Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 52(2), 2025, Pages 566-581, DOI: 10.52846/ami.v52i2.2249
ISSN: 1223-6934

Convergence and Well-posedness Analysis of a Nonlinear
Elliptic System
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ABSTRACT. We consider two real Hilbert spaces X and Y and a nonlinear elliptic system
governed by two sets of constraints K C X and W C Y. We prove that, under appro-
priate assumptions, the system has a unique solution (u,y) € K x W. Then, we provide
necessary and sufficient conditions which guarantee the convergence of an arbitrary sequence
(un,pn) € X x Y to the solution (u,¢). The proofs are based on standard results on el-
liptic variational inequalities, various estimates and arguments of convex analysis. Next, we
introduce two concepts of well-posedness for the system, compare them, and derive the corre-
sponding well-posedness results. Our results can be applied in the study of various problems
arising and Mechanics and Physics. To provide an example we consider a mathematical model
which describes the frictionless unilateral contact of a piezoelectric body with an insulated
foundation.
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1. Introduction

Nonlinear systems arise in the study of various mathematical models which describe
a large number of physical settings. References in the field are [21, 22], for instance,
where various existence and uniqueness results have been obtained. Comprehensive
references concerning variational analysis of problems arising in Physics and Mechan-
ics are the books [3, 6, 7, 13, 17]. Results on the numerical approach of nonlinear
systems systems, including error estimates for semidiscrete schemes, discrete schemes
and/or numerical simulations, have been provided in [9, 11, 12, 18], for instance.
Besides the existence and uniqueness of the solution, convergence results represent
an important topic in the study of nonlinear problems and, in particular, in the study
of nonlinear systems. Examples of convergence results abound in Nonlinear Analysis
and Mechanics. The convergence of the solution of a penalty problem to the solution
of the original one as the penalty parameter converge to zero, the convergence of
the solution of a discrete problem to the solution of the continuous problem as the
discretization parameter converges, the convergence of the solution of a frictional

Received September 29, 2025. Accepted October 11, 2025.

This work was supported by the European-funded program ACROSS - European Cross Border
University including the University of Craiova, Romania, and the University of Perpignan Via
Domitia, France.

*Corresponding author: sofonea@univ-perp.fr

566



CONVERGENCE AND WELL-POSEDNESS ANALYSIS OF A NONLIN. ELLIPTIC SYSTEM 567

contact model to the solution of a frictionless one as the coefficient of friction vanishes,
and the convergence of a viscoelastic problem to the solution of an elastic problem
as the viscosity tensor vanishes represent just some simple examples, among many
others. References on this topic include [1, 3, 4, 12, 14]. Nevertheless, in most of these
references, only sufficient conditions which guarantee the corresponding convergence
results have been considered.

The problem of establishing convergence criteria, i.e., necessary and sufficient con-
ditions for convergence, is an important topic which, at the best of our knowledge, is
widely open. The reason is that such criteria depend on the structure of the problem
and the assumptions on the data and, therefore, each criteria is obtained by using
specific functional arguments, which have to be adapted from case to case. Results on
this direction have been obtained in [2, 23, 24] where convergence criteria have been
obtained for elliptic quasivariational inequalities, elliptic hemivariational inequalities
and history-dependent variational inequalities, respectively. There, besides the state-
ment and the proof of convergence criteria, well-posedness results have been obtained
and various applications have been given.

The well-posedness concepts of nonlinear problems depend on the problem con-
sidered, vary from author to author, and even from paper to paper. References in
the field are the papers [8, 10, 15, 16] as well as the books [5, 19, 20], for instance.
Nevertheless, most of these concepts are based on two main ingredients: the existence
and uniqueness of the solution to the corresponding problem and the convergence to
it of a special class of sequences, the so-called approximating sequences.

In this current paper we continue our research started in [2, 23, 24]. More precisely,
the aim of this paper, described below, is three fold. The first one is to study a
nonlinear system in real Hilbert spaces, governed by two sets of constraints and four
bilinear forms. Thus, besides the unique solvability of the system, we provide a
convergence criterion to its solution. We then use this criterion to introduce two
well-posedness concepts in the study of the system and we prove that, under the
considered assumptions, the second concept is the best one which can be introduced
in the study this problem. This represents our second aim in this paper. Our third
aim is to provide an application of these abstract results in the study of a contact
model with unilateral constraints. This allows us to prove the continuous dependence
of the solution with respect to the data. Contact problems involving deformable
bodies abound in industry and everyday life. Because of the importance of contact
processes in structural and mechanical systems, a considerable effort has been put into
their modeling and analysis, and the literature in the field is extensive. References
include the books [3, 6, 7, 20, 21, 22], for instance. The numerical analysis of the
contact problems, including numerical simulations and examples arising in engineering
sciences, can be found in [12, 14, 17, 18].

