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On perfect pseudo-BCK algebras with pseudo-product

Lavinia Corina Ciungu

Abstract. Pseudo-BCK algebras were introduced by G. Georgescu and A. Iorgulescu as a
generalization of BCK algebras. Their properties and connections with other fuzzy structures
were established by A. Iorgulescu and J. Kühr. In this paper we study the class of perfect
pseudo-BCK algebras with pseudo-product and we prove that any perfect pseudo-BCK algebra
with pseudo-product is strongly bipartite. Another main result of the paper states that any
perfect pseudo-BCK algebra with pseudo-product admits a unique Bosbach state on it.
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1. Introduction

Pseudo-BCK algebras were introduced in [7] by G. Georgescu and A. Iorgulescu
as a generalization of BCK algebras in order to give a corresponding structure to
pseudo-MV algebras, since the bounded commutative BCK algebras correspond to
MV algebras. Properties of pseudo-BCK algebras and their connections with oth-
ers fuzzy structures were established by A.Iorgulescu in [9], [10], [11], [12]. One of
the most important class of pseudo-BCK algebras is that having the pseudo-product
property (pP for short). This property proved to be very important to establish the
connections of pseudo-BCK algebras with other fuzzy structures. It was proved in
[11] that the pseudo-BCK(pP) algebras are categorically equivalent with the partial
ordered residuated integral monoids (porims) and it was proved in [9] that the pseudo-
BCK(pP) lattices are termwise equivalent with the residuated lattices which generalize
other structures such as pseudo-MTL algebras, bounded divisible non-commutative
algebras (R`-monoids), pseudo-BL algebras and pseudo-MV algebras. J. Kühr proved
in [14] that every pseudo-BCK algebra is a subreduct of a residuated lattice. It was
proved in [5] that every pseudo-hoop is a pseudo-BCK(pP) algebra. The class of per-
fect multiple-valued logic algebras proved to be very important for the study of the
existence of states on these structure. For the commutative case, the perfect struc-
tures play an important role for the study of different kinds of convergences on these
algebras.
Perfect MV-algebras were studied in [1], perfect BL-algebras were studied in [18], while
perfect bounded commutative R`-monoids were investigated in [17]. For the case of
non-commutative structures, perfect pseudo-MV algebras were presented in [15], per-
fect pseudo-BL algebras in [8], perfect pseudo-MTL algebras in [3] and perfect resid-
uated lattices in [2]. Recently, the properties of perfect bounded non-commutative
R`-monoids were investigated in [16]. The perfect pseudo-BCK(pP) algebras were
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introduced and studied in [6]. In this paper we obtain new results regarding perfect
pseudo-BCK(pP) algebras, more precisely we define the notion of bipartite and strong
bipartite pseudo-BCK(pP) algebras and we prove that any perfect pseudo-BCK(pP)
algebra is strongly bipartite. We prove that the class of local pseudo-BCK(pP) al-
gebras can be classified in perfect, locally finite and peculiar subclasses. One of the
main results of the paper consists of proving that any perfect pseudo-BCK(pP) alge-
bra admits at least a Bosbach state on it. We define the notion of bipartite and strong
bipartite pseudo-BCK(pP) algebras and we prove that any perfect pseudo-BCK(pP)
algebra is strongly bipartite.

2. Pseudo-BCK algebras and their basic properties

Definition 2.1. ([9]) A pseudo-BCK algebra (more precisely, reversed left-pseudo-
BCK algebra) is a structure A = (A,≤,→, Ã, 1) where ≤ is a binary relation on A,
→ and Ã are binary operations on A and 1 is an element of A satisfying, for all
x, y, z ∈ A, the axioms:
(A1) x → y ≤ (y → z) Ã (x → z), x Ã y ≤ (y Ã z) → (x Ã z);
(A2) x ≤ (x → y) Ã y, x ≤ (x Ã y) → y;
(A3) x ≤ x;
(A4) x ≤ 1;
(A5) if x ≤ y and y ≤ x, then x = y;
(A6) x ≤ y iff x → y = 1 iff x Ã y = 1.

A pseudo-BCK algebra A = (A,≤,→, Ã, 1) is commutative iff → = Ã. Any
commutative pseudo-BCK algebra is a BCK algebra.
We will also refer to a pseudo-BCK algebra by its universe A.

Example 2.1. ([4]) Consider A = {o1, a1, b1, c1, o2, a2, b2, c2, 1} with o1 < a1, b1 <
c1 < 1 and a1, b1 incomparable, o2 < a2, b2 < c2 < 1 and a2, b2 incomparable. We also
assume that any element of the set {o1, a1, b1, c1} is incomparable with any element
of the set {o2, a2, b2, c2}. Consider the operations →,Ã given by the following tables:

→ o1 a1 b1 c1 o2 a2 b2 c2 1
o1 1 1 1 1 o2 a2 b2 c2 1
a1 o1 1 b1 1 o2 a2 b2 c2 1
b1 a1 a1 1 1 o2 a2 b2 c2 1
c1 o1 a1 b1 1 o2 a2 b2 c2 1
o2 o1 a1 b1 c1 1 1 1 1 1
a2 o1 a1 b1 c1 o2 1 b2 1 1
b2 o1 a1 b1 c1 c2 c2 1 1 1
c2 o1 a1 b1 c1 o2 c2 b2 1 1
1 o1 a1 b1 c1 o2 a2 b2 c2 1

Ã o1 a1 b1 c1 o2 a2 b2 c2 1
o1 1 1 1 1 o2 a2 b2 c2 1
a1 b1 1 b1 1 o2 a2 b2 c2 1
b1 o1 a1 1 1 o2 a2 b2 c2 1
c1 o1 a1 b1 1 o2 a2 b2 c2 1
o2 o1 a1 b1 c1 1 1 1 1 1
a2 o1 a1 b1 c1 b2 1 b2 1 1
b2 o1 a1 b1 c1 b2 c2 1 1 1
c2 o1 a1 b1 c1 b2 c2 b2 1 1
1 o1 a1 b1 c1 o2 a2 b2 c2 1

.

