Valuations on residuated lattices

CĂTĂLIN Buşneag

Abstract

The aim of this paper is to introduce the notions of pseudo-valuation (valuation) on residuated lattices and to prove some theorems of extension for these (using the model of Hilbert algebra (see [5])).

2000 Mathematics Subject Classification. 03G10, 06B20, 08A72, 03G25.
Key words and phrases. Residuated lattice, pseudo-valuation, valuation.

1. Preliminaries

The origin of residuated lattices is in Mathematical Logic without contraction. They have been investigated by Krull ([13]), Dilworth ([7]), Ward and Dilworth ([18]), Ward ([17]), Balbes and Dwinger ([1]) and Pavelka ([15]).

In [9], Idziak prove that the class of residuated lattices is equational. These lattices have been known under many names: BCK- latices in [8], full BCK- algebras in [13], $F L_{e w^{-}}$algebras in [14], and integral, residuated, commutative l-monoids in [3].

Definition 1.1. A residuated lattice ([2], [16]) is an algebra $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ of type (2,2,2,2,0,0) equipped with an order \leq satisfying the following:
$\left(L R_{1}\right)(A, \wedge, \vee, 0,1)$ is a bounded lattice,
$\left(L R_{2}\right)(A, \odot, 1)$ is a commutative ordered monoid,
$\left(L R_{3}\right) \odot$ and \rightarrow form an adjoint pair, i.e. $c \leq a \rightarrow b$ iff $a \odot c \leq b$ for all $a, b, c \in A$.
The relations between the pair of operations \odot and \rightarrow expressed by Definition $1.1\left(L R_{3}\right)$, is a particular case of the law of residuation ([2]). Namely, let A and B two posets, and $f: A \rightarrow B$ a map. Then f is called residuated if there is a map $g: B \rightarrow A$, such that for any $a \in A$ and $b \in B$, we have $f(a) \leq b$ iff $b \leq g(a)$ (this is also expressed by saying that the pair (f, g) is a residuated pair $)$.

Now setting A a residuated lattice, $B=A$, and defining, for any $a \in A$, two maps $f_{a}, g_{a}: A \rightarrow A, f_{a}(x)=x \odot a$ and $g_{a}(x)=a \rightarrow x$, for any $x \in A$, we see that $x \odot a=f_{a}(x) \leq y$ iff $x \leq g_{a}(y)=a \rightarrow y$ for every $x, y \in A$, that is, for every $a \in A$, $\left(f_{a}, g_{a}\right)$ is a pair of residuation.

The symbols \Rightarrow and \Leftrightarrow are used for logical implication and logical equivalence.
Proposition 1.1. ([9]) The class $\mathcal{R} \mathcal{L}$ of residuated lattices is equational.
Example 1.1. Let p be a fixed natural number and $A=[0,1]$ the real unit interval. If for $x, y \in A$, we define $x \odot y=1-\min \left\{1,\left[(1-x)^{p}+(1-y)^{p}\right]^{1 / p}\right\}$ and $x \rightarrow y=$ $\sup \{z \in[0,1]: x \odot z \leq y\}$, then $(A, \max , \min , \odot, \rightarrow, 0,1)$ is a residuated lattice.

Example 1.2. If we preserve the notation from Example 1, and we define for $x, y \in$ $A, x \odot y=\left(\max \left\{0, x^{p}+y^{p}-1\right\}\right)^{1 / p}$ and $x \rightarrow y=\min \left\{1,\left(1-x^{p}+y^{p}\right)^{1 / p}\right\}$, then ($A, \max , \min , \odot, \rightarrow, 0,1$) become a residuated lattice called generalized Łukasiewicz structure. For $p=1$ we obtain the notion of Eukasiewicz structure $(x \odot y=\max \{0, x+$ $y-1\}, x \rightarrow y=\min \{1,1-x+y\})$.

Example 1.3. If on $A=[0,1]$, for $x, y \in A$ we define $x \odot y=\min \{x, y\}$ and $x \rightarrow y=1$ if $x \leq y$ and y otherwise, then $(A, \max , \min , \odot, \rightarrow, 0,1)$ is a residuated lattice (called Gödel structure).
Example 1.4. If consider on $A=[0,1], \odot$ to be the usual multiplication of real numbers and for $x, y \in A, x \rightarrow y=1$ if $x \leq y$ and y / x otherwise, then $(A, \max , \min , \odot, \rightarrow$ $, 0,1)$ is a residuated lattice (called Products structure or Gaines structure).