The rest of the manuscript is structured as follows. In Section 2 we introduce
the nonlinear system we consider, list the assumptions on the data and prove an
existence and uniqueness result, Theorem 2.1. Then, in Section 3 we state our main
abstract result, Theorem 3.1. It represents a convergence criterion to the solution.
We apply this abstract result in the Section 4 which is dedicated to the well-posedness
analysis of the system. Finally, in Section 5 we introduce a mathematical model of
piezoelectic contact. It is stated in a variational formulation and it describes the
frictionless contact of an electro-elastic body with an insulator obstacle. We use our
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abstract results in Sections 2, 3 and 4 in the analysis of this model. In this way
prove its unique weak solvability and we deduce a continuous dependence result for
the solution.

2. The system

Let X and Y be two real Hilbert spaces, endowed with the inner products (-, -) x and
(-, ")y, respectively. We denote by || - ||x and || - ||y the associated norms on these
spaces. Let a : X X X 2R, b: Y XY 5 R, c: Y xX >Randd: X XY — R be
four bilinear forms, K C X, W CY, f € X and ¢ € Y. With these data we consider
the following nonlinear system.

Problem P. Find two elements u € K and ¢ € W such that
a(u, v —u)+clp,v—u) > (fv—u)x VoveEK, (1)
b, — @) +du, ¥ — ) > (.9 — )y VY EW. (2)

In the study of Problem P we consider the following assumptions on the data.

K is a nonempty closed convex subset on X. (3)
W is a nonempty closed convex subset on Y. (4)
a:X x X — R is a bilinear continuous coercive form with (5)

constant m, > 0, that is a(v,v) > mg|jv[|% Yv € X.

b:Y xY — R is a bilinear continuous coercive form with (6)
constant my, > 0, that is b(1), ) > my||¥||3 Vi €Y.

¢:Y x X — R is a bilinear continuous form. (7)
d: X xY — R is a bilinear continuous form. (8)
d(u, ¢) + c(p,u) > —a(lulk + lell}) YueX, pey,
{ with some « > 0 such that o < min {mg,mp}.
Moreover, we recall that
feX, (10)
gey. (11)
The unique solvability of Problem P is given by the following result.

Theorem 2.1. Assume (3)—(11). Then, there exists a unique solution (u,p) € K xW
to Problem P.

Proof. We use standard arguments on elliptic variational inequalities. To this end we
consider the product space Z = X x Y, endowed with the canonical inner product

(sz,)Z - (uav)X + (%#’)Y V2= (u7§0)v 7 = (’U,l/}) €z
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and the associated norm || - ||z. Moreover, we introduce the set J = K x W C Z, the
element p = (f,¢) € Z and the form e : Z x Z — R defined by

e(z, Z/) = a(u,v)x + b(%iﬁ) + 0(9071}) + d(u,’L/J) Vz=(u, 90)7 7= (U7¢) €Z. (12)

Then, using assumptions (3)—(8) it is easy to see that J is a nonempty closed convex
subset of the space Z and e is a bilinear continuous form on Z. Moreover,

e(z,2) > (min {mg,mp} — )||2]|3 Vz=(u,0) €Z
and, therefore, (9) shows that the form e is coercive, with constant
m = min {mg, mp} — o > 0. (13)

Therefore, using (10), (11) and a standard existence and uniqueness result (see
Theorem 2.1 in [21], for instance), we deduce the existence of a unique element
z = (u,¢) € Z such that

z€J, e(z,2 —2)>(p,2 —2)z V= (v,¢)e€ (14)

We now succesively use inequality (14) with 2/ = (v,¢) and w = (u,®) where v
and v are arbitrary elements in K and W, respectively. Then, we combine the
resulting inequalities with definition (12), to see that the element z = (u, ¢) satisfies
the inequalities (1) and (2). This proves the existence of the solution to Problem P.

The uniqueness follows from the uniqueness of the solution to inequality (14).
Indeed, if (u,¢) and (u,®) represent two solution of Problem P, then it is easy to
see that the elements z = (u,¢) and z = (u, ) are solution to inequality (14). We
now use the uniqueness part in Theorem 2.1 to deduce that z = z which implies that
u = u, ¢ = @ and concludes the proof. O

We end this section with the following remark on the smallness assumption (9).

Remark 2.1. Assumption (7) shows that there exists a constant M, > 0 such
that |c(p,u)| < Mc|lo|ly||lullx for all w € X, ¢ € Y. This implies that c¢(p,u) >
—M_||¢llv|lul|x and, therefore,

(&
2
A similar argument reveals that there exists a constant My > 0 such that

c(p,u) 2 —Mcllelly lullx = === (lelly + lullk) YueX, peY. (15

Mg
d(u, ) > =Mallullxllelly > == (lullk +llely)  Yue X, pey. (16)
We now add the inequalities (15) and (16) to deduce that
Mc + Md
dlw9) +elp.n) >~ LM Gz o) vuex pev. )
Finally, inequality (17) shows that condition (9) is satisfied if, for instance,
M.+ M, .
% < min {mg, mp}. (18)

Note that condition (18) represents only a sufficient condition which guarantees (9).
Indeed, in the example we present in Section 5 inequality (9) holds with o = 0 and,
therefore, condition (18) could not be verified. This shows that (18) is not a necessary
condition for having (9).
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3. A convergence criterion