Then, A = (A,≤,→, Ã, 1) is a proper pseudo-BCK algebra.

Proposition 2.1. ([11], [12]) In any pseudo-BCK algebra the following properties
hold:
(c1) x ≤ y implies y → z ≤ x → z and y Ã z ≤ x Ã z;
(c2) x ≤ y, y ≤ z implies x ≤ z;
(c3) x → (y Ã z) = y Ã (x → z) and x Ã (y → z) = y → (x Ã z);
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(c4) z ≤ y → x iff y ≤ z Ã x;
(c5) z → x ≤ (y → z) → (y → x) z Ã x ≤ (y Ã z) Ã (y Ã x);
(c6) x ≤ y → x, x ≤ y Ã x;
(c7) 1 → x = x = 1 Ã x;
(c8) x ≤ y implies z → x ≤ z → y and z Ã x ≤ z Ã y;
(c9) [(y → x) Ã x] → x = y → x, [(y Ã x) → x] Ã x = y Ã x.

Definition 2.2. ([9]) If there is an element 0 of a pseudo-BCK algebra A = (A,≤,→
,Ã, 1), such that 0 ≤ x (i.e. 0 → x = 0 Ã x = 1), for all x ∈ A, then 0 is called the
zero of A. A pseudo-BCK algebra with zero is called bounded pseudo-BCK algebra
and it is denoted by A = (A,≤,→, Ã, 0, 1).

Example 2.2. ([4]) Consider A = {0, a, b, c, 1} with 0 < a, b < c < 1 and a, b
incomparable. Consider the operations →, Ã given by the following tables:

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Ã 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b 0 a 1 1 1
c 0 a b 1 1
1 0 a b c 1

.

Then, A = (A,≤,→, Ã, 0, 1) is a bounded pseudo-BCK algebra.

Definition 2.3. ([9]) A pseudo-BCK algebra with (pP) condition (i.e. with pseudo-
product condition) or a pseudo-BCK(pP) algebra for short, is a pseudo-BCK algebra
A = (A,≤,→, Ã, 1) satisfying (pP) condition:
(pP) there exists, for all x, y ∈ A, x¯y = min{z | x ≤ y → z} = min{z | y ≤ x Ã z}.
Definition 2.4. ([9]) (1) Let A = (A,≤,→,Ã, 1) be a pseudo-BCK algebra. If the
poset (A,≤) is a lattice, then we say that A is a pseudo-BCK lattice.
(2) Let A = (A,≤,→, Ã, 1) be a pseudo-BCK(pP) algebra. If the poset (A,≤) is a
lattice, then we say that A is a pseudo-BCK(pP) lattice. A pseudo-BCK(pP) lattice
A = (A,≤,→, Ã, 1) will be denoted by A = (A,∨,∧,→, Ã, 1).

Remark 2.1. Pseudo-BCK algebras are connected with other structures as follows:
(1) Pseudo-BCK(pP) algebras are caregorically isomorphic with left-porims (partially
ordered, residuated, integral left-monoids) ([11]).
(2) (Bounded) pseudo-BCK(pP) lattices are categorically isomorphic with (bounded)
residuated lattices ([9]) .
(3) Every pseudo-BCK algebra is a subreduct of a residuated lattice ([14]).
(4) Every pseudo-hoop is a pseudo-BCK(pP) algebra ([5]).

Example 2.3. (1) If A = (A,≤,→, Ã, 0, 1) is the bounded pseudo-BCK lattice from
Example 2.2, then min{z | b ≤ a → z} = min{a, b, c, 1} and min{z | a ≤ b Ã z} =
min{a, b, c, 1} do not exist. Thus, b¯a does not exist, so A is not a pseudo-BCK(pP)
algebra. Moreover, since (A,≤) is a lattice, it follows that A is a pseudo-BCK lattice.
(2) If A = (A,≤,→,Ã, 0, 1) is a reduct of a residuated lattice, then it is obvious that
A is a bounded pseudo-BCK(pP) algebra.

Example 2.4. ([10]) Take A = {0, a1, a2, s, a, b, n, c, d, m, 1} with 0 < a1 < a2 < s <
a, b < n < c, d < m < 1 (a is incomparable with b and c is incomparable with d).
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Consider the operations →, Ã given by the following tables:

→ 0 a1 a2 s a b n c d m 1
0 1 1 1 1 1 1 1 1 1 1 1
a1 a1 1 1 1 1 1 1 1 1 1 1
a2 a1 a1 1 1 1 1 1 1 1 1 1
s 0 a1 a2 1 1 1 1 1 1 1 1
a 0 a1 a2 m 1 m 1 1 1 1 1
b 0 a1 a2 m m 1 1 1 1 1 1
n 0 a1 a2 m m m 1 1 1 1 1
c 0 a1 a2 m m m m 1 m 1 1
d 0 a1 a2 m m m m m 1 1 1
m 0 a1 a2 m m m m m m 1 1
1 0 a1 a2 s a b n c d m 1