Example 1.5. If $\left(A, \vee, \wedge,^{\prime}, 0,1\right)$ is a Boolean algebra, then if we define for $x, y \in$ $A, x \odot y=x \wedge y$ and $x \rightarrow y=x^{\prime} \vee y$, then $(A, \vee, \wedge, \odot, \rightarrow, 0,1)$ become a residuated lattice.

Definition 1.2. ([16]) A residuated lattice $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is called $B L$-algebra, if the following two identities hold in A :
$\left(B L_{1}\right) x \odot(x \rightarrow y)=x \wedge y ;$
$\left(B L_{2}\right)(x \rightarrow y) \vee(y \rightarrow x)=1$.
Remark 1.1. Eukasiewicz structure, Gödel structure and Product structure are BLalgebras. Not every residuated lattice, however, is a BL-algebra (see [16], p.16).

Remark 1.2. If in a $B L-\operatorname{algebra} A, x^{* *}=x$ for all $x \in A$, and for $x, y \in A$ we denote $x \oplus y=\left(x^{*} \odot y^{*}\right)^{*}$ then we obtain an algebra $\left(A, \oplus,{ }^{*}, 0\right)$ of type $(2,1,0)$ called $M V$ - algebras (see [16]).
Remark 1.3. ([16]) A residuated lattice $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is an $M V$-algebra iff it satisfies an additional condition: $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$, for any $x, y \in A$.

In what follows by A we denote a residuated lattice; for $x \in A$ and a natural number n, we define $x^{*}=x \rightarrow 0,\left(x^{*}\right)^{*}=x^{* *}, x^{0}=1$ and $x^{n}=x^{n-1} \odot x$ for $n \geq 1$.

Theorem 1.1. ([12], [16]) Let $x, x_{1}, x_{2}, y, y_{1}, y_{2}, z \in A$. Then we have the following rules of calculus:
$\left(c_{1}\right) 1 \rightarrow x=x, x \rightarrow x=1, y \leq x \rightarrow y, x \rightarrow 1=1,0 \rightarrow x=1$;
(c_{2}) $x \odot y \leq x, y$, hence $x \odot y \leq x \wedge y$ and $x \odot 0=0$;
$\left(c_{3}\right) x \odot y \leq x \rightarrow y$;
(c_{4}) $x \leq y$ iff $x \rightarrow y=1$;
(c) $x \rightarrow y=y \rightarrow x=1 \Leftrightarrow x=y$;
$\left(c_{6}\right) x \odot(x \rightarrow y) \leq y, x \leq(x \rightarrow y) \rightarrow y,((x \rightarrow y) \rightarrow y) \rightarrow y=x \rightarrow y ;$
$\left(c_{7}\right) x \odot(y \rightarrow z) \leq y \rightarrow(x \odot z) \leq(x \odot y) \rightarrow(x \odot z) ;$
$\left(c_{8}\right) x \rightarrow y \leq(x \odot z) \rightarrow(y \odot z) ; x \rightarrow y \leq(x \wedge z) \rightarrow(y \wedge z) ; x \rightarrow y \leq(x \vee z) \rightarrow(y \vee z)$;
$\left(c_{9}\right) x \leq y$ implies $x \odot z \leq y \odot z$;
$\left(c_{10}\right) x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y) ;$
$\left(c_{11}\right) x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z) ;$
(c_{12}) $x \leq y$ implies $z \rightarrow x \leq z \rightarrow y, y \rightarrow z \leq x \rightarrow z$ and $y^{*} \leq x^{*}$,
$\left(c_{13}\right) x \rightarrow(y \rightarrow z)=(x \odot y) \rightarrow z=y \rightarrow(x \rightarrow z) ;$
$\left(c_{14}\right) x_{1} \rightarrow y_{1} \leq\left(y_{2} \rightarrow x_{2}\right) \rightarrow\left[\left(y_{1} \rightarrow y_{2}\right) \rightarrow\left(x_{1} \rightarrow x_{2}\right)\right]$.
$\left(c_{15}\right) x \odot x^{*}=0$ and $x \odot y=0$ iff $x \leq y^{*}$;
$\left(c_{16}\right) x \leq x^{* *}, x^{* *} \leq x^{*} \rightarrow x ;$
$\left(c_{17}\right) 1^{*}=0,0^{*}=1$;
$\left(c_{18}\right) x \rightarrow y \leq y^{*} \rightarrow x^{*}$;
$\left(c_{19}\right) x^{* * *}=x^{*},(x \odot y)^{*}=x \rightarrow y^{*}=y \rightarrow x^{*}=x^{* *} \rightarrow y^{*}$.
Theorem 1.2. ([12], [16]) If A is a complete residuated lattice, $x \in A$ and $\left(y_{i}\right)_{i \in I}$ a family of elements of A, then :
$\left(c_{20}\right) x \odot\left(\bigvee_{i \in I} y_{i}\right)=\bigvee_{i \in I}\left(x \odot y_{i}\right)$;
$\left(c_{21}\right) x \odot\left(\bigwedge_{i \in I}^{i \in I} y_{i}\right) \leq \bigwedge_{i \in I}^{i \in I}\left(x \odot y_{i}\right)$;
$\left(c_{22}\right) x \rightarrow\left(\bigwedge_{i \in I}^{i \in I} y_{i}\right)=\bigwedge_{i \in I}^{i \in I}\left(x \rightarrow y_{i}\right)$;
$\left(c_{23}\right)\left(\bigvee_{i \in I} y_{i}\right) \rightarrow x=\bigwedge_{i \in I}\left(y_{i} \rightarrow x\right)$;
$\left(c_{24}\right) \bigvee_{i \in I}^{i \in I}\left(y_{i} \rightarrow x\right) \leq\left(\bigwedge_{i \in I} y_{i}\right) \rightarrow x$;
(c25) $\bigvee_{i \in I}^{i \in I}\left(x \rightarrow y_{i}\right) \leq x \rightarrow\left(\bigvee_{i \in I} y_{i}\right)$;
$\left(c_{26}\right)\left(\bigvee_{i \in I} y_{i}\right)^{*}=\bigwedge_{i \in I} y_{i}^{*}$;
$\left(c_{27}\right)\left(\bigwedge_{i \in I}^{i \in I} y_{i}\right)^{*} \geq \bigvee_{i \in I} y_{i}^{*}$.
Corollary 1.1. ([6]) If $x, x^{\prime}, y, y^{\prime}, z \in A$ then:
(c_{28}) $x \vee y=1$ implies $x \odot y=x \wedge y$;
$\left(c_{29}\right) x \rightarrow(y \rightarrow z) \geq(x \rightarrow y) \rightarrow(x \rightarrow z) ;$
$\left(c_{30}\right) x \vee(y \odot z) \geq(x \vee y) \odot(x \vee z)$, hence $x^{m} \vee y^{n} \geq(x \vee y)^{m n}$, for any m, n natural numbers;
$\left(c_{31}\right)(x \rightarrow y) \odot\left(x^{\prime} \rightarrow y^{\prime}\right) \leq\left(x \vee x^{\prime}\right) \rightarrow\left(y \vee y^{\prime}\right)$;
$\left(c_{32}\right)(x \rightarrow y) \odot\left(x^{\prime} \rightarrow y^{\prime}\right) \leq\left(x \wedge x^{\prime}\right) \rightarrow\left(y \wedge y^{\prime}\right)$.