In this section we state and prove a convergence criterion in the study of Problem P.
To this end, we assume (3)—(11), consider an arbitrary sequence {(un,pn)} C X xY
and we denote by (u, ) € X xY the solution of Problem P provided by Theorem 2.1.
We use the symbol “—” to indicate the convergence in various Hilbert spaces that
will be specified, except in the case when these convergences take place in R. All the
limits are considered as n — oo, even if we do not mention it explicitly. For a sequence
{en} C R4 which converges to zero we use the short hand notation 0 < &,, — 0 and
we denote by dist(v, K) the distance between the element v € X and the set K,
in the Hilbertian structure of the space X. Notation dist(y, W) will have a similar
meaning, in the Hilbertian structure of the space Y. Finally, below in this section
C; (i =1,2,...) will represent generic positive constants which could depend on the
solution and on the problem data but do not depend on n € N.
Our main result in this section is the following.

Theorem 3.1. Assume (3)—(11). Then the following statements are equivalent:
Up, > u inX and ¢, = ¢ inY. (19)

There exists a sequence 0 < &, — 0 such that

(a) dist(un, K) <en, dist(pn, W) <ep,

() a(un,v —up) + c(n, v —un) +en(l+ v —unx)
> (fiv—un)x VYveK, (20)

(€) b(@n, ¥ —@n) +d(tun, ) — @n) +en(1+ |t — @nlly)
> (¢, —pn)y VYYEW,

for any n € N.

Proof. Assume (19). Let n € N and let d,, be given by

O = [lun — ullx + [len — @lly- (21)
Then,
dist(un, K) < dp, dist(on, W) < 0, (22)
and, moreover,
0n — 0. (23)

Let v € K. We use inequality (1) to see that
{a(un,v —up) + c(pn, v —uy) + (f,v— un)x} +a(u,v —u) + c(p, v — u)
> (f,o—u)x + [a(un,v—un) + c(on,v —upn) + (f,v —un)X}
and, therefore,
a(Up, ¥ — Up) + (Pn, v — uy) + {a(u, v —u) — a(tn,v — un)] (24)

—I—[c(g@,v—u)—c(gpn,v—un)] + [(f,v—un)x —(f,v—u)X] > (fyv—up)x.
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We now write
a(u,v —u) — a(tn,v — uy)
= |a(u,v —u) — a(u,v — un)] + [a(u,’u — Up) — a(tp,v — un)],
then we use assumption (5) and notation (21) to see that
a(u,v —u) — a(tn,v —uy) < Crllul|x0n + Cobnllv — unl x. (25)
A similar argument, based on assumption (7), shows that
(v —u) = c(on,v = un) < Csllolly 0 + Cadnllv — unllx (26)
and, obviously,
(fiv—un)x = (fiv—u)x <|[[fllxllv—unllx <|[fllx0n. (27)
We now combine the inequalities (24)—(27) to deduce that

a(tn, v = tn) + (pn, v = un) + (Cilu] x + Csllelly + [ £lx)0n +
+(C2 + Ca)dnl|v — unllx = (f,v —un)x

and, therefore,
a(Up, v — up) + (@n, v — uy) + Csdn (1 + Jv — un|lx) > (f, 0 — un)x- (28)

On the other hand, using inequality (2) and arguments similar to those used above
we deduce that, for any 1) € W, the following inequality holds:

b(pn, = pn) + d(un, ¥ = on) + Cedn (1 + (1Y = pnlly) = (6,9 —¢n)y. (29)
Finally, using (22), (23), (28) and (29) we find that condition (20) is satisfied, with
€n = max { dn, C50p, Cs0p) },
which concludes the first part of the proof.

Conversely, assume now that (20) holds. Denote by P : X — Kand Py : Y — W
the projection operators on the sets K and W, respectively. Let n € N and let
v = Pruy, w, = u, — Py, ¥, = Py, and w, = ¢, — Pwp,. Then, we have

v, € K, Uy, = Up + Wn, diSt(unaK) = HwnHX < eén, (30)
Yy €W, On = Yn + wn, dist(n, W) = |lwn|ly < eén. (31)

We use the regularities v € K and v, € K to take v = u in (20)(a) and v = v, in
(1). Then, adding the resulting inequalities, we find that

a(tn, w — Up) + alu, vy, — u) + c(@n, u — uy) + (@, vy, — u) (32)
Fen(1+ lun —ullx) = (f, vn — un)x.
Next, we write
a(tp, u — up) + a(t, v, —u) = aluy, — u,u — uy) + a(u, vy — up),

c(n, = up) + (@, vn — u) = c(pn — P, u — up) + (@, v — un),
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substitute these equalities in (32) and use equality w,, — v, = w,, guaranteed by (30),
to find that

a(tn — U, — uy) — a(u, wy) + c(on — @, u—uyp) — (o, wy) + (f, wn) x
+en (1 + [Jun —ullx) > 0.
Then, using assumptions (5) and (7) on the bilinear forms a and ¢ we deduce that
Mallun —ullX < clon — @, u—un) + (Crllullx + Csllolly + [1f1x)llwallx (33)
Fen (14 [lun —ullx).