Ã 0 a1 a2 s a b n c d m 1
0 1 1 1 1 1 1 1 1 1 1 1
a1 a2 1 1 1 1 1 1 1 1 1 1
a2 0 a1 1 1 1 1 1 1 1 1 1
s 0 a1 a2 1 1 1 1 1 1 1 1
a 0 a1 a2 m 1 m 1 1 1 1 1
b 0 a1 a2 m m 1 1 1 1 1 1
n 0 a1 a2 m m m 1 1 1 1 1
c 0 a1 a2 m m m m 1 m 1 1
d 0 a1 a2 m m m m m 1 1 1
m 0 a1 a2 m m m m m m 1 1
1 0 a1 a2 s a b n c d m 1

Then, A = (A,≤,→,Ã, 0, 1) is a bounded pseudo-BCK(pP) algebra. The operation
¯ is given by the following table:

¯ 0 a1 a2 s a b n c d m 1
0 0 0 0 0 0 0 0 0 0 0 0
a1 0 0 0 a1 a1 a1 a1 a1 a1 a1 a1

a2 0 a1 a2 a2 a2 a2 a2 a2 a2 a2 a2

s 0 a1 a2 s s s s s s s s
a 0 a1 a2 s s s s s s s a
b 0 a1 a2 s s s s s s s b
n 0 a1 a2 s s s s s s s n
c 0 a1 a2 s s s s s s s c
d 0 a1 a2 s s s s s s s d
m 0 a1 a2 s s s s s s s m
1 0 a1 a2 s a b n c d m 1

Remark 2.2. Any bounded linearly ordered pseudo-BCK algebra is with (pP) con-
dition (see [9]). If the pseudo-BCK algebra is not bounded this result is not always
valid, as we can see in the following example communicated by J. Kühr.
Let (Q, +, 0,≤) be the additive group of rationals with the usual linear order and
take A = {x ∈ Q : −√2 < x ≤ 0}. Then (A,→, 0) is a linear BCK algebra with
x → y = min{0, y − x}. We have {z ∈ A : (−1) ≤ (−1) → z = min{0, z + 1}} = A,
thus (−1)¯ (−1) = minA doesn’t exist in (A,→, 0).
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Proposition 2.2. ([12]) In any pseudo-BCK algebra(pP) the following properties
hold:
(c10) x¯ y ≤ x, y;
(c11) (x → y)¯ x ≤ x, y, x¯ (x Ã y) ≤ x, y;
(c12) y ≤ x → (y ¯ x), y ≤ x Ã (x¯ y);
(c13) x → y ≤ (x¯ z) → (y ¯ z), x Ã y ≤ (z ¯ x) Ã (z ¯ y);
(c14) x¯ (y → z) ≤ y → (x¯ z), (y Ã z)¯ x ≤ y Ã (z ¯ x);
(c15) (y → z)¯ (x → y) ≤ x → z, (x Ã y)¯ (y Ã z) ≤ x Ã z;
(c16) x → (y → z) = (x¯ y) → z, x Ã (y Ã z) = (y ¯ x) Ã z;
(c17) (x¯ z) → (y ¯ z) ≤ x → (z → y), (z ¯ x) Ã (z ¯ y) ≤ x Ã (z Ã y);
(c18) x → y ≤ (x¯ z) → (y ¯ z) ≤ x → (z → y),

x Ã y ≤ (z ¯ x) Ã (z ¯ y) ≤ x Ã (z Ã y)
(c19) x ≤ y implies x¯ z ≤ y ¯ z and z ¯ x ≤ z ¯ y.

Let A = (A,≤,→, Ã, 0, 1) be a bounded pseudo-BCK algebra. We define two
negations − and ∼ ([12]): for all x ∈ A,

x− = x → 0, x∼ = x Ã 0.

Proposition 2.3. ([12]) In a bounded pseudo-BCK algebra the following hold:
(c20) 1− = 0 = 1∼, 0− = 1 = 0∼;
(c21) x ≤ (x−)∼, x ≤ (x∼)−;
(c22) x → y ≤ y− Ã x−, x Ã y ≤ y∼ → x∼;
(c23) x ≤ y implies y− ≤ x− and y∼ ≤ x∼;
(c24) x → y∼ = y Ã x− and x Ã y− = y → x∼;
(c25) ((x−)∼)− = x−, ((x∼)−)∼ = x∼.

Proposition 2.4. ([4]) In a bounded pseudo-BCK algebra the following hold:
(c26) x → y−∼ = y− Ã x− = x−∼ → y−∼ and

x Ã y∼− = y∼ → x∼ = x∼− Ã y∼−;
(c27) x → y∼ = y∼− Ã x− = x−∼ → y∼ and x Ã y− = y−∼ → x∼ = x∼− Ã y−;
(c28) (x → y∼−)∼− = x → y∼− and (x Ã y−∼)−

∼
= x Ã y−∼.

