set G, let µλ be the strongest fuzzy
relation on G. If µλ is a fuzzy ideal of K ×K, then λ(x) ≤ λ(e) for all x ∈ K.
Proof. If µλ is a fuzzy ideal of K × K, then µλ(x, x) ≤ µλ(e, e) for all x ∈ K. This
means that
min{λ(x), λ(x)} ≤ min{λ(e), λ(e)}, which implies that λ(x) ≤ λ(e). ¤

Proposition 4.2. If µλ is a fuzzy ideal of a K-algebra K, then the level ideals of µλ

are given by U(µλ; t) = U(λ; t)× U(λ; t) for all t ∈ [0, 1].

Proof. Follows immediately from Lemma 4.2. ¤

Theorem 4.1. If µ and λ are fuzzy ideals of a K-algebra K. Then µ× λ is a fuzzy
ideal of K ×K.
Proof. For any (x, y) ∈ K ×K, we have

(µ× λ)(e, e) = min{µ(e), λ(e)} ≥ min{µ(x), λ(y)} = (µ× λ)(x, y).

Let x = (x1, x2) and y = (y1, y2) ∈ K ×K. Then
(µ× λ)(x) = (µ× λ)((x1, x2)) = min{µ(x1), λ(x2)}

≥ min{min{µ(x1 ¯ y1), µ(y1 ¯ (y1 ¯ x1))}
, min{λ(x2 ¯ y2), λ(y2 ¯ (y2 ¯ x2))}}
= min{min{µ(x1 ¯ y1), λ(x2 ¯ y2)}
, min{µ(y1 ¯ (y1 ¯ x1)), λ(y2 ¯ (y2 ¯ x2))}}
= min{(µ× λ)((x1 ¯ y1, x2 ¯ y2))
, (µ× λ)((y1 ¯ (y1 ¯ x1)), y2 ¯ (y2 ¯ x2))}
= min{(µ× λ)((x1, x2)¯ (y1, y2))
, (µ× λ)((y1, y2)¯ ((y1, y2)¯ (x1, x2)))}
= min{(µ× λ)(x¯ y), (µ× λ)(y ¯ (y ¯ x))}.

Hence µ× λ is a fuzzy K-ideal of K ×K. ¤
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The converse of Theorem 4.1 may not be true as seen in the following example.

Example 4.1. Let K be a K-algebra and let s, t ∈ [0, 1) such that s ≤ t. Define
fuzzy sets µ1 and µ2 in K by µ1(x) = s and

µ2(x) =
{

t if x = 0,
1 otherwise,

for all x ∈ K, respectively.
If x 6= 0, then µ2(x) = 1, and thus

(µ1 × µ2)(x, x) = min(µ1(x), µ2(x)) = min(s, 1) = s.

If x = 0, then µ2(x) = t < 1, and thus

(µ1 × µ2)(x, x) = min(µ1(x), µ2(x)) = min(s, t) = s.

That is, µ1×µ2 is a constant function and so µ1×µ2 is a fuzzy ideal of K×K. Now
µ1 is a fuzzy ideal of K, but µ2 is not a fuzzy ideal of K since for x 6= 0, we have
µ2(0) = t < 1 = µ2(x).

Theorem 4.2. Let µ and λ be fuzzy sets in a K-algebra K such that µ×λ is a fuzzy
ideal of K ×K, then
(i) Either µ(e) ≥ µ(x) or λ(e) ≥ λ(x), ∀x ∈ K.
(ii) If µ(e) ≥ µ(x), ∀x ∈ K, then either λ(e) ≥ µ(x) or λ(e) ≥ λ(x).
(iii) If λ(e) ≥ λ(x), ∀x ∈ K, then either µ(e) ≥ µ(x) or µ(e) ≥ λ(x).
(iv) If µ(x) ≤ µ(e) for all x ∈ K and λ(y) > µ(e) for some y ∈ K, then µ is a fuzzy

ideal ideal of K.
(v) If λ(x) ≤ µ(e) for any x ∈ K, then λ is a fuzzy ideal of K.
Proof. (i) We prove it using reductio ad absurdum.

Assume µ(x) > µ(e) and λ(y) > λ(e), for some x, y ∈ K. Then
(µ× λ)(x, y) = min{µ(x), λ(y)} > min{µ(e), λ(e)} = (µ× λ)(e, e)

⇒ (µ× λ)(x, y) > (µ× λ)(e, e),∀ x, y ∈ K,

which is a contradiction. Hence (i) is proved.
(ii) Again, we use reduction to absurdity.

Assume λ(e) < µ(x) and λ(e) < λ(y), ∀ x, y ∈ K. Then,
(µ× λ)(e, e) = min{µ(e), λ(e)} = λ(e),

(µ× λ)(x, y) = min{µ(x), λ(y)} > λ(e) = (µ× λ)(e, e)
⇒ (µ× λ)(x, y) > (µ× λ)(e, e),

which is a contradiction. Hence (ii) is proved.
(iii) The proof is similar to (ii).
(iv) Assume that µ(x) ≤ µ(e) for all x ∈ K and λ(y) > µ(e) for some y ∈ K. Then

λ(e) ≥ λ(y) > µ(e). Since µ(e) ≥ µ(x) for all x ∈ K, it follows that λ(e) > µ(x)
for all x ∈ K. So

(µ× λ)(x, e) = min{µ(x), λ(x)} = µ(x) ∀ x ∈ K.