2. Boolean center and deductive systems of a residuated lattice

Let $(L, \vee, \wedge, 0,1)$ be a bounded lattice. Recall that an element $a \in L$ is called complemented if there is an element $b \in L$ such that $a \vee b=1$ and $a \wedge b=0$; if such element b exists it is called a complement of a. We will denote $b=a^{\prime}$ and the set of all complemented elements in L by $B(L)$. Complements are generally not unique, unless the lattice is distributive.

In residuated lattices however, although the underlying lattices need not be distributive, the complements are unique.
Lemma 2.1. ([12]) Suppose that $a \in A$ have a complement $b \in A$. Then, the following hold:
(i) If c is another complement of a in A, then $c=b$;
(ii) $a^{\prime}=b$ and $b^{\prime}=a$;
(iii) $a^{2}=a$.

Let $B(A)$ the set of all complemented elements of A.
Lemma 2.2. ([6]) If $e \in B(A)$, then $e^{\prime}=e^{*}$ and $e^{* *}=e$.
Remark 2.1. ([12]) If $e, f \in B(A)$, then $e \wedge f, e \vee f \in B(A)$. Moreover, $(e \vee f)^{\prime}=e^{\prime} \wedge f^{\prime}$ and $(e \wedge f)^{\prime}=e^{\prime} \vee f^{\prime}$. So, $e \rightarrow f=e^{\prime} \vee f \in B(A)$ and
$\left(c_{33}\right) e \odot x=e \wedge x$, for every $x \in A$.
Corollary 2.1. ([12]) The set $B(A)$ is the universe of a Boolean subalgebra of A, called the Boolean center of A.

Proposition 2.1. ([6]) For $e \in A$ the following are equivalent:
(i) $e \in B(A)$,
(ii) $e \vee e^{*}=1$.