Proposition 2.5. ([4]) In a bounded pseudo-BCK(pP) algebra the following hold:
(c29) (xn−1 → xn)¯ (xn−2 → xn−1)¯ ...¯ (x1 → x2) ≤ x1 → xn and

(x1 Ã x2)¯ (x2 Ã x3)¯ ...¯ (xn−1 Ã xn) ≤ x1 Ã xn;
(c30) x¯ 0 = 0¯ x = 0;
(c31) x¯ 1 = 1¯ x = x;
(c32) x− ¯ x = 0 and x¯ x∼ = 0;
(c33) x ≤ y− iff x¯ y = 0 and x ≤ y∼ iff y ¯ x = 0;
(c34) x → y− = (x¯ y)− and x Ã y∼ = (y ¯ x)∼;
(c35) x ≤ y− iff y ≤ x∼;
(c36) x ≤ x∼ → y and x ≤ x− Ã y.

Definition 2.5. A bounded pseudo-BCK algebra A is called good if (x−)∼ = (x∼)−

for all x ∈ A.

Remark 2.3. It is easy to show that any bounded pseudo-BCK algebra can be em-
bedded into a good one. Indeed, consider the bounded pseudo-BCK algebra A =
(A,≤,→, Ã, 0, 1) and an element 01 /∈ A. Consider a new pseudo-BCK algebra
A1 = (A1,≤,→1,Ã1, 01, 1), where A1 = A ∪ {01} and the operations →1 and Ã1
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are defined as follows:

x →1 y =





x → y, if x, y ∈ A,
1, if x = 01, y ∈ A1,
01, if x ∈ A, y = 01,

x Ã1 y =





x Ã y, if x, y ∈ A,
1, if x = 01, y ∈ A1,
01, if x ∈ A, y = 01.

One can easily check that A as a subalgebra of A1 and A1 is a good pseudo-BCK
algebra.

Example 2.5. ([10]) Consider the pseudo-BCK lattice A from Example 2.4. Since
(a−1 )

∼
= a2 and (a∼1 )− = a1, it follows that A is not good. A is embedded into the good

pseudo-BCK algebra (see [10]) A1 = (A1,≤,→, Ã, 0, 1), where A1 = {0, a1, a2, b2, s, a, b, n, c,
d,m, 1} with 0 < a1 < a2 < b2 < s < a, b < n < c, d < m < 1 (a is incomparable with
b and c is incomparable with d). The operations → and Ã are defined as follows:

→ 0 a1 a2 b2 s a b n c d m 1
0 1 1 1 1 1 1 1 1 1 1 1 1
a1 0 1 1 1 1 1 1 1 1 1 1 1
a2 0 a2 1 1 1 1 1 1 1 1 1 1
b2 0 a2 a2 1 1 1 1 1 1 1 1 1
s 0 a1 a2 b2 1 1 1 1 1 1 1 1
a 0 a1 a2 b2 m 1 m 1 1 1 1 1
b 0 a1 a2 b2 m m 1 1 1 1 1 1
n 0 a1 a2 b2 m m m 1 1 1 1 1
c 0 a1 a2 b2 m m m m 1 m 1 1
d 0 a1 a2 b2 m m m m m 1 1 1
m 0 a1 a2 b2 m m m m m m 1 1
1 0 a1 a2 b2 s a b n c d m 1

Ã 0 a1 a2 b2 s a b n c d m 1
0 1 1 1 1 1 1 1 1 1 1 1 1
a1 0 1 1 1 1 1 1 1 1 1 1 1
a2 0 b2 1 1 1 1 1 1 1 1 1 1
b2 0 a1 a2 1 1 1 1 1 1 1 1 1
s 0 a1 a2 b2 1 1 1 1 1 1 1 1
a 0 a1 a2 b2 m 1 m 1 1 1 1 1
b 0 a1 a2 b2 m m 1 1 1 1 1 1
n 0 a1 a2 b2 m m m 1 1 1 1 1
c 0 a1 a2 b2 m m m m 1 m 1 1
d 0 a1 a2 b2 m m m m m 1 1 1
m 0 a1 a2 b2 m m m m m m 1 1
1 0 a1 a2 b2 s a b n c d m 1

One can easily check that A1 = (A1,≤,→, Ã, 0, 1) is a good pseudo-BCK(pP) algebra.
The operation ¯ is given by the following table:
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¯ 0 a1 a2 b2 s a b n c d m 1
0 0 0 0 0 0 0 0 0 0 0 0 0
a1 0 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1

a2 0 a1 a1 a1 a2 a2 a2 a2 a2 a2 a2 a2

b2 0 a1 a2 b2 b2 b2 b2 b2 b2 b2 b2 b2

s 0 a1 a2 b2 s s s s s s s s
a 0 a1 a2 b2 s s s s s s s a
b 0 a1 a2 b2 s s s s s s s b
n 0 a1 a2 b2 s s s s s s s n
c 0 a1 a2 b2 s s s s s s s c
d 0 a1 a2 b2 s s s s s s s d
m 0 a1 a2 b2 s s s s s s s m
1 0 a1 a2 b2 s a b n c d m 1.

Example 2.6. ([4]) Consider the pseudo-BCK lattice A from Example 2.2. Since
(a−)∼ = 1 and (a∼)− = a, it follows that A is not good. A is embedded into the
good pseudo-BCK lattice A1 = (A1,≤,→, Ã, 0, 1), where A1 = {0, a, b, c, d, 1} (in the
construction given in Remark 2.3 we replaced c by d, b by c, a by b, 0 by a and 01 by
0, so 0 < a < b, c < d < 1 and b, c are incomparable). The operations → and Ã are
defined as follows:

→ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 1 1 1 1
b 0 a 1 c 1 1
c 0 b b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

Ã 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 1 1 1 1
b 0 c 1 c 1 1
c 0 a b 1 1 1
d 0 a b c 1 1
1 0 a b c d 1

.

