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Valuations on residuated lattices

Cătălin Buşneag

Abstract. The aim of this paper is to introduce the notions of pseudo-valuation (valuation)
on residuated lattices and to prove some theorems of extension for these (using the model of
Hilbert algebra (see [5])).
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1. Preliminaries

The origin of residuated lattices is in Mathematical Logic without contraction.
They have been investigated by Krull ([13]), Dilworth ([7]), Ward and Dilworth ([18]),
Ward ([17]), Balbes and Dwinger ([1]) and Pavelka ([15]).

In [9], Idziak prove that the class of residuated lattices is equational. These lattices
have been known under many names: BCK- latices in [8], full BCK- algebras in [13],
FLew- algebras in [14], and integral, residuated, commutative l-monoids in [3].

Definition 1.1. A residuated lattice ([2], [16]) is an algebra (A,∧,∨,¯,→, 0, 1) of
type (2,2,2,2,0,0) equipped with an order ≤ satisfying the following:

(LR1) (A,∧,∨, 0, 1) is a bounded lattice,
(LR2) (A,¯, 1) is a commutative ordered monoid,
(LR3) ¯ and → form an adjoint pair, i.e. c ≤ a → b iff a¯ c ≤ b for all a, b, c ∈ A.

The relations between the pair of operations ¯ and → expressed by Definition
1.1 (LR3), is a particular case of the law of residuation ([2]). Namely, let A and B
two posets, and f : A → B a map. Then f is called residuated if there is a map
g : B → A, such that for any a ∈ A and b ∈ B, we have f(a) ≤ b iff b ≤ g(a) (this is
also expressed by saying that the pair (f, g) is a residuated pair).

Now setting A a residuated lattice, B = A, and defining, for any a ∈ A, two maps
fa, ga : A → A, fa(x) = x ¯ a and ga(x) = a → x, for any x ∈ A, we see that
x¯ a = fa(x) ≤ y iff x ≤ ga(y) = a → y for every x, y ∈ A, that is, for every a ∈ A,
(fa, ga) is a pair of residuation.

The symbols ⇒ and ⇔ are used for logical implication and logical equivalence.

Proposition 1.1. ([9]) The class RL of residuated lattices is equational.

Example 1.1. Let p be a fixed natural number and A = [0, 1] the real unit interval.
If for x, y ∈ A, we define x ¯ y = 1 −min{1, [(1 − x)p + (1 − y)p]1/p} and x → y =
sup{z ∈ [0, 1] : x¯ z ≤ y}, then (A, max, min,¯,→, 0, 1) is a residuated lattice.
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Example 1.2. If we preserve the notation from Example 1, and we define for x, y ∈
A, x ¯ y = (max{0, xp + yp − 1})1/p and x → y = min{1, (1 − xp + yp)1/p}, then
(A, max, min,¯,→, 0, 1) become a residuated lattice called generalized Łukasiewicz
structure. For p = 1 we obtain the notion of Łukasiewicz structure (x¯y = max{0, x+
y − 1}, x → y = min{1, 1− x + y}).
Example 1.3. If on A = [0, 1], for x, y ∈ A we define x ¯ y = min{x, y} and
x → y = 1 if x ≤ y and y otherwise, then (A,max, min,¯,→, 0, 1) is a residuated
lattice (called Gődel structure).

Example 1.4. If consider on A = [0, 1], ¯ to be the usual multiplication of real num-
bers and for x, y ∈ A, x → y = 1 if x ≤ y and y/x otherwise, then (A, max, min,¯,→
, 0, 1) is a residuated lattice (called Products structure or Gaines structure).

Example 1.5. If (A,∨,∧,′ , 0, 1) is a Boolean algebra, then if we define for x, y ∈
A, x ¯ y = x ∧ y and x → y = x′ ∨ y, then (A,∨,∧,¯,→, 0, 1) become a residuated
lattice.

Definition 1.2. ([16]) A residuated lattice (A,∧,∨,¯,→, 0, 1) is called BL-algebra,
if the following two identities hold in A :

(BL1) x¯ (x → y) = x ∧ y;
(BL2) (x → y) ∨ (y → x) = 1.