Proposition 2.2. ([6]) For $e \in A$ we consider the following assertions:
(1) $e \in B(A)$,
(2) $e^{2}=e$ and $e=e^{* *}$,
(3) $e^{2}=e$ and $e^{*} \rightarrow e=e$,
(4) $(e \rightarrow x) \rightarrow e=e$, for every $x \in A$,
(5) $e \wedge e^{*}=0$. Then:
(i) $(1) \Rightarrow(2),(3),(4)$ and (5),
(ii) $(2) \nRightarrow(1),(3) \nRightarrow(1),(4) \nRightarrow(1),(5) \nRightarrow(1)$.

Lemma 2.3. ([6]) If $e, f \in B(A)$ and $x, y \in A$, then:
$\left(c_{34}\right) x \odot(x \rightarrow e)=e \wedge x, e \odot(e \rightarrow x)=e \wedge x ;$
$\left(c_{35}\right) e \vee(x \odot y)=(e \vee x) \odot(e \vee y) ;$
$\left(c_{36}\right) e \wedge(x \odot y)=(e \wedge x) \odot(e \wedge y) ;$
$\left(c_{37}\right) e \odot(x \rightarrow y)=e \odot[(e \odot x) \rightarrow(e \odot y)] ;$
$\left(c_{38}\right) x \odot(e \rightarrow f)=x \odot[(x \odot e) \rightarrow(x \odot f)] ;$
$\left(c_{39}\right) e \rightarrow(x \rightarrow y)=(e \rightarrow x) \rightarrow(e \rightarrow y)$.
Definition 2.1. ([4])Let A and B be residuated lattices. A function $f: A \rightarrow B$ is a morphism of residuated lattices if f is morphism of bounded lattices and for every $x, y \in A: f(x \odot y)=f(x) \odot f(y)$ and $f(x \rightarrow y)=f(x) \rightarrow f(y)$.
Definition 2.2. ([12], [16]) A non empty subset $D \subseteq A$ is called a deductive system of $A, \boldsymbol{d} \boldsymbol{s}$ for short, if the following conditions are satisfied:
$\left(D_{1}\right) 1 \in D$;
$\left(D_{2}\right)$ If $x, x \rightarrow y \in D$, then $y \in D$.
Clearly $\{1\}$ and A are ds ; a ds D of A is called proper if $D \neq A$.
Remark 2.2. ([12], [16]) A nonempty subset $D \subseteq A$ is a ds of A iff for all $x, y \in A$: $\left(D_{1}^{\prime}\right)$ If $x, y \in D$, then $x \odot y \in D$;
$\left(D_{2}^{\prime}\right)$ If $x \in D, y \in A, x \leq y$, then $y \in D$.
Remark 2.3. Deductive systems are called also congruence filters in literature. To avoid confusion we reserve, however in this paper, the name filter to lattice filters and deductive system for implicative congruence filters. From $\left(l r-c_{2}\right)$ and Remark 2.2 we deduce that every ds of A is a filter for $L(A)$, but filters of $L(A)$ are not, in general, deductive systems for A (see [16]).

We denote by $D s(A)$ the set of all deductive systems of A.

3. Valuations on residuated lattices

Throughout this paper, by A we denote a residuated lattice.
Definition 3.1. A real function $v: A \rightarrow \mathbf{R}$ is called a pseudo-valuation on A if
$\left(v_{1}\right): v(1)=0$;
$\left(v_{2}\right): v(x \rightarrow y) \geq v(y)-v(x)$, for every $x, y \in A$.
The pseudo-valuation v is said to be a valuation if
$\left(v_{3}\right): v(x)=0 \Rightarrow x=1(x \in A)$.

If we interpret A as an implicational calculus, $x \rightarrow y$ as the proposition " $x \Rightarrow y$ " and 1 as truth, the pseudo-valuation on A can be interpret as "falsity-valuation".
Example 3.1. $v: A \rightarrow \mathbf{R}, v(x)=0$, for every $x \in A$ is a pseudo-valuation on A (called trivial).

Example 3.2. If $D \in D s(A)$ and $r \in \mathbf{R}_{+}$, then $v_{D}: A \rightarrow \mathbf{R}, v(x)= \begin{cases}0, & \text { if } x \in D, \\ r, & \text { if } x \notin D\end{cases}$ is a pseudo-valuation on A and a valuation iff $D=\{1\}$ and $r>0$.
Example 3.3. If M is a finite set with n elements and $A=P(M)$ is the Boolean lattice of the power set of M, then $v: P(M) \rightarrow \mathbf{R}, v(X)=n-n(X)$ is a valuation on A (where $n(X)$ is the number of elements of X).