One can easily check that A1 is a good pseudo-BCK algebra. Moreover, we can see
that:

min{z | c ≤ b → z} = min{b, c, d, 1} and
min{z | b ≤ c Ã z} = min{b, c, d, 1}

do not exist. Thus, c¯ b do not exists, so A1 is without (pP) condition.
Since (A1,≤) is a lattice, it follows that A1 is a good pseudo-BCK lattice without (pP)
condition.

Definition 2.6. Let A be a pseudo-BCK algebra. The subset D ⊆ A is called deduc-
tive system of A if it satisfies the following conditions:
(DS1) 1 ∈ D;
(DS2) for all x, y ∈ A, if x, x → y ∈ D, then y ∈ D.

The condition (DS2) is equivalent with the following condition:
(DS′2) for all x, y ∈ A, if x, x Ã y ∈ D, then y ∈ D.

Proposition 2.6. If A is a bounded pseudo-BCK(pP) algebra, then the sets

A−0 = {x ∈ A | x− = 0} and A∼0 = {x ∈ A | x∼ = 0}
are proper deductive systems of A.

Proof. If x, y ∈ A−0 , then (x¯ y)− = x → y− = x → 0 = x− = 0, so x¯ y ∈ A−0 .
If x ∈ A−0 , y ∈ A such that x ≤ y, then y− ≤ x− = 0, so y− = 0, that is y ∈ A−0 .
Because 0 /∈ A−0 , we conclude that A−0 is a proper deductive system of A.
Similarly for the case of A∼0 . ¤
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We will denote by DS(A) the set of all deductive systems of A.
Obviously, {1}, A ∈ DS(A).
A deductive system D of a pseudo-BCK algebra A is called proper if D 6= A.

Definition 2.7. A deductive system D of a pseudo-BCK algebra A is called normal
if it satisfies the condition:
(DS3) for all x, y ∈ A, x → y ∈ D iff x Ã y ∈ D.

The normal deductive system is called compatible deductive system in [13], but for
an easier connection with the previous results in this paper we will use the notion of
normal deductive system.
We will denote by DSn(A) the set of all normal deductive systems of A.
It is obvious that {1}, A ∈ DSn(A) and DSn(A) ⊆ DS(A).

Proposition 2.7. Let A be a bounded pseudo-BCK algebra and H ∈ DSn(A). Then:
(1) x− ∈ H iff x∼ ∈ H;
(2) x ∈ H implies (x−)− ∈ H and (x∼)∼ ∈ H.

Proof. (1): It follows by taking y = 0 in the definition of a normal deductive system.
(2): From x ∈ H and x ≤ (x−)∼ we get (x−)∼ ∈ H, that is x− Ã 0 ∈ H. Hence,
x− → 0 ∈ H, so (x−)− ∈ H. Similarly, (x∼)∼ ∈ H. ¤

Definition 2.8. A deductive system is called maximal if it is proper and not strictly
contained in any other deductive system. Denote:
Max(A) = {F | F is maximal deductive system of A} and
Maxn(A) = {F | F ismaximal normal deductive system of A}.
Clearly, Maxn(A) ⊆ Max(A).

Proposition 2.8. Any proper deductive system of a pseudo-BCK algebra A can be
extended to a maximal deductive system of A.

Proof. It is an immediate consequence of Zorn’s lemma. ¤

Example 2.7. (1) Let A be the pseudo-BCK(pP) algebra A from Example 2.4 and
D1 = {s, a, b, n, c, d, m, 1}, D2 = {a2, s, a, b, n, c, d, m, 1}. Then:
DS(A) = {{1}, D1, D2, A}, DSn(A) = {{1}, D1, A}, Max(A) = {D2}, Maxn(A) =
∅.
(2) In the case of the pseudo-BCK(pP) algebra A1 from Example 2.5, denoting by
D1 = {a1, a2, b2, s, a, b, n, c, d,m, 1}, D2 = {b2, s, a, b, n, c, d, m, 1} and D3 = {s, a, b, n, c, d, m, 1},
we have: DS(A1) = {{1}, D1, D2, D3, A}, DSn(A1) = {{1}, D1, D3, A1}, Max(A1) =
{D1}, Maxn(A1) = {D1}.
Definition 2.9. Let A be pseudo-BCK(pP) algebra. The subset ∅ 6= F ⊆ A is called
filter of A if it satisfies the following conditions:
(F1) x, y ∈ F implies x¯ y ∈ F ;
(F2) x ∈ F , y ∈ A, x ≤ y implies y ∈ F .

One can easily check that in the case of a pseudo-BCK(pP) algebra the definition
of the filter is equivalent with the definition of the deductive system.

If A is a pseudo-BCK(pP) algebra, then for any n ∈ N, x ∈ A we put x0 = 1 and
xn+1 = xn ¯ x = x¯ xn. If A is bounded, the order of x ∈ A, denoted ord(x) is the
smallest n ∈ N such that xn = 0. If there is no such n, then ord(x) = ∞.
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Definition 2.10. For every subset X ⊆ A, the smallest deductive system of A con-
taining X (i.e. the intersection of all deductive systems D ∈ DS(A) such that X ⊆ D)
is called the deductive system generated by X and will be denoted by < X >. If
X = {x} we write < x > instead of < {x} >.