Remark 1.1. Łukasiewicz structure, Gődel structure and Product structure are BL−
algebras. Not every residuated lattice, however, is a BL-algebra (see [16], p.16).

Remark 1.2. If in a BL− algebra A, x∗∗ = x for all x ∈ A, and for x, y ∈ A we
denote x⊕ y = (x∗¯ y∗)∗ then we obtain an algebra (A,⊕,∗ , 0) of type (2, 1, 0) called
MV− algebras (see [16]).

Remark 1.3. ([16]) A residuated lattice (A,∧,∨,¯,→, 0, 1) is an MV -algebra iff it
satisfies an additional condition: (x → y) → y = (y → x) → x, for any x, y ∈ A.

In what follows by A we denote a residuated lattice; for x ∈ A and a natural number
n, we define x∗ = x → 0, (x∗)∗ = x∗∗, x0 = 1 and xn = xn−1 ¯ x for n ≥ 1.

Theorem 1.1. ([12], [16]) Let x, x1, x2, y, y1, y2, z ∈ A. Then we have the following
rules of calculus:
(c1) 1 → x = x, x → x = 1, y ≤ x → y, x → 1 = 1, 0 → x = 1;
(c2) x¯ y ≤ x, y, hence x¯ y ≤ x ∧ y and x¯ 0 = 0;
(c3) x¯ y ≤ x → y;
(c4) x ≤ y iff x → y = 1;
(c5) x → y = y → x = 1 ⇔ x = y;
(c6) x¯ (x → y) ≤ y, x ≤ (x → y) → y, ((x → y) → y) → y = x → y;
(c7) x¯ (y → z) ≤ y → (x¯ z) ≤ (x¯ y) → (x¯ z);
(c8) x → y ≤ (x¯ z) → (y¯ z); x → y ≤ (x∧ z) → (y∧ z); x → y ≤ (x∨ z) → (y∨ z);
(c9) x ≤ y implies x¯ z ≤ y ¯ z;

(c10) x → y ≤ (z → x) → (z → y);
(c11) x → y ≤ (y → z) → (x → z);
(c12) x ≤ y implies z → x ≤ z → y, y → z ≤ x → z and y∗ ≤ x∗,
(c13) x → (y → z) = (x¯ y) → z = y → (x → z);
(c14) x1 → y1 ≤ (y2 → x2) → [(y1 → y2) → (x1 → x2)].
(c15) x¯ x∗ = 0 and x¯ y = 0 iff x ≤ y∗;
(c16) x ≤ x∗∗, x∗∗ ≤ x∗ → x;
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(c17) 1∗ = 0 , 0∗ = 1;
(c18) x → y ≤ y∗ → x∗;
(c19) x∗∗∗ = x∗, (x¯ y)∗ = x → y∗ = y → x∗ = x∗∗ → y∗.

Theorem 1.2. ([12], [16]) If A is a complete residuated lattice, x ∈ A and (yi)i∈I a
family of elements of A, then :

(c20) x¯ (
∨
i∈I

yi) =
∨
i∈I

(x¯ yi);

(c21) x¯ (
∧
i∈I

yi) ≤
∧
i∈I

(x¯ yi);

(c22) x → (
∧
i∈I

yi) =
∧
i∈I

(x → yi);

(c23) (
∨
i∈I

yi) → x =
∧
i∈I

(yi → x);

(c24)
∨
i∈I

(yi → x) ≤ (
∧
i∈I

yi) → x;

(c25)
∨

(
i∈I

x → yi) ≤ x → (
∨
i∈I

yi);

(c26) (
∨
i∈I

yi)∗ =
∧
i∈I

y∗i ;

(c27) (
∧
i∈I

yi)∗ ≥
∨
i∈I

y∗i .