A similar argument, based on inequalities (20)(b), (2), (31) and the properties of
the bilinear forms b and d, shows that

myllon — @Iy < d(un —u, 0 = @n) + (Collelly + Crollullx + llally)llwally (34)
+en(1+[len —elly.)
We now add inequalities (33) and (34) and use the inequalities [|w,|x < en,
lwnlly < en in (30) and (31), respectively, to deduce that
Mal|un — qu( +mp|len — 90”%/ + c(pn — s un —u) + d(un —u, o0 — @) (35)
< Cuen+en(l+[Jup —ullx + llon — ¢lly).

Let m > 0 be the constant defined in (13). Then, inequality (35) combined with
assumption (9) shows that
m(||un — ullk + llen — @l3) < Crien +enllun — ullx + llen — ¢lly)

and, using the elementary inequality

1

Sy <ot 4y, (36)
valid for all x, y € R, we deduce that

m

2
3 (llun = ullx + llen = ¢lly ) < Craen + nlllun — ullx + lln = ¢liv).

We now use the inequality
?<ar+b — x§a+\/l; Vz,a,b>0

to find that
lun —ullx + llon — @lly < Craen + Cizy/en -

Finally, the convergence ¢, — 0, guaranteed by assumption (20), reveals that
uy, — u in X and ¢, — ¢ in Y, which concludes the proof. (]

Remark 3.1. Note that Theorem 3.1 provides necessary and sufficient conditions
for the convergence of any sequence {(un,¢,)} C X x Y to the solution (u,p) of
Problem P. Therefore, with the terminology used in the Introduction, it represents
a convergence criterion in the study of this nonlinear system.
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4. Well-posedness results

In this section, we introduce two well-posedness concepts in the study of Problem P.
To this end, as mentioned in the Introduction, we need to define a special class of se-
quences, the so-called approximating sequences, corresponding to each well-posedness
concept. Therefore, we start with the following definition.

Definition 4.1. 1) A sequence {(un, vn)} C X XY is said to be a T1-approximating
sequence if there exists 0 < €,, — 0 such that

(a) u, € K, @, €W,

(b)) altn,v —up) + c(@n, v — up) +epllv —unllx > (fLv—un)x VveK,
(©) b(pn ¥ = @n) +d(n, ¥ = pn) +enlld —pnlly 2 (0,9 —¢n)y VY €
for any n € N.

2) A sequence {(un,pn)} C X XY is said to be a T-approximating sequence if it
satisfies condition (20).

3) Problem P is said to be T;-well-posed (i = 1,2) if it has a unique solution
(u, ) € X xY and every T ;-approximating sequence {(u,, ¢,)} converges in X x Y
to (u, @), that is, (19) holds.

We now introduce the following notation, for ¢ = 1,2:
8:{(u,g0)€X><Y U, —»u in X and ¢, = @ inY},

S = { {(tun,on)} € X €Y : {(un,pn)} is a T;-~approximating sequence }

Our first result in this section is the following.
Theorem 4.1. Assume (3)—(11). Then, Problem P is T 1-well-posed.

Proof. First, we use Theorem 2.1 to see that Problem P has a unique solution, denoted
by (u, ). Let {(un,¢n)} C X xY be a Ti-approximating sequence and let n € N.
We use Definition 4.1 1), take v = w in (37)(b), then ¢) = ¢ in (37)(c) to find that

a(Un, u = n) + (P, u = un) + Enllu — un| x = (f,u—un)x (38)
b(@ns o = ) + d(un, o = on) +enlle = enlly = (g0 —wn)y.  (39)
Next, we test with v = u,, and ) = ¢, in (1) and (2), respectively, to find that
a(u7 Up — U) + C(QD, Up — u) 2 (fa Un — u)Xa (40)
b(,n — ¢) +d(, on — @) 2 (4,0 — ¢)y- (41)
We now add inequalities (38)—(41) and use assumptions (5)—(8) to deduce that

M ||tn — qu( + mpllpn — 90”%/ + c(on — @y un — u) +d(un — u,pn — @) (42)
<en(llun —ullx + lon — ©llv).

Let m be the constant defined by (13). Then, inequality (42) combined with assump-
tion (9) shows that

m|lun = ullX + llen = @l3) < enlllun = ullx + llen = lly)
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and, using inequality (36), we deduce that

2e,
Jun —ullx + llon —plly < —.
m

We now use the convergence €, — 0, guaranteed by Definition 4.1 1), to deduce that
Uy, — uin X and ¢, — ¢ in Y. Theorem 4.1 is now a direct consequence of Definition
4.1 ¢). O

We now reinforce the statement of Theorem 4.1 with the following well-posedness
result.

Theorem 4.2. Assume (3)—(11). Then, Problem P is T1- and T y-well-posed.

Proof. First, we use Theorem 2.1 to see that Problem P has a unique solution (u, ¢).
Next, we use Definition 4.1 2) and Theorem 3.1 to see that So = S which implies that
Sy C S. Therefore, Definition 4.1 3) guarantees that Problem P is T o-well-posed.
Finally, Definition 4.1 1) shows that S; C S» and, since S; = S, we obtain that
S1 C 8. We conclude from here that Problem P is T 1-well-posed, too. O

We turn now to the inclusion &1 C Ss used in the proof of Theorem 4.2. The
one-dimensional example below shows that this inclusion is strict, i.e., So # Sy.