Thus

µ(x) = (µ× λ)(x, e) ≥ min{(µ× λ)(x¯ y, e), (µ× λ)(y ¯ (y ¯ x), e)}
= min{µ(x¯ y), µ(y ¯ (y ¯ x))}.

Hence µ is a fuzzy ideal of K.
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(v) If λ(x) ≤ µ(x) for any x ∈ K, then
λ(x) = min{µ(e), λ(x)} = (µ× λ)(e, x)

≥ min{(µ× λ)(e, x¯ y), (µ× λ)(e, y ¯ (y ¯ x))}
= min{min{µ(e), λ(x¯ y)}, min{µ(e), λ(y ¯ (y ¯ x))}}
= min{λ(x¯ y), λ(y ¯ (y ¯ x))}.

Hence λ is a fuzzy ideal of K.
¤

The counter example 4.1 shows: if µ× λ is a fuzzy ideal of K × K , then µ and λ
may not be both fuzzy ideals of K. Now we give the partial converse of the Theorem
4.1 is the following Theorem.

Theorem 4.3. If µ× λ is a fuzzy ideal of K×K, then either µ or λ is a fuzzy ideal
of K.
Proof. By Theorem 4.2(i), without loss of generality we assume that λ(e) ≥ λ(x), ∀
x ∈ K.
It follows from Theorem 4.2(iii) that either µ(e) ≥ µ(x) or µ(e) ≥ λ(x). If µ(e) ≥ λ(x),
∀ x ∈ K. Then

(µ× λ)(e, x) = min{µ(e), λ(x)} = λ(x) · · · (I)

Since µ× λ is a fuzzy ideal of K ×K,
(µ×λ)(x1, x2) ≥ min{(µ×λ)((x1, x2)¯(y1, y2)), (µ×λ)((y1, y2)¯((y1, y2)¯(x1, x2)))}.
It implies that

(µ×λ)(x1, x2) ≥ min{(µ×λ)((x1¯y1, x2¯y2)), (µ×λ)(y1¯(y1¯x1), y2¯(y2¯x2))}.
Putting x1=y1 = e gives

(µ× λ)(e, x2) ≥ min{(µ× λ)((e, x2 ¯ y2)), (µ× λ)(e, y2 ¯ (y2 ¯ x2))}.
Using equation(I), we have

λ(x2) ≥ min{λ(x2 ¯ y2), λ(y2 ¯ (y2 ¯ x2))}.
This proves that λ is a fuzzy ideal of K. The second part is similar. This completes

the proof. ¤
Theorem 4.4. Let λ be a fuzzy set in a K-algebra K and µλ be the strongest fuzzy
relation on K. Then λ is a fuzzy ideal of K if and only if µλ is a fuzzy ideal of K×K.
Proof. Suppose that λ is a fuzzy ideal of K. Then

µλ(e, e) = min{λ(e), λ(e)} ≥ min{λ(x), λ(y)} = µλ(x, y) ∀ (x, y) ∈ K ×K.

For any x = (x1, x2) and y = (y1, y2)∈ K ×K,
µλ(x) = µλ(x1, x2) = min{λ(x1), λ(x2)}

≥ min{min{λ(x1 ¯ y1), λ(y1 ¯ (y1 ¯ x1))}
, min{λ(x2 ¯ y2), λ(y2 ¯ (y2 ¯ x2))}}
= min{min{λ(x1 ¯ y1), λ(x2 ¯ y2)}
, min{λ(y1 ¯ (y1 ¯ x1)), λ(y2 ¯ (y2 ¯ x2))}}
= min{µλ(x1 ¯ y1, x2 ¯ y2), µλ(y1 ¯ (y1 ¯ x1), y2 ¯ (y2 ¯ x2))}
= min{µλ((x1, x2)¯ (y1, y2)), µλ((y1, y2)¯ ((y1, y2)¯ (x1, x2)))}
= min{µλ(x¯ y), µλ(y ¯ (y ¯ x))}.
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Hence µλ is a fuzzy ideal of K ×K.
Conversely, suppose that µλ is a fuzzy ideal of K ×K. Then

min{λ(e), λ(e)} = µλ(e, e) ≥ µλ(x, y) = min{λ(x), λ(y)} ∀(x, y) ∈ K ×K.

It follows that λ(x) ≤ λ(e), ∀x ∈ K. For any x = (x1, x2), y = (y1, y2)∈ K ×K,
min{λ(x1), λ(x2)} = µλ(x1, x2)

≥ min{µλ((x1, x2)¯ (y1, y2)), µλ((y1, y2)¯ ((y1, y2)¯ (x1, x2))}
= min{µλ(x1 ¯ y1, x2 ¯ y2), µλ(y1 ¯ (y1 ¯ x1), y2 ¯ (y2 ¯ x2))}
= min{min{λ(x1 ¯ y1), λ(x2 ¯ y2)}
, min{λ(y1 ¯ (y1 ¯ x1)), λ(y2 ¯ (y2 ¯ x2))}}
= min{min{λ(x1 ¯ y1), λ(y1 ¯ (y1 ¯ x1))}
, min{λ(x2 ¯ y2), λ(y2 ¯ (y2 ¯ x2))}}.

Putting x2 = y2 = e gives
λ(x1) ≥ min{λ(x1 ¯ y1), λ(y1 ¯ (y1 ¯ x1))}. Hence λ is a fuzzy ideal of K. ¤
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