Lemma 2.1. ([8]) Let A be a bounded pseudo-BCK(pP) algebra and x, y ∈ A. Then:
(1) < x > is proper iff ord(x) = ∞;
(2) if x ≤ y and ord(y) < ∞, then ord(x) < ∞;
(3) if x ≤ y and ord(x) = ∞, then ord(y) = ∞.

Definition 2.11. A bounded pseudo-BCK(pP) algebra A is locally finite if for any
x ∈ A, x 6= 1 implies ord(x) < ∞.

Proposition 2.9. Let A be a bounded pseudo-BCK(pP) algebra. The following are
equivalent:
(a) A is locally finite;
(b) {1} is the unique proper deductive system of A.

Proof. According to Lemma 2.1(1), A is locally finite iff for every x ∈ A \ {1},
< x >= A iff {1} is the unique proper deductive system of A. ¤

3. Perfect pseudo-BCK algebras with pseudo-product

First, we recall some definitions and results regarding the classes of local and perfect
pseudo-BCK(pP) algebras. For more details, we refer the reader to [6].

Definition 3.1. A pseudo-BCK(pP) algebra is called local if it has a unique maximal
deductive system.

In this section by a pseudo-BCK(pP) algebra we mean a bounded pseudo-BCK(pP)
algebra, even though some notions and properties are valid for an arbitrary pseudo-
BCK(pP) algebra.
We will denote:

D(A) = {x ∈ A | ord(x) = ∞} and D(A)∗ = {x ∈ A | ord(x) < ∞}.
Obviously, D(A) ∩D(A)∗ = ∅ and D(A) ∪D(A)∗ = A.
We also can remark that 1 ∈ D(A) and 0 ∈ D(A)∗.

Let A be a pseudo-BCK(pP) algebra and D ∈ DS(A). We will use the following
notations:

D∗
− = {x ∈ A | x ≤ y− for some y ∈ D}, D∗

∼ = {x ∈ A | x ≤ y∼ for some
y ∈ D}.
Proposition 3.1. Let A be a local pseudo-BCK(pP) algebra. Then:
(1) any proper deductive system of A is included in the unique maximal deductive
system of A;
(2) A−0 and A∼0 are included in the unique maximal deductive system of A.

Proof. (1) It follows applying proposition 2.8 and taking into consideration that A
has a unique maximal deductive system;
(2) Apply proposition 2.6 and (1). ¤
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Theorem 3.1. ([6]) Let A be a pseudo-BCK(pP) algebra. Then the following are
equivalent:
(a) D(A) is a deductive system of A;
(b) D(A) is a proper deductive system of A;
(c) A is local;
(d) D(A) is the unique maximal deductive system of A;
(e) for all x, y ∈ A, ord(x¯ y) < ∞ implies ord(x) < ∞ or ord(y) < ∞.

Corollary 3.1. If A is a local pseudo-BCK(pP) algebra, then:
(1) for any x ∈ A, ord(x) < ∞ or (ord(x−) < ∞ and ord(x∼) < ∞);
(2) D(A)∗− ⊆ D(A)∗ and D(A)∗∼ ⊆ D(A)∗;
(3) D(A) ∩D(A)∗− = D(A) ∩D(A)∗∼ = ∅.
Example 3.1. Consider the pseudo-BCK(pP) algebra A from Example 2.4. One can
easily check that D(A) = {a2, s, a, b, n, c, d, m, 1} which is a deductive system of A, so
A is a local pseudo-BCK(pP) algebra.

Proposition 3.2. Any linearly ordered pseudo-BCK(pP) algebra is local.

Proof. Assume that A is a linearly ordered pseudo-BCK(pP) algebra and consider
x, y ∈ A such that ord(x ¯ y) < ∞. Since A is a linearly ordered, we have x ≤ y or
y ≤ x. Assume that x ≤ y. It follows that x¯ x ≤ x¯ y, so ord(x¯ x) < ∞. Hence,
ord(x) < ∞. Similarly, from y ≤ x we get ord(y) < ∞. Thus, according to theorem
3.1, A is a local pseudo-BCK(pP) algebra. ¤
Proposition 3.3. Any locally finite pseudo-BCK(pP) algebra is local.

Proof. Since D(A) = {1}, that is D(A) is a deductive system of A, and applying
theorem 3.1 it follows that A is local. ¤
Definition 3.2. A pseudo-BCK(pP) algebra A is called perfect if it satisfies the
following conditions:
(1) A is a local good pseudo-BCK(pP) algebra;
(2) for any x ∈ A, ord(x) < ∞ iff ord(x−) = ∞ and ord(x∼) = ∞.

Proposition 3.4. ([6]) Let A be a local good pseudo-BCK(pP) algebra. Then the
following are equivalent:
(a) A is perfect;
(b) D(A)∗− = D(A)∗∼ = D(A)∗.

Corollary 3.2. If A is a perfect pseudo-BCK(pP) algebra, then

D(A)∗ = {x− | x ∈ D(A)} = {x∼ | x ∈ D(A)}.
Corollary 3.3. Let A be a local good pseudo-BCK(pP) algebra. Then the following
are equivalent:
(a) A is perfect;
(b) D(A) ∪D(A)∗− = D(A) ∪D(A)∗∼ = A.