Example 4.1. Consider the following nonlinear system: find u € X and ¢ € Y such
that

1 1 1
u€ K, / (v —u')dx +/ o' (v —u)dz > / 2z +1)(v' —u)dz, Vv e K, (43)
0 0 0

1

1 1
W, | g —Nde — | o'W —Ndr > [ (1—22) — @ )dx, Yo €W, (44
p€ /Ow(w ¢')dx /Ouw ¢')dx /0( z)(Y = ¢)dz, Vo eW. (44)
Here and below in this example we use the notation
X={veH'0,1): v(0)=0}, Y ={¢cH(0,1): ¢(0)=0},
K={veX :vx)el0,1] Vze[0,1]}, W={peY : o) €l0,1] Vxel0,1]}.

Moreover, the prime represents the derivative with respect the space variable x, that is
u = %7 for instance. It is well-known that X and Y are real Hilbert spaces endowed
with the inner products

1 1
, — //d7 , — //d
(u,0)x /u 5 (o) /Ow .

for any u, v € X, ¢, ¥ € Y. Then, it is easy that the problem (43)—(44) is a particular
form of Problem P, with

1 1
alu,v) = /0 W dz, bp,) = /0 S da,

1 1
0(@#):/0 ' de, d(u,sa):*/O u'y di,

flx)y=2+z, qz)=z—-2> Yzel0,1].
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Note that in this case conditions (3)—(11) are satisfied with m, = mp =1 and a = 0.
Therefore, Theorem 2.1 guarantees to the unique solvability of problem (43)—(44).
Moreover, it is easy to see that the solution of this problem is given by
u(z) = 22, plx)=z Vzel0,1]. (45)
Consider now the sequence {(un,pn)} € X x Y defined by
un(x):xz—&—%, wn(x):x—i—% Ve 0,1], neN. (46)
Then, it is easy to see that
U, >u in X and ¢, = ¢ in Y. (47)

Therefore, Theorem 3.1 and Definition 4.1 3) guarantee, that {(un,¢n)} is a Ta-
approximating sequence for problem (43)—(44). Nevertheless, {(un,®n)} is not a
T1-approximating sequence for the above problem since, for instance, u, (1) =1+ %
and, therefore, u, ¢ K. We conclude from above that the inclusion S C Ss is
strict, as claimed. Moreover, we note that the convergence (47) cannot be obtained
by invoking the 7T i-well-posed of Problem P. It follows from here that the concept
of To-well-posedness is better than the concept of 7 1-well-posedness.

We end this section with the following comments on the equality So = S above.

Remark 4.1. We claim that among all the concepts which make Problem P well-
posed, the T a-well-posedness concept in Definition 4.1 is optimal, in the sense that
it uses the largest set of approximating sequences. Indeed, consider a different
well-posedness concept, say the T-well-posedness concept, defined by a set of T-
approximating sequences, denoted by S7. Then, if Problem P is T-well-posed we
have S5+ C S, by definition. Now, since S = S, we deduce that S+ C Sy, which
justifies our claim.

5. A piezoelectric contact problem

In this section we introduce a relevant mathematical model of contact for which our
abstract results in Sections 3 and 4 can be applied. We start with some notation,
then we present the contact model and its analysis.

Notation. Let N € {2,3}. We denote by SV the space of second order symmatric
tensors. We use “-” and “|| - ||” to represent the inner product and the Euclidean
norm on the spaces RY and SV, respectively, that is

w-v=uw, |v]=@ )2 Vu=(u),v=_(v)ecR",
o-1T =057y, |T|=(r-1)* Vo =(0y), T=(n;) s

The zero elements of RY and S? will be denoted by 0.

Let © C RY be a smooth domain with boundary I' and consider two partitions of I'
into three measurable sets I'y, I's, I's, on one hand, and I',, I'y, I's, on the other hand.
Everywhere below we assume that meas (I'y) > 0 and meas (I';) > 0. We denote by
v the outward unitary normal at I" and use the standard notation for the Lebesgue
and Sobolev spaces associated to  and I'. Typical examples are the spaces L?(Q)",
L2(T)YN, HY(Q)N, equipped with their canonical Hilbertian structure. For an element
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v € HY(Q)Y we use e(v) to denote the symmetric part of the spatial gradient of v,
ie.,

1
e(v) = 5 (Vo + vo'). (48)
We now introduce the subspaces V and W of the spaces H'(Q)" and H'(Q),
respectively, defined as follows:

V={veH Q)" :v=0 ae onTy},

W={¢yecH(Q): ¢¥v=0 ae onl,}.

