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1. Introduction

Recently, new developments of the theory and applications of dynamic derivatives
on time scales were made. The study provides a unification and extension of tradi-
tional differential and difference equations and, in the same time, it is an unification
of the discrete theory with the continuous theory, from the theoretical point of view.
Moreover, it is a crucial tool in many computational and numerical applications.
Based on the well-known ∆ (delta) and ∇ (nabla) dynamic derivatives, a combined
dynamic derivative, so called 3α (diamond-α) dynamic derivative, was introduced as
a linear combination of ∆ and ∇ dynamic derivatives on time scales. The diamond-α
dynamic derivative reduces to the ∆ derivative for α = 1 and to the ∇ derivative
for α = 0. On the other hand, it represents a “weighted dynamic derivative” on any
uniformly discrete time scale when α = 1/2. See [1], [2] and [4] for the basic rules of
the calculus associated with the diamond-α dynamic derivatives.

In [7], A. M. Ostrowski proved an interesting and useful inequality

Theorem 1.1. Let f : [a, b] ⊆ R→ R continuous on [a, b] and differentiable on (a, b),
whose derivative f ′ : (a, b) → R is bounded on (a, b). Then, for all x ∈ [a, b] we have

∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤

1

4
+

(
x− a+b

2

b− a

)2

 (b− a)‖f ′‖∞. (1)

Here ‖f ′‖∞ = supx∈(a,b) |f ′(x)|
In [6], B. G. Pachpatte improved Ostrowski’s inequality and gave some applications.
The aim of this paper is to prove a variant of Ostrowski’s inequality for the time

scales.
In section 2 we review the necessary background on time scales. In section 3 we

prove our main results and detail several applications.
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2. Preliminaries

A time scale (or measure chain) is any nonempty closed subset T of R (endowed
with the topology of subspace of R).

Throughout this paper T will denote a time scale.
For all t, r ∈ T, we define the forward jump operator σ and the backward jump

operator ρ by the formulas:

σ(t) = inf{τ ∈ T|τ > t} ∈ T, ρ(r) = sup{τ ∈ T|τ < r} ∈ T.

In this definition
inf ∅ := supT, sup ∅ := inf T.

If σ(t) > t, then t is said to be right-scattered, and if ρ(r) < r, then r is said to
be left-scattered. Points that are simultaneously right-scattered and left-scattered are
called isolated. If σ(t) = t, then t is said to be right dense, and if ρ(r) = r, then r
is said to be left dense. Points that are simultaneously right-dense and left-dense are
called dense.

The mappings µ, ν : T→ [0, +∞) defined by

µ(t) := σ(t)− t

and
ν(t) := t− ρ(t)

are called, respectively, the forward and backward graininess functions.
If T has a right-scattered minimum m, then define Tκ = T − {m}; otherwise

Tκ = T. If T has a left-scattered maximum M , then define Tκ = T−{M}; otherwise
Tκ = T. Finally, put Tκ

κ = Tκ ∩ Tκ.

Definition 2.1. For f : T→ R and t ∈ Tκ, we define the delta derivative of f in t,
to be the number denoted f∆(t) (when it exists), with the property that, for any ε > 0,
there is a neighborhood U of t such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| < ε|σ(t)− s|
for all s ∈ U .

For f : T → R and t ∈ Tκ, we define the nabla derivative of f in t, to be the
number denoted f∇(t) (when it exists), with the property that, for any ε > 0, there is
a neighborhood V of t such that

|[f(ρ(t))− f(s)]− f∇(t)[ρ(t)− s]| < ε|ρ(t)− s|
for all s ∈ V .

We say that f is delta differentiable on Tκ, provided f∆(t) exists for all t ∈ Tκ and
that f is nabla differentiable on Tκ, provided f∇(t) exists for all t ∈ Tκ.

If T = R, then
f∆(t) = f∇(t) = f ′(t).

If T = Z, then
f∆(t) = f(t + 1)− f(t)

is the forward difference operator, while

f∇(t) = f(t)− f(t− 1)

is the backward difference operator.
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For a function f : T → R we define fσ : T → R by fσ(t) = f(σ(t)) for all t ∈ T,
(that is fσ = f ◦ σ). We also define fρ : T→ R by fρ(t) = f(ρ(t)) for all t ∈ T, (that
is fρ = f ◦ ρ).

For all t ∈ Tκ we have the following properties:
(i) If f is delta differentiable at t, then f is continuous at t.
(ii) If f is left continuous at t and t is right-scattered, then f is delta differentiable

at t with f∆(t) = fσ(t)−f(t)
µ(t) .

(iii) If t is right-dense, then f is delta differentiable at t if and only if the limit
lims→t

f(t)−f(s)
t−s exists as a finite number. In this case, f∆(t) = lims→t

f(t)−f(s)
t−s .