Lemma 3.1. A pseudo-valuation v on A is a non-negative decreasing function satisfying
$\left(c_{40}\right): v(x \rightarrow z) \leq v(x \rightarrow y)+v(y \rightarrow z)$, for every $x, y, z \in A$.
Proof. If in $\left(v_{2}\right)$ we put $y=1$, we obtain that for every $x \in A, v(x \rightarrow 1) \geq$ $v(1)-v(x) \stackrel{\left(c_{1}\right)}{\Rightarrow} v(1) \geq v(1)-v(x) \Rightarrow v(x) \geq 0$.

If $x \leq y$, then $x \rightarrow y=1$ and by $\left(v_{2}\right)$ we deduce that for every $x, y \in A, v(x \rightarrow$ $y) \geq v(y)-v(x) \Leftrightarrow 0=v(1) \geq v(y)-v(x) \Leftrightarrow v(x) \geq v(y)$.

Let now $x, y, z \in A$; by $\left(c_{11}\right)[x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)] \Rightarrow v(x \rightarrow y) \leq v[(y \rightarrow$ $z) \rightarrow(x \rightarrow z)] \geq v(x \rightarrow z)-v(y \rightarrow z) \Rightarrow$ $v(x \rightarrow z) \leq v(x \rightarrow y)+v(y \rightarrow z)$
Lemma 3.2. If $x_{1}, \ldots, x_{n} \in A$ and $v: A \rightarrow \mathbf{R}$ is a pseudo-valuation on A, then

Proof. Mathematical induction relative to n; for $n=2$ we have $x_{1} \rightarrow\left(x_{2} \rightarrow\right.$ $\left.\left(x_{1} \odot x_{2}\right)\right) \stackrel{\left(c_{13}\right)}{=}\left(x_{1} \odot x_{2}\right) \rightarrow\left(x_{1} \odot x_{2}\right)=1$, hence $0=v(1) \geq v\left(x_{2} \rightarrow\left(x_{1} \odot x_{2}\right)\right)-v\left(x_{1}\right) \geq$ $v\left(x_{1} \odot x_{2}\right)-v\left(x_{2}\right)-v\left(x_{1}\right) \Rightarrow v\left(x_{1} \odot x_{2}\right) \leq v\left(x_{1}\right)+v\left(x_{2}\right)$

Lemma 3.3. Let $v: A \rightarrow \mathbf{R}$ a pseudo-valuation (valuation) on A. If we define $d_{v}: A \times A \rightarrow \mathbf{R}, d_{v}(x, y)=v(x \rightarrow y)+v(y \rightarrow x)$, for $(x, y) \in A \times A$, then $\left(A, d_{v}\right)$ is a pseudo-metric (metric) space satisfying for any $x, y, z \in A$:
$\left(c_{42}\right): \max \left\{d_{v}(x \rightarrow z, y \rightarrow z), d_{v}(z \rightarrow x, z \rightarrow y)\right\} \leq d_{v}(x, y) ;$
$\left(c_{43}\right): d_{v}(x \wedge z, y \wedge z) \leq d_{v}(x, y) ;$
$\left(c_{44}\right): d_{v}(x \vee z, y \vee z) \leq d_{v}(x, y) ;$
$\left(c_{45}\right): d_{v}(x \odot z, y \odot z) \leq d_{v}(x, y) ;$
Proof. Let $x, y, z \in A$; clearly, $d_{v}(x, y)=d_{v}(y, x) \geq 0$, while $d_{v}(x, x)=v(x \rightarrow$ $x)+v(x \rightarrow x)=v(1)+v(1)=0+0=0$. Also, $d_{v}(x, y)+d_{v}(y, z)=[v(x \rightarrow y)+v(y \rightarrow$ $x)]+[v(y \rightarrow z)+v(z \rightarrow y)]=[v(x \rightarrow y)+v(y \rightarrow z)]+[v(z \rightarrow y)+v(y \rightarrow x)] \stackrel{\left(c_{40}\right)}{\geq} v(x \rightarrow$ $z)+v(z \rightarrow x)=d_{v}(x, z)$, hence d_{v} is a pseudo-metric on A. Suppose v is a valuation on A and let $x, y \in A$ such that $d_{v}(x, y)=0$. Then $v(x \rightarrow y)=v(y \rightarrow x)=0$, hence $x \rightarrow y=y \rightarrow x=1 \Rightarrow x=y$, that is, d_{v} is a metric on A.