Here, the conditions “v = 0 a.e. on I'y” and “¢p = 0 a.e. on I';” are understood in
the sense of trace. Since meas(I'y) > 0 and meas (I'y) > 0, using Korn’s inequality
and Friedricks-Poincaré’s inequality, it follows that the spaces V' and W are Hilbert
spaces endowed with the inner products

(u,v)y = /Qe(u) ce(v)dz, (p,¥)w = /QVgo -V dz

and the associated norms || - ||y and || - ||w, respectively. We also recall that the
Sobolev trace theorem imply that there exists a positive constant C, such that

[oll2@y < Cllollv,  [[vllzey < Cvlly Vo eV, (49)
el < Clllw, Illoeay < Cllvllw Vo € W. (50)

Finally, we introduce the set
K={veV:v,<g ae. onl;} (51)

where v,, € L?(T") denotes the normal trace of the vector field v on the boundary, i.e.,
vy, =V - V.

Problem statement and physical interpretation. The problem we consider in
this section is governed by the data F, P, B, fo, f2, ¢o, ¢», g which will be described
below, and it is stated as follows.

Problem Q. Find two elements u € V and ¢ € W such that

u € K, Fe(u) - (e(v) —e(u))dz+ | PTVp-(e(v) —e(u))dr (52)
Q Q

z/fo-<v—u>da:+ Folo—w)dl VoK,
Q s

/ﬁV<p~dex—/P€(u)-V¢dz:/qﬂ;dz—/ @dl Yy eW. (53)
Q Q Q Ty

Problem Q represents the variational formulation of a mathematical model which
describes the equilibrium of a piezoelectic body which, in the reference configuration,
occupies the domain . Details on the modelling and analysis of piezoelectic contact
problems can be found in [21]. There, a detailed description on the piezoelectic
constitutive laws, the contact boundary conditions, the electrical boundary conditions
and the variational formulation of the models is provided. For this reason, we restrict
ourselves to the following brief description of the physical setting which leads to the
mathematical model given by Problem Q. First, the piezoelectirc body is assumed to
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be electro-elastic, is clamped on I'y, is submitted to action of surface tractions on I'y
and is in frictionless contact with a rigid insulated foundation on I's. Next, the electric
potential is assumed to vanish on I', and a surface electric charge is prescribed on
I'y. Notation F, 3, P, represent the elasticity tensor, the electric permittivity tensor
and the piezoelectic tensor, respectively. Moreover, P T denotes the transpose of the
tensor P and, therefore, the following inequality holds:

Po-v=0c-P'v VoecsSY, veRY. (54)

In addition, f, and gy denote the density of the body forces and electric charges while
fo and ¢ represent the density of surface forces and electric charges assumed to act
on I'y; and I'y, respectively. The unknown of the problems are the displacement field
u and the electric potential p. We recall equality (48) which shows that e(u) denotes
the linearized strain tensor and, finally, g represents the initial gap between the body
and the potential contact surface I's.

An existence and uniqueness result. In the study of Problem Q we assume that
the tensors F, P and (3 satisfy the following conditions.

F = (Fijr): Q% SN — SN is such that:
(a) Fijrr = Friij = Fjim € L>=(Q), 1 <, 5,k 1 < d.

55
(b) There exists mz > 0 such that (55)
Fr-17>mz|7|? forall T €SV, ae. in Q.
P = (Pijr): @ x SV — RY is such that (56)
Pijk = Pirj € L=(Q), 1 <4,5,k < d.
B = (Bij): @ x RN — R is such that:
(a) Bij = Bji € L=(Q), 1 <d,j < d. (57)
(b) There exists mg > 0 such that
BE - E > mg||E|? for all E € RY, a.e. in Q.
The rest of the data are such that:
.fO € LQ(Q)Nv .f2 € LQ(F2)N7 (58)
Qo € L*(Q), g € L*Ty), (59)
g > 0. (60)

Our main existence and uniqueness result in this section is the following.

Theorem 5.1. Assume (55)—(60). Then Problem Q has a unique solution (u,p) €
VxW.

Proof. We start by introducing the bilinear forms a : V xV - R, b: W x W — R,
c:WxV —sRandd:V xW — R defined by
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a(u,v):/}'s(u)-e(v)daz Yu,v eV,

Q

bow) = [ BV Vuds  Vou e W,
Q

c(cp,u):/PTVga-s(u)dx, YoeW, ueV,
Q

d(UAD):*/Q'PE(U)'VgOd{E YueV, peW.

Moreover, using assumptions (58) and (59), inequalities (49), (50) and Riesz’s repre-
sentation theorem, we consider the elements f € V and ¢ € W given by

(f,v)V:/Qf0~vdx+ g fo-vdl Vv eV, (61)

(4, 0)w = /Q dot e — /F @bdl Ve (62)

Then, it is easy to see that Problem Q is equivalent with the problem of finding two
elements u € K and ¢ € W such that

alu, v —u) +c(p,v —u) > (f,v—u)y VveK, (63)

blo, ¥ — @) +du, v — @) > (¢, —o)w  VYeeW. (64)