(iv) If f is delta differentiable at t, then fσ(t) = f(t) + µ(t)f∆(t).
In the same manner, for all t ∈ Tκ we have the following properties:

(i) If f is nabla differentiable at t, then f is continuous at t.
(ii) If f is right continuous at t and t is left-scattered, then f is nabla differentiable

at t with f∇(t) = f(t)−fρ(t)
ν(t) .

(iii) If t is left-dense, then f is nabla differentiable at t if and only if the limit
lims→t

f(t)−f(s)
t−s exists as a finite number. In this case, f∇(t) = lims→t

f(t)−f(s)
t−s .

(iv) If f is nabla differentiable at t, then fρ(t) = f(t) + ν(t)f∇(t).

Definition 2.2. A function f : T→ R is called rd-continuous, if it is continuous at
all right-dense points in T and its left-sided limits are finite at all left-dense points in
T. We denote by Crd the set of all rd-continuous functions.

A function f : T → R is called ld-continuous, if it is continuous at all left-dense
points in T and its right-sided limits are finite at all right-dense points in T. We
denote by Cld the set of all ld-continuous functions.

It is easy to remark that the set of continuous functions on T contains both Crd

and Cld.

Definition 2.3. A function F : T → R is called a delta antiderivative of f : T → R
if F∆(t) = f(t), for all t ∈ Tκ. Then, we define the delta integral by

∫ t

a
f(s)∆s =

F (t)− F (a).
A function G : T→ R is called a nabla antiderivative of f : T→ R if G∇(t) = f(t),

for all t ∈ Tκ. Then, we define the nabla integral by
∫ t

a
f(s)∆s = G(t)−G(a).

According to Theorem 1.74 in [2], every rd-continuous function has a delta anti-
derivative and every ld-continuous function has a nabla antiderivative.

Theorem 2.1. (Theorem 1.75, in [2])
(i) If f ∈ Crd and t ∈ Tκ , then

∫ σ(t)

t

f(s)∆s = µ(t)f(t).

(ii) If f ∈ Cld and t ∈ Tκ , then
∫ t

ρ(t)

f(s)∇s = ν(t)f(t).

Proof. We will prove only the assertion (ii), the other one can be treated in a similar
manner. Let F be the nabla antiderivative of f , and

∫ t

ρ(t)

f(s)∇s = F (t)− F (ρ(t)) = ν(t)F∇(t) = ν(t)f(t).

¤
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Theorem 2.2. (Theorem 1.77, in [2]) If a, b, c ∈ T, β ∈ R and f, g ∈ Crd, then
(i)

∫ b

a
(f(t) + g(t))∆t =

∫ b

a
f(t)∆t +

∫ b

a
g(t)∆t;

(ii)
∫ b

a
βf(t)∆t = β

∫ b

a
f(t)∆t;

(iii)
∫ b

a
f(t)∆t = − ∫ a

b
f(t)∆t;

(iv)
∫ b

a
f(t)∆t =

∫ c

a
f(t)∆t +

∫ b

c
f(t)∆t;

(v)
∫ b

a
f(σ(t))g∆(t)∆t = (fg)(b)− (fg)(a)− ∫ b

a
f∆(t)g(t)∆t;

(vi)
∫ b

a
f(t)g∆(t)∆t = (fg)(b)− (fg)(a)− ∫ b

a
f∆(t)g(σ(t))∆t;

(vii)
∫ a

a
f(t)∆t = 0;

(viii) if f(t) ≥ 0 for all t, then
∫ b

a
f(t)∆t ≥ 0;

(ix) if f(t) ≤ g(t) for all t, then
∫ b

a
f(t)∆t ≤ ∫ b

a
g(t)∆t;

(x) if f(t) ≥ 0 for all t, then f ≡ 0 if and only if
∫ b

a
f(t)∆t = 0;

(xi) if |f(t)| ≤ g(t) on [a, b), then
∣∣∣∣∣
∫ b

a

f(t)∆t

∣∣∣∣∣ ≤
∫ b

a

g(t)∆t.

In Theorem 2.2, (xi), if we choose g(t) = |f(t)| on [a, b] we obtain
∣∣∣∣∣
∫ b

a

f(t)∆t

∣∣∣∣∣ ≤
∫ b

a

|f(t)|∆t. (2)

A similar theorem works for the nabla antiderivative, for f, g ∈ Cld. Now, we give a
brief introduction of the diamond-α dynamic derivative and the diamond-α integral.

Definition 2.4. Let T be a time scale and for s, t ∈ Tκ
κ we define µts = σ(t) − s,

νts = ρ(t)− s. For f : T→ R we define the diamond-α dynamic derivative of f in t
to be number denoted f¦α(t) (when it exists), with the property that, for any ε > 0,
there is a neighborhood U of t such that for all s ∈ U

|α[f(σ(t))− f(s)]νts + (1− α)[f(ρ(t))− f(s)]µts − f3α(t)µtsνts| < ε|µtsνts|.
A function is called diamond -α differentiable on Tκ

κ if f3α(t) exists for all t ∈ Tκ
κ.