Suppose d_{v} is a metric on A and let $x \in A$ such that $v(x)=0$.
Since $d_{v}(x, 1)=v(x \rightarrow 1)+v(1 \rightarrow x)=v(1)+v(x)=0+0=0$, then $x=1$, that is, v is a valuation on A.
$\left(c_{42}\right)$. We have $d_{v}(x \rightarrow z, y \rightarrow z)=v((x \rightarrow z) \rightarrow(y \rightarrow z))+v((y \rightarrow z) \rightarrow(x \rightarrow z))$. Since by $\left(c_{11}\right), x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$ and $y \rightarrow x \leq(x \rightarrow z) \rightarrow(y \rightarrow z)$ we
deduce that $v(x \rightarrow y) \geq v[(y \rightarrow z) \rightarrow(x \rightarrow z)]$ and $v(y \rightarrow x) \geq v[(x \rightarrow z) \rightarrow(y \rightarrow$ $z)]$, hence $d_{v}(x, y)=v(x \rightarrow y)+v(y \rightarrow x) \geq v[(y \rightarrow z) \rightarrow(x \rightarrow z)]+v[(x \rightarrow z) \rightarrow$ $(y \rightarrow z)]=d_{v}(x \rightarrow z, y \rightarrow z)$.

Since by $\left(c_{10}\right), x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y)$ and $y \rightarrow x \leq(z \rightarrow y) \rightarrow(z \rightarrow x)$, analogously as above we deduce that $d_{v}(x, y) \geq d_{v}(z \rightarrow x, z \rightarrow y)$.

So, $\max \left\{d_{v}(x \rightarrow z, y \rightarrow z), d_{v}(z \rightarrow x, z \rightarrow y)\right\} \leq d_{v}(x, y)$.
$\left(c_{43}\right)$. We have $d_{v}(x \wedge z, y \wedge z)=v[(x \wedge z) \rightarrow(y \wedge z)]+v[(y \wedge z) \rightarrow(x \wedge z)]$; since by $\left(c_{8}\right), x \rightarrow y \leq(x \wedge z) \rightarrow(y \wedge z)$ and $y \rightarrow x \leq(y \wedge z) \rightarrow(x \wedge z)$ we deduce that $v(x \rightarrow y) \geq v[(x \wedge z) \rightarrow(y \wedge z)]$ and $v(y \rightarrow x) \geq v[(y \wedge z) \rightarrow(x \wedge z)]$, hence $d_{v}(x, y)=$ $v(x \rightarrow y)+v(y \rightarrow x) \geq v[(x \wedge z) \rightarrow(y \wedge z)]+v[(y \wedge z) \rightarrow(x \wedge z)]=d_{v}(x \wedge z, y \wedge z)$.
$\left(c_{44}\right)-\left(c_{45}\right)$. Analogously (see $\left.\left(c_{43}\right)\right)$.
Corollary 3.1. Let $v: A \rightarrow \mathbf{R}$ a valuation. In the metric space $\left(A, d_{v}\right)$, the functions $\wedge, \vee, \rightarrow, \odot: A \times A \rightarrow \mathbf{R}$ are uniformly continuous.

Proof. For \wedge : let $x, x^{\prime}, y, y^{\prime} \in A$ and $0<\varepsilon \in \mathbf{R}$. If $\bar{d}_{v}: A \times A \rightarrow \mathbf{R}$ is the natural metric on $A \times A$ (defined by $\bar{d}_{v}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\max \left\{d_{v}\left(x, x^{\prime}\right), d_{v}\left(y, y^{\prime}\right)\right\}$, then if $\bar{d}_{v}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)<\varepsilon$ and $d_{v}\left(x, x^{\prime}\right), d_{v}\left(y, y^{\prime}\right)<\varepsilon / 2$, we have $d_{v}\left(x \wedge y, x^{\prime} \wedge y^{\prime}\right) \leq$ $d_{v}\left(x \wedge y, x^{\prime} \wedge y\right)+d_{v}\left(x^{\prime} \wedge y, x^{\prime} \wedge y^{\prime}\right) \leq d_{v}\left(x, x^{\prime}\right)+d_{v}\left(y, y^{\prime}\right) \leq \varepsilon / 2+\varepsilon / 2=\varepsilon$, that is, \wedge is uniformly continuous. Analogously for functions $\vee, \rightarrow, \odot\left(\right.$ see $\left(c_{44}\right)$ and $\left.\left(c_{45}\right)\right)$.