Corollary 1.1. ([6]) If x, x′, y, y′, z ∈ A then:
(c28) x ∨ y = 1 implies x¯ y = x ∧ y;
(c29) x → (y → z) ≥ (x → y) → (x → z);
(c30) x∨ (y ¯ z) ≥ (x∨ y)¯ (x∨ z), hence xm ∨ yn ≥ (x ∨ y)mn, for any m,n natural

numbers;
(c31) (x → y)¯ (x

′ → y
′
) ≤ (x ∨ x

′
) → (y ∨ y

′
);

(c32) (x → y)¯ (x
′ → y

′
) ≤ (x ∧ x

′
) → (y ∧ y

′
).

2. Boolean center and deductive systems of a residuated lattice

Let (L,∨,∧, 0, 1) be a bounded lattice. Recall that an element a ∈ L is called
complemented if there is an element b ∈ L such that a ∨ b = 1 and a ∧ b = 0; if such
element b exists it is called a complement of a. We will denote b = a′ and the set of all
complemented elements in L by B(L). Complements are generally not unique, unless
the lattice is distributive.

In residuated lattices however, although the underlying lattices need not be dis-
tributive, the complements are unique.

Lemma 2.1. ([12]) Suppose that a ∈ A have a complement b ∈ A. Then, the following
hold:
(i) If c is another complement of a in A, then c = b ;

(ii) a′ = b and b′ = a;
(iii) a2 = a.

Let B(A) the set of all complemented elements of A.

Lemma 2.2. ([6]) If e ∈ B(A), then e′ = e∗ and e∗∗ = e.

Remark 2.1. ([12]) If e, f ∈ B(A), then e∧f, e∨f ∈ B(A). Moreover, (e∨f)′ = e′∧f ′

and (e ∧ f)′ = e′ ∨ f ′. So, e → f = e′ ∨ f ∈ B(A) and
(c33) e¯ x = e ∧ x, for every x ∈ A.

Corollary 2.1. ([12]) The set B(A) is the universe of a Boolean subalgebra of A,
called the Boolean center of A.
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Proposition 2.1. ([6]) For e ∈ A the following are equivalent:
(i) e ∈ B(A),

(ii) e ∨ e∗ = 1.

Proposition 2.2. ([6]) For e ∈ A we consider the following assertions:
(1) e ∈ B(A),
(2) e2 = e and e = e∗∗,
(3) e2 = e and e∗ → e = e,
(4) (e → x) → e = e, for every x ∈ A,
(5) e ∧ e∗ = 0. Then:
(i) (1) ⇒ (2), (3), (4) and (5),

(ii) (2); (1), (3) ; (1), (4); (1), (5); (1).

Lemma 2.3. ([6]) If e, f ∈ B(A) and x, y ∈ A, then:
(c34) x¯ (x → e) = e ∧ x, e¯ (e → x) = e ∧ x;
(c35) e ∨ (x¯ y) = (e ∨ x)¯ (e ∨ y);
(c36) e ∧ (x¯ y) = (e ∧ x)¯ (e ∧ y);
(c37) e¯ (x → y) = e¯ [(e¯ x) → (e¯ y)];
(c38) x¯ (e → f) = x¯ [(x¯ e) → (x¯ f)];
(c39) e → (x → y) = (e → x) → (e → y).

Definition 2.1. ([4])Let A and B be residuated lattices. A function f : A → B is
a morphism of residuated lattices if f is morphism of bounded lattices and for every
x, y ∈ A : f(x¯ y) = f(x)¯ f(y) and f(x → y) = f(x) → f(y).

Definition 2.2. ([12], [16]) A non empty subset D ⊆ A is called a deductive system
of A, ds for short, if the following conditions are satisfied:

(D1) 1 ∈ D;
(D2) If x, x → y ∈ D, then y ∈ D.

Clearly {1} and A are ds ; a ds D of A is called proper if D 6= A.

Remark 2.2. ([12], [16]) A nonempty subset D⊆ A is a ds of A iff for all x, y ∈ A :
(D′

1) If x, y ∈ D, then x¯ y ∈ D;
(D′

2) If x ∈ D, y ∈ A, x ≤ y, then y ∈ D.