If f : T → R is differentiable on T in the sense of ∆ and ∇, then f is diamond-α
differentiable at t ∈ Tκ

κ, and the diamond-α derivative f3α(t) is given by

f3α(t) = αf∆(t) + (1− α)f∇(t), 0 ≤ α ≤ 1.

As it can be seen, f is diamond-α differentiable, for 0 ≤ α ≤ 1 if and only if f is ∆
and ∇ differentiable. It is obvious that for α = 1 the diamond-α derivative reduces
to the standard ∆ derivative and for α = 0 the diamond-α derivative reduces to the
standard ∇ derivative. For α ∈ (0, 1) it represents a “weighted dynamic derivative”.

We present here some operations with the diamond-α derivative. For that, let
f, g : T→ R be diamond-α differentiable at t ∈ T. Then,
• f + g : T→ R is diamond-α differentiable at t ∈ T and

(f + g)3α(t) = f3α(t) + g3α(t)

• if c ∈ R and cf : T→ R is diamond-α differentiable at t ∈ T and

(cf)3α(t) = cf3α(t).

• fg : T→ R is diamond-α differentiable at t ∈ T and

(fg)3α(t) = f3α(t)g(t) + αfσ(t)g∆(t) + (1− α)fρ(t)g∇(t).
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Definition 2.5. Let f : T → R and a, b ∈ T, then the diamond-α integral of f from
a to b is defined by

∫ b

a

f(t)3αt = α

∫ b

a

f(t)∆t + (1− α)
∫ b

a

f(t)∇t, 0 ≤ α ≤ 1.

The combined derivative 3α is not a dynamic derivative, since we do not have a
3α anti-derivative. In general,

(∫ t

a

f(s)3αs

)3α

6= f(t), t ∈ R,

but we still have some of the ”classical” properties, as one can easily be deduced from
Theorem 2.2 and its analogue for the nabla integral.

Theorem 2.3. If a, b, c ∈ T, β ∈ R and f, g continuous functions, then
(i)

∫ b

a
(f(t) + g(t))3αt =

∫ b

a
f(t)3αt +

∫ b

a
g(t)3αt;

(ii)
∫ b

a
βf(t)3αt = β

∫ b

a
f(t)3αt;

(iii)
∫ b

a
f(t)3αt = − ∫ a

b
f(t)3αt;

(iv)
∫ b

a
f(t)3αt =

∫ c

a
f(t)3αt +

∫ b

c
f(t)3αt;

(v)
∫ a

a
f(t)3αt = 0;

(vi) if f(t) ≥ 0 for all t, then
∫ b

a
f(t)3αt ≥ 0;

(vii) if f(t) ≤ g(t) for all t, then
∫ b

a
f(t)3αt ≤ ∫ b

a
g(t)3αt;

(viii) if f(t) ≥ 0 for all t, then f ≡ 0 if and only if
∫ b

a
f(t)3αt = 0;

(ix) if |f(t)| ≤ g(t) on [a, b), then
∣∣∣∣∣
∫ b

a

f(t)3αt

∣∣∣∣∣ ≤
∫ b

a

g(t)3αt.

In Theorem 2.3, (ix), if we choose g(t) = |f(t)| on [a, b] we have
∣∣∣∣∣
∫ b

a

f(t)3αt

∣∣∣∣∣ ≤
∫ b

a

|f(t)|3αt. (3)

3. Main results

In this section we present an improved variant of Ostrowski’s inequality, for time
scales. For a function f : T → R, which is delta and nabla differentiable, we define
‖f∆‖∞ = supt∈Tκ |f∆(t)| and ‖f∇‖∞ = supt∈Tκ

|f∇(t)| . We also define ‖f3α‖∞ =
supt∈Tκ

κ
|f3α(t)|. Obviously,

‖f3α‖∞ = sup
t∈Tκ

κ

|αf∆(t) + (1− α)f∇(t)|

≤ α sup
t∈Tκ

κ

|f∆(t)|+ (1− α) sup
t∈Tκ

κ

|f∇(t)|

= α‖f∆‖∞ + (1− α)‖f∇‖∞.

(4)

We have equality in (4) if both f∆ and f∇ attain their maximum value at the same
point.

We need the following technical lemmas, which work for all time scales.

Lemma 3.1. Let f : T→ R be a continuous function and a, b ∈ T.
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(i) If f is nondecreasing on T then

(b− a)f(a) ≤
∫ b

a

f(t)∆t ≤
∫ b

a

f̃(t)dt ≤
∫ b

a

f(t)∇t ≤ (b− a)f(b),

where f̃ : R → R is a continuous nondecreasing function such that f(t) = f̃(t),
for all t ∈ T.

(ii) If f is nonincreasing on T then

(b− a)f(a) ≥
∫ b

a

f(t)∆t ≥
∫ b

a

f̃(t)dt ≥
∫ b

a

f(t)∇t ≥ (b− a)f(b),

where f̃ : R → R is a continuous nonincreasing function such that f(t) = f̃(t),
for all t ∈ T.