4. Theorem of extension for pseudo-valuations

Let A, B two residuated lattices such that A is a residuated sublattice of B. We have the following theorem of extension:

Theorem 4.1. For every pseudo-valuation (valuation) $v: A \rightarrow \mathbf{R}$ there exists a pseudo-valuation $v^{\prime}: B \rightarrow \mathbf{R}$ such that $v_{\mid A}^{\prime}=v$.

Proof. Let $v: A \rightarrow \mathbf{R}$ a pseudo-valuation. For $x \in B$ we define $v^{\prime}: B \rightarrow$ $R, v^{\prime}(x)=\inf \left\{\sum_{i=1}^{n} v\left(x_{i}\right): x_{1}, \ldots, x_{n} \in A\right.$ and $\left.x_{1} \odot \ldots \odot x_{n} \leq x\right\}$.

Since $1 \in A$ and $1 \leq 1 \Rightarrow v^{\prime}(1) \leq v(1)=0$, hence $v^{\prime}(1)=0$. Let now $x, y \in B$ and $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in A$ such that $x_{1} \odot \ldots \odot x_{n} \leq x$ and $y_{1} \odot \ldots \odot y_{m} \leq x \rightarrow y$. Then $x_{1} \odot \ldots \odot x_{n} \odot y_{1} \odot \ldots \odot y_{m} \leq x \odot(x \rightarrow y) \leq y$, hence $v^{\prime}(y) \leq \sum_{i=1}^{n} v\left(x_{i}\right)+\sum_{i=1}^{m} v\left(y_{i}\right) \Rightarrow$ $v^{\prime}(y) \leq \inf \left\{\sum_{i=1}^{n} v\left(x_{i}\right)\right\}+\inf \left\{\sum_{i=1}^{m} v\left(y_{i}\right)\right\}=v^{\prime}(x)+v^{\prime}(x \rightarrow y)$, hence $v^{\prime}(x \rightarrow y) \geq$ $v^{\prime}(y)-v^{\prime}(x)$. If $x \in A$, since $x \leq x \Rightarrow v^{\prime}(x) \leq v(x)$.

Let now $x_{1}, \ldots, x_{n} \in A$ such that $x_{1} \odot \ldots \odot x_{n} \leq x \Rightarrow v(x) \leq v\left(x_{1} \odot \ldots \odot x_{n}\right) \stackrel{\left(c_{41}\right)}{\leq} \sum_{i=1}^{n}$ $v\left(x_{i}\right) \Rightarrow v(x) \leq \inf \left\{\sum_{i=1}^{n} v\left(x_{i}\right)\right\}=v^{\prime}(x) \Rightarrow v^{\prime}(x)=v(x) \Rightarrow v_{\mid A}^{\prime}=v$.

We recall (see [6]) that a subset $S \subseteq A$ is called a $\wedge-$ closed system if $1 \in S$ and $x, y \in S$ implies $x \wedge y \in S$.

We denote by $S(A)$ the set of all \wedge-closed systems of A (clearly $\{1\}, A \in S(A)$).
For $S \in S(A)$, on A we consider the relation θ_{S} defined by $(x, y) \in \theta_{S}$ iff there is $e \in S \cap B(A)$ such that $x \wedge e=y \wedge e$.
Lemma 4.1. The relation θ_{S} is a congruence on A.
For $x \in A$ we denote by x / S the equivalence class of x relative to θ_{S} and by $A[S]=$ A / θ_{S}. By $p_{S}: A \rightarrow A[S]$ we denote the canonical mapping defined by $p_{S}(x)=x / S$, for
every $x \in A$. Clearly $A[S]$ become a residuated lattice, where $\mathbf{0}=0 / S, \mathbf{1}=1 / S$ and for every $x, y \in A,(x / S) \wedge(y / S)=(x \wedge y) / S,(x / S) \vee(y / S)=(x \vee y) / S,(x / S) \odot(y / S)=$ $(x \odot y) / S$ and $(x / S) \rightarrow(y / S)=(x \rightarrow y) / S$. So, p_{S} is an onto morphism of residuated lattices.

Theorem 4.2. If $S \in S(A)$ and $v: A \rightarrow \mathbf{R}$ is a pseudo-valuation on A, then the following are equivalent:
(i): There exists a pseudo-valuation $v^{\prime}: A[S] \rightarrow \mathbf{R}$ such that the diagram

is commutative (i.e. $v^{\prime} \circ p_{S}=v$);
(ii): $v(s)=0$ for every $s \in S \cap B(A)$.