Remark 2.3. Deductive systems are called also congruence filters in literature. To
avoid confusion we reserve, however in this paper, the name filter to lattice filters and
deductive system for implicative congruence filters. From (lr−c2) and Remark 2.2 we
deduce that every ds of A is a filter for L(A), but filters of L(A) are not, in general,
deductive systems for A (see [16]).

We denote by Ds(A) the set of all deductive systems of A.

3. Valuations on residuated lattices

Throughout this paper, by A we denote a residuated lattice.

Definition 3.1. A real function v : A → R is called a pseudo-valuation on A if
(v1): v(1) = 0;
(v2): v(x → y) ≥ v(y)− v(x), for every x, y ∈ A.
The pseudo-valuation v is said to be a valuation if
(v3): v(x) = 0 ⇒ x = 1 (x ∈ A).
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If we interpret A as an implicational calculus, x → y as the proposition ”x ⇒ y”
and 1 as truth, the pseudo-valuation on A can be interpret as ”falsity-valuation”.

Example 3.1. v : A → R, v(x) = 0, for every x ∈ A is a pseudo-valuation on A
(called trivial).

Example 3.2. If D ∈ Ds(A) and r ∈ R+, then vD : A → R, v(x) = { 0, if x ∈ D,
r, if x /∈ D

is a pseudo-valuation on A and a valuation iff D = {1} and r > 0.

Example 3.3. If M is a finite set with n elements and A = P (M) is the Boolean
lattice of the power set of M , then v : P (M) → R, v(X) = n − n(X) is a valuation
on A (where n(X) is the number of elements of X).

Lemma 3.1. A pseudo-valuation v on A is a non-negative decreasing function sat-
isfying

(c40): v(x → z) ≤ v(x → y) + v(y → z), for every x, y, z ∈ A.

Proof. If in (v2) we put y = 1, we obtain that for every x ∈ A, v(x → 1) ≥
v(1)− v(x)

(c1)⇒ v(1) ≥ v(1)− v(x) ⇒ v(x) ≥ 0.
If x ≤ y, then x → y = 1 and by (v2) we deduce that for every x, y ∈ A, v(x →

y) ≥ v(y)− v(x) ⇔ 0 = v(1) ≥ v(y)− v(x) ⇔ v(x) ≥ v(y).
Let now x, y, z ∈ A; by (c11) [x → y ≤ (y → z) → (x → z)] ⇒ v(x → y) ≤ v[(y →

z) → (x → z)] ≥ v(x → z)− v(y → z) ⇒
v(x → z) ≤ v(x → y) + v(y → z).¥

Lemma 3.2. If x1, ..., xn ∈ A and v : A → R is a pseudo-valuation on A, then

(c41): v(
n¯

i=1
xi) ≤

n∑
i=1

v(xi), so (since
n¯

i=1
xi ≤

n∧
i=1

xi) then v(
n∧

i=1
xi) ≤

n∑
i=1

v(xi).

Proof. Mathematical induction relative to n; for n = 2 we have x1 → (x2 →
(x1¯x2))

(c13)= (x1¯x2) → (x1¯x2) = 1, hence 0 = v(1) ≥ v(x2 → (x1¯x2))−v(x1) ≥
v(x1 ¯ x2)− v(x2)− v(x1) ⇒ v(x1 ¯ x2) ≤ v(x1) + v(x2).¥

Lemma 3.3. Let v : A → R a pseudo-valuation (valuation) on A. If we define
dv : A× A → R, dv(x, y) = v(x → y) + v(y → x), for (x, y) ∈ A× A, then (A, dv) is
a pseudo-metric (metric) space satisfying for any x, y, z ∈ A :

(c42): max{dv(x → z, y → z), dv(z → x, z → y)} ≤ dv(x, y);
(c43): dv(x ∧ z, y ∧ z) ≤ dv(x, y);
(c44): dv(x ∨ z, y ∨ z) ≤ dv(x, y);
(c45): dv(x¯ z, y ¯ z) ≤ dv(x, y);