In both cases, there exists an αT ∈ [0, 1] such that
∫ b

a

f(t)3αT
t =

∫ b

a

f̃(t)dt.

Proof. (i) We start by noticing that if T = {a, b} then by Theorem 2.1, we have
∫ b

a

f(t)∆t =
∫ σ(a)

a

f(t)∆t = f(a)(b− a),

while, if T = [a, b] then ∫ b

a

f(t)∆t =
∫ b

a

f(t)dt.

It suffices to prove that, for monotone functions, the value of
∫ b

a
f(t)∆t, for a

general time scale T, remains between the values of
∫ b

a
f(t)∆t for T = {a, b} and for

T = [a, b].
Now, let f̃ : R → R be a continuous nondecreasing function such that f(t) =

f̃(t), for all t ∈ T. First, we will show that by adding a point or an interval, the
corresponding integral increases.

Let us suppose that we add a point c to T, where a < c < b. If T1 = T ∪ {c} and
c /∈ T is an isolated point of T1 (with

∫ b

a
f(t)∆1t the corresponding integral), then

∫ b

a

f(t)∆1t =
∫ c

a

f(t)∆1t +
∫ b

c

f(t)∆1t

=
∫ ρ(c)

a

f(t)∆1t +
∫ c

ρ(c)

f(t)∆1t +
∫ σ(c)

c

f(t)∆1t +
∫ b

σ(c)

f(t)∆1t

=
∫ ρ(c)

a

f(t)∆t +
∫ c

ρ(c)

f(t)∆1t +
∫ σ(c)

c

f(t)∆1t +
∫ b

σ(c)

f(t)∆t

=
∫ b

a

f(t)∆t−
∫ σ(c)

ρ(c)

f(t)∆t +
∫ c

ρ(c)

f(t)∆1t +
∫ σ(c)

c

f(t)∆1t

=
∫ b

a

f(t)∆t− f(ρ(c))(σ(c)− ρ(c)) + f(ρ(c))(c− ρ(c)) + f(c)(σ(c)− c)

=
∫ b

a

t∆t + (f(c)− f(ρ(c)))(σ(c)− c)

≥
∫ b

a

f(t)∆t.
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In the same manner, we prove that if we add an interval, the corresponding integral
remains in the same interval. So, let us denote T1 = T ∪ [c, d], with a < c < d < b
and T ∩ [c, d] = ∅ then
∫ b

a

f(t)∆1t

=
∫ ρ(c)

a

f(t)∆1t +
∫ c

ρ(c)

f(t)∆1t +
∫ d

c

f(t)∆1t +
∫ σ(d)

d

f(t)∆1t +
∫ b

σ(d)

f(t)∆1t

=
∫ ρ(c)

a

f(t)∆t +
∫ c

ρ(c)

f(t)∆1t +
∫ d

c

f(t)∆1t +
∫ σ(d)

d

f(t)∆1t +
∫ b

σ(d)

f(t)∆t

=
∫ b

a

f(t)∆t−
∫ σ(d)

ρ(c)

f(t)∆t +
∫ c

ρ(c)

f(t)∆1t +
∫ d

c

f(t)∆1t +
∫ σ(d)

d

f(t)∆1t

=
∫ b

a

f(t)∆t− f(ρ(c))(σ(d)− ρ(c)) + f(ρ(c))(c− ρ(c)) +
∫ d

c

f̃(t)dt + f(d)(σ(d)− d)

≥
∫ b

a

f(t)∆t− f(ρ(c))(d− c) + (d− c)f̃(s)

≥
∫ b

a

f(t)∆t,

where s ∈ (c, d) is the point from Mean Value Theorem.
Using the same methods, we show that if we ”extract” an isolated point or an

interval from an initial times scale, the corresponding integral decreases. And so, the
value of

∫ b

a
f(t)∆t is between its minimum value (corresponding to T = {a, b}) and

its maximum value (corresponding to T = [a, b]), that is

(b− a)f(a) ≤
∫ b

a

f(t)∆t ≤
∫ b

a

f̃(t)dt.

The proof is similar in the case of nonincreasing functions and also, for the nabla
integral. The final conclusion of the Lemma 3.1 is now clear if we take

αT =

∫ b

a
f̃(t)dt− ∫ b

a
f(t)∇t

∫ b

a
f(t)∆t− ∫ b

a
f(t)∇t

.

Then ∫ b

a

f̃(t)dt = αT

∫ b

a

f(t)∆t + (1− αT )
∫ b

a

f(t)∇t,

that is ∫ b

a

f(t)3αT t =
∫ b

a

f̃(t)dt.

¤

Remark 3.1. (i) If f is nondecreasing on T then for α ≤ αT , we have
∫ b

a

f(t)3αT
t ≥

∫ b

a

f̃(t)dt

while, if α ≥ αT , we have
∫ b

a

f(t)3αT
t ≤

∫ b

a

f̃(t)dt.
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(ii) If f is nonincreasing on T then for α ≤ αT , we have
∫ b

a

f(t)3αT
t ≤

∫ b

a

f̃(t)dt

while, if α ≥ αT , we have
∫ b

a

f(t)3αT
t ≥

∫ b

a

f̃(t)dt.