Example 3.2. (1) Consider the pseudo-BCK(pP) algebra A from Example 2.4. Since
A is not good, it follows that it is not a perfect pseudo-BCK(pP) algebra.
(2) If A1 is the good pseudo-BCK(pP) algebra from Example 2.5, we have D(A1) =
{a1, a2, b2, s, a, b, n, c, d, m, 1} and D(A1)∗ = {0}. Since ord(0−) = ord(0∼) = ∞, it
follows that A1 is a perfect pseudo-BCK(pP) algebra.

Definition 3.3. Let A be a pseudo-BCK(pP) algebra. The intersection of all maximal
deductive systems of A is called the radical of A and it is denoted by Rad(A).
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Proposition 3.5. If A is a perfect pseudo-BCK(pP) algebra, then Rad(A) = D(A).

Proof. By theorem 3.1 it follows that D(A) is the unique maximal deductive system
of A, so Rad(A) = D(A). ¤
Example 3.3. Consider the perfect pseudo-BCK(pP) A1 from Example 2.5. One
can easily check that Rad(A1) = Radn(A1) = D(A1) = {a1, a2, b2, s, a, b, n, c, d, m, 1}.
Remark 3.1. If A is a local pseudo-BCK(pP) algebra and x ∈ Rad(A)∗, y ∈ A such
that y ≤ x, then y ∈ Rad(A)∗.

Theorem 3.2. ([6]) If A is a perfect pseudo-BCK(pP) algebra, then Rad(A) is a
normal deductive system of A.

Remark 3.2. If the pseudo-BCK(pP) algebra A is not perfect, then the above result
is not always valid. Indeed, consider the pseudo-BCK(pP) algebra A from Example
2.4. Since A is not good, it is not a perfect pseudo-BCK(pP) algebra. Moreover, D =
{a2, s, a, b, n, c, d, 1} is the unique maximal deductive system of A, so Rad(A) = D.
But D is not a normal deductive system.

Definition 3.4. A pseudo-BCK(pP) algebra A is called peculiar if it satisfies the
following conditions:
(1) A is a local good pseudo-BCK(pP) algebra;
(2) there is x ∈ A \ {1} such that ord(x) = ∞;
(3) there is x ∈ A such that ord(x) < ∞ and (ord(x−) < ∞ or ord(x∼) < ∞).

Example 3.4. a) The pseudo-BCK(pP) algebra A1 from Example 2.5 is not peculiar.
Indeed, the only element x ∈ A1 such that ord(x) < ∞ is x = 0, but ord(0−) =
ord(0∼) = ord(1) = ∞. Hence, A1 does not satisfy the condition (3) in the definition
of a peculiar pseudo-BCK(pP) algebra.
b) The pseudo-BCK(pP) algebra A from Example 2.4 is peculiar. Indeed, conditions
(1)− (3) in the definition of a peculiar pseudo-BCK(pP) algebra are satisfied:
(1) A is a local pseudo-BCK(pP) algebra (see Example 3.1);
(2) ord(a2) = ∞;
(3) ord(a1) < ∞ and ord(a−1 ) = ord(a1) < ∞.

We denote by:
PF− the class of perfect pseudo-BCK(pP) algebras;
LF− the class of locally finite pseudo-BCK(pP) algebras;
PC− the class of peculiar pseudo-BCK(pP) algebras.

Theorem 3.3. Let A be a local pseudo-BCK(pP) algebra, A 6= L2 = {0, 1}. Then
exactly one of the following holds:
(1) A ∈ PF ;
(2) A ∈ LF ;
(3) A ∈ PC.
Proof. Assume that A /∈ PF and A /∈ LF . Since A /∈ LF , it follows that there is
x ∈ A \ {1} such that ord(x) = ∞. From A /∈ PF we get that there is x ∈ A such
that ord(x) < ∞ and (ord(x−) < ∞ or ord(x∼) < ∞). Thus, A ∈ PC.
From the definitions of the classes PF , LF and PC it follows that

PC ∩ LF = PC ∩ PF = ∅.
We prove that A ∈ PF ∩ LF = L2.
Obviously, L2 is perfect and locally finite.
Let A 6= L2 = {0, 1} be a locally finite pseudo-BCK(pP) algebra. Hence, there is
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x ∈ A such that x 6= 0 and x 6= 1. Since a 6= 0, we have a− 6= 1. Indeed, if a− = 1,
we get 1 = a → 0, so a = 1¯ a ≤ 0, so a = 0, a contradiction.
Since A is locally finite, we get that ord(x) < ∞ and ord(a−) < ∞.
It follows that A is not perfect. Hence, A ∈ PF ∩ LF = L2.
Thus, exactly one of (1), (2), (3) holds. ¤
Definition 3.5. A pseudo-BCK(pP) algebra is called bipartite if there exists a
maximal filter F of A such that F ∪ F ∗− = F ∪ F ∗∼ = A.
A pseudo-BCK(pP) algebra A is called strongly bipartite if F ∪ F ∗− = F ∪ F ∗∼ = A
for any maximal filter F of A.

Theorem 3.4. Any perfect pseudo-BCK(pP) algebra A is strongly bipartite.

Proof. Since A is local, it follows that D(A) is the unique maximal filter of A.
Applying Corollary 3.3 we have D(A) ∪D(A)∗− = D(A) ∪D(A)∗∼ = A. Thus, A is a
strongly bipartite pseudo-BCK(pP) algebra. ¤

4. Existence of Bosbach states on perfect pseudo-BCK algebras with pseudo-
product

In this section we prove that any perfect pseudo-BCK algebra with pseudo-product
admits at least a Bosbach state.
First, we recall some notions and results regarding the Bosbach state on pseudo-BCK
algebras. For more details about this subject we refer the reader to [4].