Proof. Let x, y, z ∈ A; clearly, dv(x, y) = dv(y, x) ≥ 0, while dv(x, x) = v(x →
x)+v(x → x) = v(1)+v(1) = 0+0 = 0. Also, dv(x, y)+dv(y, z) = [v(x → y)+v(y →
x)]+ [v(y → z)+v(z → y)] = [v(x → y)+v(y → z)]+[v(z → y)+v(y → x)]

(c40)≥ v(x →
z) + v(z → x) = dv(x, z), hence dv is a pseudo-metric on A. Suppose v is a valuation
on A and let x, y ∈ A such that dv(x, y) = 0. Then v(x → y) = v(y → x) = 0, hence
x → y = y → x = 1 ⇒ x = y, that is, dv is a metric on A.

Suppose dv is a metric on A and let x ∈ A such that v(x) = 0.
Since dv(x, 1) = v(x → 1) + v(1 → x) = v(1) + v(x) = 0 + 0 = 0, then x = 1, that

is, v is a valuation on A.
(c42). We have dv(x → z, y → z) = v((x → z) → (y → z))+v((y → z) → (x → z)).

Since by (c11), x → y ≤ (y → z) → (x → z) and y → x ≤ (x → z) → (y → z) we
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deduce that v(x → y) ≥ v[(y → z) → (x → z)] and v(y → x) ≥ v[(x → z) → (y →
z)], hence dv(x, y) = v(x → y) + v(y → x) ≥ v[(y → z) → (x → z)] + v[(x → z) →
(y → z)] = dv(x → z, y → z).

Since by (c10), x → y ≤ (z → x) → (z → y) and y → x ≤ (z → y) → (z → x),
analogously as above we deduce that dv(x, y) ≥ dv(z → x, z → y).

So, max{dv(x → z, y → z), dv(z → x, z → y)} ≤ dv(x, y).
(c43). We have dv(x ∧ z, y ∧ z) = v[(x ∧ z) → (y ∧ z)] + v[(y ∧ z) → (x ∧ z)]; since

by (c8), x → y ≤ (x ∧ z) → (y ∧ z) and y → x ≤ (y ∧ z) → (x ∧ z) we deduce that
v(x → y) ≥ v[(x∧ z) → (y∧ z)] and v(y → x) ≥ v[(y∧ z) → (x∧ z)], hence dv(x, y) =
v(x → y) + v(y → x) ≥ v[(x ∧ z) → (y ∧ z)] + v[(y ∧ z) → (x ∧ z)] = dv(x ∧ z, y ∧ z).

(c44)− (c45). Analogously (see (c43)). ¥
Corollary 3.1. Let v : A → R a valuation. In the metric space (A, dv), the functions
∧,∨,→,¯ : A×A → R are uniformly continuous.

Proof. For ∧ : let x, x′, y, y′ ∈ A and 0 < ε ∈ R. If dv : A × A → R is the
natural metric on A × A (defined by dv((x, y), (x′, y′)) = max{dv(x, x′), dv(y, y′)},
then if dv((x, y), (x′, y′)) < ε and dv(x, x′), dv(y, y′) < ε/2, we have dv(x∧y, x′∧y′) ≤
dv(x∧ y, x′ ∧ y) + dv(x′ ∧ y, x′ ∧ y′) ≤ dv(x, x′) + dv(y, y′) ≤ ε/2 + ε/2 = ε, that is, ∧
is uniformly continuous. Analogously for functions ∨,→,¯ (see (c44) and (c45)). ¥

4. Theorem of extension for pseudo-valuations

Let A, B two residuated lattices such that A is a residuated sublattice of B. We
have the following theorem of extension:

Theorem 4.1. For every pseudo-valuation (valuation) v : A → R there exists a
pseudo-valuation v′ : B → R such that v′|A = v.

Proof. Let v : A → R a pseudo-valuation. For x ∈ B we define v′ : B →
R, v′(x) = inf

{
n∑

i=1

v(xi) : x1, ..., xn ∈ A and x1 ¯ ...¯ xn ≤ x

}
.