If T = [a, b] or if f is constant, then αT can be any real number from [0, 1].
Otherwise, αT ∈ (0, 1)

Now we will prove that if f : T→ R is a linear function, (that is f(t) = ut+v) then∫ b

a
f(t)∆t and

∫ b

a
f(t)∇t are symmetric with respect to

∫ b

a
f̃(t)dt, where f̃ : [a, b] → R

is the corresponding linear function, defined on the interval [a, b].

Lemma 3.2. Let f : T → R be a linear function and let f̃ : [a, b] → R be the
corresponding linear function. If

∫ b

a
f(t)∆t =

∫ b

a
f̃(t)dt − C, with C ∈ R, then∫ b

a
f(t)∇t =

∫ b

a
f̃(t)dt + C.

Proof. We will start by considering the case of f : T→ R, f(t) = t. If T = [a, b], then
c = 0 and the conclusion is clear. If T = [a, b]r (c, d), then

∫ b

a

t∆t =
∫ c

a

t∆t +
∫ d

c

t∆t +
∫ b

d

t∆t

=
∫ c

a

tdt +
∫ σ(c)

c

t∆t +
∫ b

d

tdt

=
∫ b

a

tdt−
∫ d

c

tdt + c(d− c)

=
∫ b

a

tdt− (d− c)
d + c

2
+ c(d− c)

=
∫ b

a

tdt− (d− c)2

2

while
∫ b

a

t∇t =
∫ c

a

t∇t +
∫ d

c

t∇t +
∫ b

d

t∇t

=
∫ c

a

tdt +
∫

ρ

(d)dt∇t +
∫ b

d

tdt

=
∫ b

a

tdt−
∫ d

c

tdt + d(d− c)

=
∫ b

a

tdt− (d− c)
d + c

2
+ d(d− c)

=
∫ b

a

tdt +
(d− c)2

2

and, obvious, if we choose C = (d−c)2

2 the conclusion is clear.
By repeating the same arguments several times, we can ”extract” any number of

intervals from [a, b] and get the same conclusion.
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If we ”extract” an interval, but we ”add” an isolated point (that is T = [a, b] r
((c, e) ∪ (e, d)) = [a, c] ∪ {e} ∪ [d, b]), then

∫ b

a

t∆t =
∫ c

a

t∆t +
∫ e

c

t∆t +
∫ d

e

t∆t +
∫ b

d

t∆t

=
∫ c

a

tdt +
∫ σ(c)

c

t∆t +
∫ σ(e)

e

t∆t +
∫ b

d

tdt

=
∫ b

a

tdt−
∫ d

c

tdt + c(e− c) + e(d− e)

=
∫ b

a

tdt− (d− c)
d + c

2
+ e(c + d)− c2 − e2

=
∫ b

a

tdt− d2

2
− c2

2
+ e(c + d)− e2

while
∫ b

a

t∇t =
∫ c

a

t∇t +
∫ e

c

t∇t +
∫ d

e

t∇t +
∫ b

d

t∇t

=
∫ c

a

tdt +
∫ e

ρ(e)

t∇t +
∫ d

ρ(d)

t∇t +
∫ b

d

tdt

=
∫ b

a

tdt−
∫ d

c

tdt + e(e− c) + d(d− e)

=
∫ b

a

tdt− (d− c)
d + c

2
− e(c + d) + d2 + e2

=
∫ b

a

tdt +
d2

2
+

c2

2
− e(c + d) + e2

and thus, for C = (e−c)2

2 + (d−e)2

2 we get the conclusion.
For a general linear function, f(t) = ut + v, we have

∫ b

a

f(t)∆t =
∫ b

a

(ut + v)∆t = u(
∫ b

a

tdt− C) + v(b− a) = u

∫ b

a

tdt− uC + v(b− a)

and
∫ b

a

f(t)∇t =
∫ b

a

(ut + v)∇t = u(
∫ b

a

tdt + C) + v(b− a) = u

∫ b

a

tdt + uC + v(b− a)

so that
∫ b

a
f(t)∆t =

∫ b

a
f̃(t)dt− uC and

∫ b

a
f(t)∇t =

∫ b

a
f̃(t)dt + uC. ¤

Definition 3.1. Let T be a time scale. We define the measure of graininess between
a and b to be the function G : T× T→ R+ by

G(a, b) =
∑

a≤t≤b

µ(t)2

2
=

∑

a≤t≤b

ν(t)2

2
.

In other words, the function G measures the square of distances between all scat-
tered points between a and b and it depends on the ”geometry” of the time scale
T.
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Remark 3.2. The difference between
∫ b

a
t∆t and

∫ b

a
tdt depends on the measure of

graininess function. In fact, we have

∫ b

a

t∆t =
∫ b

a

tdt−G(a, b).

The proof uses the same methods as the prof of Lemma 3.2, so we will omit the
details.