Proof. $(i) \Rightarrow(i i)$. Let $v^{\prime}: A[S] \rightarrow \mathbf{R}$ a valuation such that $v^{\prime} \circ p_{S}=v$ and $s \in S \cap B(A)$. Since $s \wedge s=s \wedge 1$ we deduce that $(s, 1) \in \theta_{S}$, so $p_{S}(s)=p_{S}(1)$, hence $v(s)=\left(v^{\prime} \circ p_{S}\right)(s)=v^{\prime}\left(p_{S}(s)\right)=v^{\prime}\left(p_{S}(1)\right)=\left(v^{\prime} \circ p_{S}\right)(1)=v(1)=0$.
(ii) $\Rightarrow(i)$. For $x \in A$ we define $v^{\prime}(x / S)=v(x)$. If $x, y \in S$ and $x / S=y / S$ then there exists $s \in S \cap B(A)$ such that $s \wedge x=s \wedge y$. Since $s \wedge x \leq x$, we deduce $v(x) \leq v(s \wedge x)=v(s \wedge y) \stackrel{\left(c_{14}\right)}{\leq} v(y)+v(s)=v(y)+0=v(y)$ and analogously $v(y) \leq v(x)$, hence $v(x)=v(y)$, that is, v^{\prime} is correctly defined.

We have $v^{\prime}(1 / S)=v(1)=0$ and for $x, y \in A, v^{\prime}(x / S \rightarrow y / S)=v^{\prime}((x \rightarrow y) / S)=$ $v(x \rightarrow y) \geq v(y)-v(x)=v^{\prime}(y / S)-v^{\prime}(x / S)$, hence v^{\prime} is a pseudo-valuation on A. If v is a valuation, then v^{\prime} is a valuation because $v^{\prime}(x / S)=0$, for $x \in A$, then $v(x)=0$, hence $x=1$ and $x / S=\mathbf{1}$.

References

[1] R. Balbes, Ph. Dwinger: Distributive Lattices, University of Missouri Press, 1974.
[2] T. S. Blyth, M. F. Janovitz: Residuation Theory, Pergamon Press, 1972.
[3] W. J. Blok, D. Pigozzi: Algebraizable Logics, Memoirs of the American Mathematical Society, No. 396, Amer. Math. Soc, Providence, 1989.
[4] S. Buris, H. P. Sankappanavar: A Course in Universal Algebra, Graduate Texts in Mathematics, No. 78, Springer, 1981.
[5] D. Buşneag: On extensions of pseudo-valuations on Hilbert algebras, Discrete Mathematics, 263 (2003), 11-24.
[6] D. Buşneag, D. Piciu: Residuated lattice of fractions relative to an \wedge-closed system, Bull. Math. Soc. Sc. Math. Roumanie, Tome 49 (97), No. 1, (2006), 13-24.
[7] R. P. Dilworth: Non-commutative residuated lattices, Transactions of the American Mathematical Society 46 (1939), 426-444.
[8] U. Hőhle: Commutative residuated monoids, in: U. Hőhle, P. Klement (eds), Non-classical Logics and Their Aplications to Fuzzy Subsets, Kluwer Academic Publishers, 1995.
[9] P. M. Idziak: Lattice operations in BCK-algebras, Mathematica Japonica, 29(1984), 839-846.
[10] I. D. Ion, N. Radu: Algebra (in romanian), Ed. Didactică şi Pedagogică, Bucureşti, 1991.
[11] A. Iorgulescu: Classes of BCK algebras-Part III, Preprint Series of The Institute of Mathematics of the Romanian Academy, preprint nr. 3 (2004), 1-37.
[12] T. Kowalski, H. Ono: Residuated lattices: an algebraic glimpse at logic without contraction, 2001.
[13] W. Krull: Axiomatische Begründung der allgemeinen Ideal theorie, Sitzungsberichte der physikalisch medizinischen Societäd der Erlangen 56 (1924), 47-63.
[14] M. Okada, K. Terui: The finite model property for various fragments of intuitionistic linear logic, Journal of Symbolic Logic, 64 (1999), 790-802.
[15] J. Pavelka: On fuzzy logic II. Enriched residuated lattices and semantics of propositional calculi, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 25 (1979), 119-134.
[16] E. Turunen: Mathematics Behind Fuzzy Logic, Physica-Verlag, 1999.
[17] M. Ward: Residuated distributive lattices, Duke Mathematical Journal 6 (1940), 641-651.
[18] M. Ward, R. P. Dilworth: Residuated lattices, Transactions of the American Mathematicae Society 45 (1939), 335-354.
(Cătălin Buşneag) Faculty of Mathematics and Computer Science,
University of Craiova,
13, Al.I. Cuza st., 200585, Craiova, Romania
E-mail address: catalinbusneag@yahoo.com