Since 1 ∈ A and 1 ≤ 1 ⇒ v′(1) ≤ v(1) = 0, hence v′(1) = 0. Let now x, y ∈ B and
x1, ..., xn, y1, ..., ym ∈ A such that x1 ¯ ...¯ xn ≤ x and y1 ¯ ...¯ ym ≤ x → y. Then

x1 ¯ ...¯ xn ¯ y1 ¯ ...¯ ym ≤ x¯ (x → y) ≤ y, hence v′(y) ≤
n∑

i=1

v(xi)+
m∑

i=1

v(yi) ⇒

v′(y) ≤ inf{
n∑

i=1

v(xi)} + inf{
m∑

i=1

v(yi)} = v′(x) + v′(x → y), hence v′(x → y) ≥
v′(y)− v′(x). If x ∈ A, since x ≤ x ⇒ v′(x) ≤ v(x).

Let now x1, ..., xn ∈ A such that x1¯ ...¯xn ≤ x ⇒ v(x) ≤ v(x1¯ ...¯xn)
(c41)≤

n∑
i=1

v(xi) ⇒ v(x) ≤ inf{
n∑

i=1

v(xi)} = v′(x) ⇒ v′(x) = v(x) ⇒ v′|A = v.¥
We recall (see [6]) that a subset S ⊆ A is called a ∧−closed system if 1 ∈ S and

x, y ∈ S implies x ∧ y ∈ S.
We denote by S(A) the set of all ∧−closed systems of A (clearly {1}, A ∈ S(A)).
For S ∈ S(A), on A we consider the relation θS defined by (x, y) ∈ θS iff there is

e ∈ S ∩B(A) such that x ∧ e = y ∧ e.

Lemma 4.1. The relation θS is a congruence on A.

For x ∈ A we denote by x/S the equivalence class of x relative to θS and by A[S] =
A/θS . By pS : A → A[S] we denote the canonical mapping defined by pS(x) = x/S, for
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every x ∈ A. Clearly A[S] become a residuated lattice, where 0 = 0/S, 1 = 1/S and for
every x, y ∈ A, (x/S)∧ (y/S) = (x∧y)/S, (x/S)∨ (y/S) = (x∨y)/S, (x/S)¯ (y/S) =
(x¯y)/S and (x/S) → (y/S) = (x → y)/S. So, pS is an onto morphism of residuated
lattices.

Theorem 4.2. If S ∈ S(A) and v : A → R is a pseudo-valuation on A, then the
following are equivalent:

(i): There exists a pseudo-valuation v′ : A[S] → R such that the diagram

A
pS−→ A[S]

↘
v

↙
v′

R

is commutative (i.e. v′ ◦ pS = v);
(ii): v(s) = 0 for every s ∈ S ∩B(A).

Proof. (i) ⇒ (ii). Let v′ : A[S] → R a valuation such that v′ ◦ pS = v and
s ∈ S ∩B(A). Since s∧ s = s∧ 1 we deduce that (s, 1) ∈ θS , so pS(s) = pS(1), hence
v(s) = (v′ ◦ pS)(s) = v′(pS(s)) = v′(pS(1)) = (v′ ◦ pS)(1) = v(1) = 0.

(ii) ⇒ (i). For x ∈ A we define v′(x/S) = v(x). If x, y ∈ S and x/S = y/S then
there exists s ∈ S ∩ B(A) such that s ∧ x = s ∧ y. Since s ∧ x ≤ x, we deduce

v(x) ≤ v(s ∧ x) = v(s ∧ y)
(c14)≤ v(y) + v(s) = v(y) + 0 = v(y) and analogously

v(y) ≤ v(x), hence v(x) = v(y), that is, v′ is correctly defined.
We have v′(1/S) = v(1) = 0 and for x, y ∈ A, v′(x/S → y/S) = v′((x → y)/S) =

v(x → y) ≥ v(y)− v(x) = v′(y/S)− v′(x/S), hence v′ is a pseudo-valuation on A. If
v is a valuation, then v′ is a valuation because v′(x/S) = 0, for x ∈ A, then v(x) = 0,
hence x = 1 and x/S = 1. ¥
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