Notice that

∫ b

a

t∇t =
∫ b

a

tdt + G(a, b).

Based on the previous remarks, we can compute
∫ b

a
|t− s|3αs.

Corollary 3.1. Let T be a time scale. Then

∫ b

a

|t− s|3αs =
(x− a)2 + (b− x)2

2
+ (1− 2α)(G(x, b)−G(a, x))

where G is the function introduced in Definition 3.1.

Proof. Using Remark 3.2 we have

∫ b

a

|t− s|3αs =
∫ t

a

(t− s)3αs +
∫ b

t

(s− t)3αs

= t(t− a)−
∫ t

a

s3αs + t(b− t) +
∫ b

t

s3αs

=
(x− a)2 + (b− x)2

2
+ (1− 2α)(G(x, b)−G(a, x)).

¤

Now we are able to state our main result.

Theorem 3.1. Let f, g : T→ R be continuous functions on T, whose delta and nabla
derivative are bounded (i.e. ‖f∆‖∞, ‖g∆‖∞, ‖f∇‖∞, ‖g∇‖∞ < ∞). Then∣∣∣∣∣f(t)g(t)− 1

2(b− a)

[
g(t)

∫ b

a

f(s)3αs + f(t)
∫ b

a

g(s)3αs

]∣∣∣∣∣

≤ 1
2
{α[|g(t)|‖f∆‖∞ + |f(t)|‖g∆‖∞] + (1− α)[|g(t)|‖f∇‖∞ + |f(t)|‖g∇‖∞]}

·

1

4
+

(
t− a+b

2

b− a

)2

+ (1− 2α)
G(t, b)−G(a, t)

(b− a)2


 (b− a),

for any t ∈ T, where G is the measure of graininess between a and b.

Proof. For any t, s ∈ T with a ≤ t, s ≤ b we have the following

f(t)− f(s) =
∫ t

s

f∆(τ)∆τ (5)

and

g(t)− g(s) =
∫ t

s

g∆(τ)∆τ (6)
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If we multiply both sides of (5) and (6) by f(t) and g(t), respectively and summing
up , we get

2f(t)g(t)− [g(t)f(s) + f(t)g(s)] = g(t)
∫ t

s

f∆(τ)∆τ + f(t)
∫ t

s

g∆(τ)∆τ. (7)

And we do the same for nabla derivatives:

f(t)− f(s) =
∫ t

s

f∇(τ)∇τ (8)

and

g(t)− g(s) =
∫ t

s

g∇(τ)∇τ. (9)

If we multiply both sides of (8) and (9) by f(t) and g(t), respectively and summing,
we get

2f(t)g(t)− [g(t)f(s) + f(t)g(s)] = g(t)
∫ t

s

f∇(τ)∇τ + f(t)
∫ t

s

g∇(τ)∇τ. (10)

Multiplying both sides of (7) and (10) by α and 1− α, respectively and summing,
we get

2f(t)g(t)− [g(t)f(s) + f(t)g(s)] =g(t)
(

α

∫ t

s

f∆(τ)∆τ + (1− α)
∫ t

s

f∇(τ)∇τ

)

+ f(t)
(

α

∫ t

s

g∆(τ)∆τ + (1− α)
∫ t

s

g∇(τ)∇τ

)
.

(11)
If we take the diamond-α integral on both sides of (11) with respect to s, from a

to b, after dividing all by 2(b− a), we have:

f(t)g(t)− 1
2(b− a)

[
g(t)

∫ b

a

f(s)3αs + f(t)
∫ b

a

g(s)3αs

]

=
1

2(b− a)

∫ b

a

{
g(t)

(
α

∫ t

s

f∆(τ)∆τ + (1− α)
∫ t

s

f∇(τ)∇τ

)

+f(t)
(

α

∫ t

s

g∆(τ)∆τ + (1− α)
∫ t

s

g∇(τ)∇τ

)}
3αs.

(12)

Using the properties of modulus and (3) in (12), we have
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∣∣∣∣∣f(t)g(t)− 1
2(b− a)

[
g(t)

∫ b

a

f(s)3αs + f(t)
∫ b

a

g(s)3αs

]∣∣∣∣∣

≤ 1
2(b− a)

∫ b

a

{|g(t)|[α‖f∆‖∞ + (1− α)‖f∇‖∞]|t− s|

+ |f(t)|[α‖g∆‖∞ + (1− α)‖∇‖∞]|t− s|}3αs

=
1

2(b− a)
{|g(t)|[α‖f∆‖∞ + (1− α)‖f∇‖∞]

+ |f(t)|[α‖g∆‖∞ + (1− α)‖g∇‖∞]}
∫ b

a

|t− s|3αs

=
1

2(b− a)
{|g(t)|[α‖f∆‖∞ + (1− α)‖f∇‖∞]

+ |f(t)|[α‖g∆‖∞ + (1− α)‖g∇‖∞]}

·
[
(t− a)2 + (b− t)2

2
+ (1− 2α)(G(t, b)−G(a, t))

]

=
1
2
{|g(t)|[α‖f∆‖∞ + (1− α)‖f∇‖∞] + |f(t)|[α‖g∆‖∞ + (1− α)‖g∇‖∞]}

·

1

4
+

(
t− a+b

2

b− a

)2

+ (1− 2α)
G(t, b)−G(a, t)

(b− a)2


 (b− a)

and the conclusion is now clear. ¤

Remark 3.3. (i) If T = R and the functions are also differentiable, f∆ = f ′,
g∇ = g′ and G(a, t) = G(t, b) = 0, then we retrieve Theorem 2.1 from [6].