We now use Theorem 2.1 with X =V and Y = W in order to prove the unique
solvability of the system (63)—(64). To this end we use assumptions (55) and (57)
to see that the form a satisfies condition (5) with m, = mx and the form b satisfies
condition (6) with mj, = mg. On the other hand, assumption (56) shows that the
forms ¢ and d satisfy conditions (7) and (8), respectively. Moreover, equality (54)
implies that

clo,u) +d(u,0) =0 YueV, peW,
which shows that condition (9) also holds, with v = 0. Finally, assumption (60)
guarantees that the set (51) satisfies condition (3) and, obviously, conditions (4), (10)
and (11) hold. Therefore, using Theorem 2.1, we deduce the existence of a unique
couple of functions (u, ¢) € K x W which satisfies the nonlinear system (63)—(64). We
end the proof by invoking the equivalence between this system and Problem Q. [J

A continuous dependence result. The well-posedness results in Section 4 can
be used in order to deduce convergence results in the study of Problem Q. Various
examples can be considered but, for simplicity, we restrict below to presenting only
a convergence result of the solution with respect to the data f,, fs, go and g,. To
this end, we assume in what follows (55)—(60) and we denote by (u, ) the solution
of Problem Q obtained in Theorem 5.1. Moreover, for each n € N we consider the
functionsf,,, fan, Qon,qsn such that

fOn € L2(Q)N7 f2n € LQ(PQ)Na (65)
qon S Lz(Q)a dbn S LQ(Fb)a (66)
together with the following problem.
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Problem Q,. Find two elements u, € V and ¢, € W such that
u, € K, / Fe(uy) - (e(v) — e(uy,)) dz +/ PV, - (e(v) —e(uy,))dz  (67)
Q Q

Z/fon'(v—un)dx+/ fon - (v—wu,)dl' VveK,
Q I's

/ BV, - Vi dr — / Pe(uy,) - Vipda = / Gon¥ dx — / Gon dl V1) € W(68)
Q Q Q Ty

Then, using Theorem 2.1, again, we obtain the existence and uniqueness of the
solution of Problem Q,, denoted by (wn,p,). The link between the solutions of
Problems Q,, and Q is given by the following result.

Theorem 5.2. Assume (55)—(60), (65), (66) and, moreover, assume that

fon = fo i LXQY, fa, = f2 in L2(T2)Y, (69)
qon — qo i €L*Q), @ —q, in L*Ty). (70)
Then,
u, >u in V and ¢, —¢ in W (71)
Proof. Let n € N. First, we define the elements f,, € V and ¢ € W by equalities
(fn,v)vz/fOn'vder fo, -vdl Yo eV, (72)
Q I
(@ = [ anida = [ aidr  voew (73)
Then, using the notation in the proof of The(b)rem 5.1 it follows that
a(Up,v —up) + c(pp,v—up) > (f,,v—u,)y VveK, (74)
b(on, ¥ — on) + d(un, ¥ = n) 2 (@n, % —on)w Vo €W, (75)

which implies that
a(Up, ¥ — Up) + (Pr, v —up) + (F— Fr,v —un)y = (FfLbov—u,)y VYveK,
b(n, ¥ = @n) + d(tn, 0 = on) + (0 — @, — Pu)w 2 (¥ —pn)w Vo EW
and, moreover,
a(Up, 0 = Upn) + c(Pn, v —un) + | = Fullvlv —unlly = (f,v —us)y Vv eK,
b(on, ¥ — on) + d(un, b — on) +llg — aullw v — enllw 2 (¢, ¥ —pn)w Vo eW.
The last two inequalities imply that
a(Up, U — Up) + (P, — Up) +Enl|v —upn|lv = (FfLv—un)y VveK, (76)
b(n, ¥ = @n) + d(Un, ¥ — ) +enllv — @nllw = (¢,% —on)w YoeW (77)

where

en =max{[If = fullv.llg = gnllw }- (78)
Note that the definitions (61), (62), (72), (73) combined with the convergences
(69), (70) imply that || f — f,.llv = 0, ||¢ — ¢n|lw — 0 and, therefore, (78) yields

0<e,—0. (79)
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We now use the regularity (w,,p,) € K x W, the convergence (79), inequalities
(76), (77), and Definition 4.1 1) to deduce that the sequence {(un,pn)} is a T1-
approximating sequence for the nonlinear system (63), (64). Therefore, the T1-well-
posedness of this system, guaranteed by Theorem 4.1, implies the convergence (71),
which concludes the proof. U

We end this section with the following comments.

Remark 5.1. Theorem 5.2 shows the continuous dependence of the solution of Prob-
lem Q with respect to the data f, f,, go and g,. Besides the mathematical interest
in the convergence (71), it is important from the physical point of view since it shows
that the solution of the piezoelectic contact problem (52)—(53) depends continuosly
on the density of body forces, surface tractions, electric charges and surface charges
applied on the body.

Remark 5.2. The proof of Theorem 5.2 is based on the 7 1-well-posedness of the
system (63)—(64), guaranteed by Theorem 4.1. Theorem 4.2 which, obviously, extends
Theorem 4.1, can also be used in order to obtain additional convergence results. For
instance, it can be used to provide continuous dependence results of the solution of
Problem Q with respect to the elasticity tensor F, the piezoelectic tensor P, the
electric permittivity tensor 3 and the initial gap g. The arguments in the proof are
similar to those used in Theorem 5.2 and to those used in [20] and, therefore, we skip
the details.