Definition 4.1. A Bosbach state on a bounded pseudo-BCK algebra A is a function
s : A −→ [0, 1] such that the following conditions hold for any x, y ∈ A :
(B1) s(x) + s(x → y) = s(y) + s(y → x);
(B2) s(x) + s(x Ã y) = s(y) + s(y Ã x);
(B3) s(0) = 0 and s(1) = 1.

Example 4.1. Consider the bounded pseudo-BCK lattice A1 from Example 2.6. The
function s : A1 −→ [0, 1] defined by: s(0) = 0, s(a) = 1, s(b) = 1, s(c) = 1, s(d) =
1, s(1) = 1 is the unique Bosbach state on A1.

Not every bounded pseudo-BCK algebra however has a Bosbach state on it.

Example 4.2. Consider the bounded pseudo-BCK lattice A from Example 2.2.
One can prove that A has no Bosbach states on it.
Indeed, assume that A admits a Bosbach state s such that s(0) = 0, s(a) = α, s(b) = β,
s(c) = γ, s(1) = 1. From s(x) + s(x → y) = s(y) + s(y → x), taking x = a, y = 0,
x = b, y = 0 and respectively x = c, y = 0 we get α = 1, β = 0, γ = 1.
On the other hand, taking x = b, y = 0 in s(x) + s(x Ã y) = s(y) + s(y Ã x) we get
β + 0 = 0 + 1, so 0 = 1 which is a contradiction. Hence, A does not admit a Bosbach
state.

Proposition 4.1. ([4]) Let A be a bounded pseudo-BCK algebra and s a Bosbach
state on A. Then, for all x, y ∈ A the following properties hold:
(1) y ≤ x implies s(y) ≤ s(x) and s(x → y) = s(x Ã y) = 1− s(x) + s(y);
(2) s(x → y) = 1− s(x ∨ y) + s(y) and s(x Ã y) = 1− s(x ∪ y) + s(y);
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(3) s(x ∨ y) = s(y ∨ x) and s(x ∪ y) = s(y ∪ x);
(4) s(x−) = s(x∼) = 1− s(x);
(5) s(x−∼) = s(x∼−) = s(x−−) = s(x∼∼) = s(x);
(6) s(x− Ã y−) = s(y−∼ → x−∼) = s(y → x−∼) and

s(x∼ → y∼) = s(y∼− Ã x∼−) = s(y Ã x∼−);
(7) s(x → y∼) = s(y∼− Ã x−) = s(x−∼ → y∼) and

s(x Ã y−) = s(y−∼ → x∼) = s(x∼− Ã y−).

Theorem 4.1. Any perfect pseudo-BCK(pP) algebra admits a Bosbach state.

Proof. Let A be a perfect pseudo-BCK(pP) algebra, so A = Rad(A)∪Rad(A)∗. Con-
sider the map s : A → [0, 1] defined by

s(x) =
{

1, if x ∈ Rad(A)
0, if x ∈ Rad(A)∗.

We will show hat s is a Bosbach state on A. Obviously, s(1) = 1 and s(0) = 0.
In order to prove conditions (B1) and (B2) we consider the following cases :
(1) x, y ∈ Rad(A).
Obviously, s(x) = s(y) = 1. Since Rad(A) is a filter of A and x ≤ y → x, y ≤ x → y,
it follows that x → y, y → x ∈ Rad(A). Hence, s(x → y) = s(y → x) = 1.
Similarly s(x Ã y) = s(y Ã x) = 1, so conditions (B1) and (B2) are verified.
(2) x, y ∈ Rad(A)∗.
In this case s(x) = s(y) = 0 and we will prove that x → y, y → x ∈ Rad(A). Indeed,
assume that x → y ∈ Rad(A)∗. Since x ≤ x−∼, it follows that x−∼ → y ≤ x → y,
so x−∼ → y ∈ Rad(A)∗. But, x− ≤ x−∼ → y, hence x− ∈ Rad(A)∗, that is,
x ∈ Rad(A) which is a contradiction. It follows that x → y ∈ Rad(A) and similarly,
y → x ∈ Rad(A). Hence, s(x → y) = s(y → x) = 1. In the same way we can prove
that s(x Ã y) = s(y Ã x) = 1, so (B1) and (B2) are verified.
(3) x ∈ Rad(A), y ∈ Rad(A)∗.
Obviously, s(x) = 1 and s(y) = 0. Because x ≤ y → x we get y → x ∈ Rad(A).
We show that x → y ∈ Rad(A)∗. Indeed, assume that x → y ∈ Rad(A).
Because y ≤ y−∼ we have x → y ≤ x → y−∼, so x → y−∼ ∈ Rad(A). It means that
(x ¯ y∼)− ∈ Rad(A), that is, x ¯ y∼ ∈ Rad(A)∗. On the other hand, since Rad(A)
is a filter of A and x, y∼ ∈ Rad(A) we have x ¯ y∼ ∈ Rad(A). We conclude that
x → y ∈ Rad(A)∗, so s(x → y) = 0 and s(y → x) = 1. Similarly, s(x Ã y) = 0 and
s(y Ã x) = 1. Thus, conditions (B1) and (B2) are verified.
(4) x ∈ Rad(A)∗, y ∈ Rad(A).
This case can be treated in the same manner as the case (3).
We conclude that s is a Bosbach state on A. ¤
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