(ii) If T is a reunion of intervals from R, then the functions are not differentiable
in the end points of the intervales, but f∆ = f ′−, f∇ = f ′+, g∆ = g′−, g∇ = g′+,
then we get an extended variant of Theorem 2.1 from [6].

(iii) If α = 1
2 or if G(a, t) = G(t, b) for a time scale T (we call such time scale

G-symmetric to t), then we have

∣∣∣∣∣f(t)g(t)− 1
2(b− a)

[
g(t)

∫ b

a

f(s)3αs + f(t)
∫ b

a

g(s)3αs

]∣∣∣∣∣

≤ 1
2
{α[|g(t)|‖f∆‖∞ + |f(t)|‖g∆‖∞] + (1− α)[|g(t)|‖f∇‖∞ + |f(t)|‖g∇‖∞]}

·

1

4
+

(
t− a+b

2

b− a

)2

 (b− a).

(iv) If α = 1 and α = 0, then one can find the delta variant and the nabla variant,
respectively, of Theorem 3.1 for time scales.
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(v) If both f∆ and f∇ attain their maximum in the same point then we have
∣∣∣∣∣f(t)g(t)− 1

2(b− a)

[
g(t)

∫ b

a

f(s)3αs + f(t)
∫ b

a

g(s)3αs

]∣∣∣∣∣

≤ 1
2
{|g(t)|‖f3α‖∞ + |f(t)|‖g3α‖∞}

·
[

1
4

+
(t− a+b

2 )2

(b− a)2
+ (1− 2α)

G(t, b)−G(a, t)
(b− a)2

]
(b− a).

Remark 3.4. If we take g(t) = 1 for all t ∈ T, then g∆(t) = g∇(t) = 0 and Theorem
3.1 gives us a time scale version of Ostrowski’s inequality (5) (see also [7]):

∣∣∣∣∣f(t)− 1
b− a

∫ b

a

f(s)3αs

∣∣∣∣∣

≤ [αf∆‖∞ + (1− α)‖f∇‖∞]


1

4
+

(
t− a+b

2

b− a

)2

+ (1− 2α)
G(t, b)−G(a, t)

(b− a)2


 (b− a).

On the other hand, if we take the diamond-α integral in both sides of (11) we
obtain, after rewriting and using the properties of modulus, the following Grüs type
inequality

∣∣∣∣∣
1

b− a

∫ b

a

f(t)g(t)3αt−
(∫ b

a

f(t)3αt

)(
1

b− a

∫ b

a

g(t)3αt

)∣∣∣∣∣

≤ 1
2(b− a)2

∫ b

a

∫ b

a

{
α[|g(t)|‖f∆‖∞ + |f(t)|‖g∆‖∞]

+(1− α)[|g(t)|‖f∇‖∞ + |f(t)|‖g∇‖∞]
} |t− s|3αs3αt.

The following theorem is a stronger variant of the Theorem 3.1.

Theorem 3.2. Let f, g : T→ R be continuous functions on T whose delta and nabla
derivative are bounded. Then

∣∣∣∣∣f(t)g(t)− 1
b− a

[
g(t)

∫ b

a

f(s)3αs+

f(t)
∫ b

a

g(s)3αs

]
+

1
b− a

∫ b

a

f(s)g(s)3αs

∣∣∣∣∣

≤ 1
b− a

[α‖f∆‖∞ + (1− α)‖f∇‖∞][α‖g∆‖∞ + (1− α)‖g∇‖∞]
∫ b

a

|t− s|23αs,

for all t ∈ T with a ≤ t ≤ b.

Proof. Since we have the same hypotheses as in Theorem 3.1, it is obvious that
identities (5), (6), (8) and (9) remain true. Multiplying side by side (5) and (6), (8)
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and (9) , (5) and (9) and (6) and (8) respectively, we get

f(t)g(t)−[g(t)f(s)+f(t)g(s)]+f(s)g(s) =





{∫ t

s
f∆(τ)∆τ

}{∫ t

s
g∆(τ)∆τ

}
{∫ t

s
f∇(τ)∇τ

}{∫ t

s
g∇(τ)∇τ

}
{∫ t

s
f∆(τ)∆τ

}{∫ t

s
g∇(τ)∇τ

}
{∫ t

s
f∇(τ)∇τ

}{∫ t

s
g∆(τ)∆τ

}
.