References

[1] A. Auslander, Convergence of stationary sequences for variational inequalities with maximal
monotone operators for nonexpansive mappings, Appl. Math. Optim. 28 (1993), 161-172.

[2] M. Barboteu, M. Sofonea, Convergence analysis for elliptic quasivariational inequalities,
Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 74 (2023), no. 130, https:
//doi.org/10.1007/s00033-023-02022-9.

[3] A. Capatina, Variational Inequalities and Frictional Contact Problems, Advances in Mechanics
and Mathematics 31, Springer, Heidelberg, 2014.

[4] F. Chouly, P. Hild, On convergence of the penalty method for unilateral contact problems, Appl.
Numer. Math. 65 (2013), 27-48.

[5] A.L. Dontchev, T. Zolezzi, Well-posed Optimization Problems, Lecture Notes Mathematics
1543, Springer, Berlin, 1993.

[6] G. Duvaut, J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.

[7] C.Eck, J. Jarusek, M. Krbe¢, Unilateral Contact Problems: Variational Methods and Ezistence
Theorems, Pure and Applied Mathematics 270, Chapman/CRC Press, New York, 2005.

[8] Y.P. Fang, H.J. Huang, J.C. Yao, Well-posedness by perturbations of mixed variational inequal-
ities in Banach spaces, Fur. J. Oper. Res. 201 (2010), 682-692.

9] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New
York, 1984.

[10] D. Goeleven, D. Mentagui, Well-posed hemivariational inequalities, Numer. Func. Anal. Optim.
16 (1995), 909-921.

[11] W. Han, B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis (Second Edi-
tion), Springer-Verlag, 2013.

[12] W. Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Stud-
ies in Advanced Mathematics 30, American Mathematical Society, Providence, RI-International
Press, Somerville, MA, 2002.

[13] J. Haslinger, M. Miettinen, P.D. Panagiotopoulos, Finite Element Method for Hemivariational
Inequalities. Theory, Methods and Applications, Kluwer Academic Publishers, Boston, Dor-
drecht, London, 1999.


https://doi.org/10.1007/s00033-023-02022-9
https://doi.org/10.1007/s00033-023-02022-9

(14]
(15]
(16]
(17]

(18]
(19]

20]
(21]
(22]
23]

[24]

CONVERGENCE AND WELL-POSEDNESS ANALYSIS OF A NONLIN. ELLIPTIC SYSTEM 581

1. Hlavacek, J. Haslinger, J. Necas, J. Lovisek, Solution of Variational Inequalities in Mechanics,
Springer-Verlag, New York, 1988.

X.X. Huang, Extended and strongly extended well-posedness of set-valued optimization prob-
lems, Math. Methods Oper. Res. 53 (2001), 101-116.

X.X. Huang, X.Q. Yang, Generalized Levitin-Polyak well-posedness in constrained optimization,
SIAM J. Optim. 17 (2006), 243-258.

N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and
Finite Element Methods, SIAM, Philadelphia, 1988.

T. Laursen, Computational Contact and Impact Mechanics, Springer, Netherlands, 2002.

R. Lucchetti, Convezxity and Well-posed Problems, CMS Books in Mathematics, Springer-Verlag,
New York, 2006.

M. Sofonea, Well-posed Nonlinear Problems. A Study of Mathematical Models of Contact, Ad-
vances in Mechanics and Mathematics 50, Birkhauser, Cham, 2023.

M. Sofonea, A. Matei, Mathematical Models in Contact Mechanics, London Mathematical So-
ciety Lecture Note Series 398, Cambridge University Press, 2012.

M. Sofonea, S. Migérski, Variational-Hemivariational Inequalities with Applications, Mono-
graphs and Research Notes in Mathematics, CRC Press, Boca Raton, 2018.

M. Sofonea, D.A. Tarzia, Well-posedness and convergence results for elliptic hemivariational
inequalities, Applied Set-Valued Analysis and Optimization 7 (2025), 1-21.

M. Sofonea, D.A. Tarzia, Convergence results for history-dependent variational inequalities,
Azioms 13 (2024), no. 5, 316, https://doi.org/10.3390/axioms130150316.

(Maria-Magdalena Boureanu, Loredana Dafinoiu) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF
CRAIOVA-ALLIANCE ACROSS, 13 A.I. CuzA STREET, CRAIOVA, 200585, ROMANIA
E-mail address: mmboureanu@yahoo.com, dafinoiuloredana03@gmail.com

(Mircea Sofonea) LABORATOIRE DE MODELISATION PLURIDISCIPLINAIRE ET SIMULATIONS,
UNIVERSITY OF PERPIGNAN VIA DOMITIA-ALLIANCE ACROSS, 52 AVENUE PAUL ALDUY, 66860
PERPIGNAN, FRANCE

E-mail address: sofonea@univ-perp.fr


https://doi.org/10.3390/axioms130150316

	1. Introduction
	2. The system
	3. A convergence criterion
	4. Well-posedness results
	5. A piezoelectric contact problem
	References