(13)

Multiplying the first and the third identity with α and 1 − α respectively, and
adding them, then doing the same operation with the second and the forth identities
in (13), we get

f(t)g(t)− [g(t)f(s) + f(t)g(s)] + f(s)g(s) =
{∫ t

s

f∆(τ)∆τ

}

·
{

α

∫ t

s

g∆(τ)∆τ + (1− α)
∫ t

s

g∇(τ)∇τ

} (14)

and

f(t)g(t)− [g(t)f(s) + f(t)g(s)] + f(s)g(s) =
{∫ t

s

f∇(τ)∇τ

}

·
{

α

∫ t

s

g∆(τ)∆τ + (1− α)
∫ t

s

g∇(τ)∇τ

}
.

(15)

Multiplying the identity from (14) with α and the identity from (15) with 1 − α,
after summing them, we get

f(t)g(t)− [g(t)f(s) + f(t)g(s)] + f(s)g(s)

=
{

α

∫ t

s

f∆(τ)∆τ + (1− α)
∫ t

s

f∇(τ)∇τ

}
·
{

α

∫ t

s

g∆(τ)∆τ + (1− α)
∫ t

s

g∇(τ)∇τ

}
.

(16)
Taking the diamond-α integral on both sides of (16) with respect to s, from a to

b, we have after simplification by (b− a) :

f(t)g(t)− 1
b− a

[
g(t)

∫ b

a

f(s)3αs+

f(t)
∫ b

a

g(s)3αs

]
+

1
b− a

∫ b

a

f(s)g(s)3αs

≤ 1
b− a

∫ b

a

{
α

∫ t

s

f∆(τ)∆τ + (1− α)
∫ t

s

f∇(τ)∇τ

}

·
{

α

∫ t

s

g∆(τ)∆τ + (1− α)
∫ t

s

g∇(τ)∇τ

}
3αs.

(17)

Taking the modulus in (17) and using its properties and (3), we obtain the conclu-
sion. ¤

Remark 3.5. (i) If T = R and the functions f, g are also differentiable, f∆ = f∇ =
f ′, g∆ = g∇ = g′, then we get Theorem 2.3 in [6].
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(ii) If T is a reunion of intervals for R and the functions are not differentiable in the
end points, we have f∆ = f ′−, f∇ = f ′+, g∆ = g′−, g∇ = g′+ in that points and
so, we get an extended variant of Theorem 2.3 in [6].

(iii) We have:

∫ b

a

|t− s|23αs =
∫ t

a

(t− s)23αs +
∫ b

t

(s− t)23αs.

The function s 7→ (t − s)2 is nonincreasing on [a, t] and s 7→ (s − t)2 is nonde-
creasing on [t, b]. By Remark 3.1, there exist an α1 ∈ [0, 1] and an α2 ∈ [0, 1]
such that

∫ t

a

(t− s)23αs ≤ (t− a)3

3
for all α ≤ α1

and ∫ t

a

(s− t)23αs ≤ (b− t)3

3
for all α ≥ α2.

Thus∣∣∣∣∣f(t)g(t)− 1
b− a

[
g(t)

∫ b

a

f(s)3αs + f(t)
∫ b

a

g(s)3αs

]
+

1
b− a

∫ b

a

f(s)g(s)3αs

∣∣∣∣∣

≤ 1
b− a

[α‖f∆‖∞ + (1− α)‖f∇‖∞][α‖g∆‖∞ + (1− α)‖g∇‖∞]
[
(t− a)3 + (b− t)3

3

]
,

for all α ∈ [α2, α1].
These α1 and α2 depend on the graininess of the time scale T.

(iv) If α = 1 and α = 0, then one can find the delta variant and the nabla variant,
respectively, of Theorem 3.2 for time scales.

(v) If both f∆ and f∇ attain their maximum value in the same point then we have

∣∣∣∣∣f(t)g(t)− 1
b− a

[
g(t)

∫ b

a

f(s)3αs + f(t)
∫ b

a

g(s)3αs

]
+

1
b− a

∫ b

a

f(s)g(s)3αs

∣∣∣∣∣

≤ 1
b− a

‖f3α‖∞‖g3α‖∞
∫ b

a

|t− s|23αs.

Remark 3.6. Taking the diamond-α integral on both sides of (16) with respect to t,
(from a to b), and using the properties of the modulus we get (after simplification by
(b− a)):

∣∣∣∣∣
1

b− a

∫ b

a

f(t)g(t)3αt−
(

1
b− a

∫ b

a

f(t)3αt

)(
1

b− a

∫ b

a

g(t)3αt

)∣∣∣∣∣

≤ 1
b− a

[α‖f∆‖∞ + (1− α)‖f∇‖∞][α‖g∆‖∞ + (1− α)‖g∇‖∞]

·
∫ b

a

∫ b

a

|t− s|23αs3αt.

The last inequality is a Čebyšev type inequality. For T = R, we retrieve the well
known Čebyšev inequality (see, for example [6], Remark 2.4).
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