
Annals of University of Craiova, Math. Comp. Sci. Ser.
Volume 34(1), 2007, Pages 66–71
ISSN: 1223-6934

On Fuzzy P-Continuous Functions

Erdal Ekici

Abstract. In this paper, by using fuzzy property P , characterizations and properties of some
types of fuzzy continuous functions including fuzzy continuous, fuzzy almost continuous, fuzzy
c-continuous, fuzzy almost c-continuous, fuzzy c∗-continuous, fuzzy s-continuous, fuzzy almost
s-continuous, fuzzy `-continuous, fuzzy almost `-continuous functions are obtained.
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1. Introduction

It is well known that several types of fuzzy continuous functions are introduced
in literature. The aim of this paper, by using property P , is to obtain characteriza-
tions and properties of some types of continuous functions including fuzzy continuous,
fuzzy almost continuous, fuzzy c-continuous, fuzzy almost c-continuous, fuzzy c∗-
continuous, fuzzy s-continuous, fuzzy almost s-continuous, fuzzy `-continuous, fuzzy
almost `-continuous functions.

Fuzzy sets on a universe X will be denoted by Greek letters as µ, ρ, η, etc. Fuzzy
point will be denoted by xε, yν , etc. For any fuzzy point xε and any fuzzy set µ, we
write xε ∈ µ iff ε ≤ µ(x). A fuzzy set xε is called quasi-coincident with a fuzzy set
ρ, denoted by xεqρ, iff ε + ρ(x) > 1. A fuzzy set µ is called quasi-coincident with a
fuzzy set ρ, denoted by µqρ, iff there exists a x ∈ X such that µ(x) + ρ(x) > 1. In
this paper we use the concept of a fuzzy topological space as introduced by [2]. By
int(µ), cl(µ) and co(µ), we mean the interior of µ, the closure of µ and complement
of µ.

Let f : X → Y a fuzzy function from a fuzzy topological space X to a fuzzy
topological space Y . Then the function g : X → X×Y defined by g(xε) = (xε, f(xε))
is called the graph function of f and it will be denoted by grf [1].

2. Fuzzy P-continuous Functions

Definition 2.1. Let (X, τ) be a fuzzy topological space and let µ ≤ X be a fuzzy set.
Then it is said that

i-) µ is a fuzzy P -set if µ possesses fuzzy property P ,
ii-) µ has fuzzy P -complement if co(µ) possesses fuzzy property P .

Definition 2.2. Let f : X → Y be a fuzzy function from a fuzzy topological space
(X, τ) to a fuzzy topological space (Y, υ). Then f is called fuzzy P -continuous if for
each xε ∈ X and for each fuzzy set µ containing f(xε) and having P -complement,
there exists an open fuzzy set ρ containing xε such that f(ρ) ≤ µ.
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It will be shown in Theorem 1 that the above definition is equivalent the following
definition.

Definition 2.3. Let f : X → Y be a fuzzy function from a fuzzy topological space
(X, τ) to a fuzzy topological space (Y, υ). Then f is said to be fuzzy P -continuous if
for each xε ∈ X and for each fuzzy set µ having P -complement such that f(xε)qµ,
there exists an open fuzzy set ρ such that xεqρ and f(ρ) ≤ µ.

The following table give us the list of some types of fuzzy P -continuous functions
with property P .

The definitions of fuzzy c-continuous, fuzzy almost c-continuous, fuzzy c∗-continuous,
fuzzy `-continuous and fuzzy almost `-continuous function are considered for fuzzy
setting from [3], [4], [8], [6] and [7], respectively.

The definitions of fuzzy continuous, fuzzy almost continuous and fuzzy s-continuous
function are considered from [2], [1] and [5], respectively.

Fuzzy P -set Fuzzy P -contunuity
1. f. closed f. continuity
2. f. regular closed f. almost continuity
3. f. closed compact f. c-continuity
4. f. regular closed compact f. almost c-continuity
5. f. closed countable compact f. c∗-continuity
6. f. closed connected f. s-continuity
7. f. regular closed connected f. almost s-continuity
8. f. closed Lindelof f. `-continuity
9. f. regular closed Lindelof f. almost `-continuity

Definition 2.4. Let (X, τ) be a fuzzy topological space and let (xα
εα

) be a net in X.
(xα

εα
) is called fuzzy P -converges to xε if for each fuzzy set µ containing xε and having

fuzzy P -complement, there exists an index α0 ∈ J such that xα
εα
∈ µ for all α ≥ α0.

We will denote by xα
εα

P→ xε.

The following theorem give us some characterizations of fuzzy P -continuous func-
tion.

Theorem 2.1. Let f : X → Y be a fuzzy function from a fuzzy topological space (X, τ)
to a fuzzy topological space (Y, υ). Then the following statements are equivalent.

a-) f is fuzzy P -continuous,
b-) f−1(µ) ≤ int(f−1(µ)) for any fuzzy set µ ≤ Y which has P -complement,
c-) cl(f−1(β)) ≤ f−1(β) for any fuzzy P -set β ≤ Y ,
d-) For any fuzzy set µ ≤ Y which has P -complement and for any xε ∈ X if

f(xε)qµ, then xεqint(f−1(µ)),
e-) For any fuzzy set µ ≤ Y which has P -complement and for any xε ∈ X if

f(xε)qµ, then there exists a fuzzy open set η such that xεqη and f(η) ≤ µ,
f-) For each xε ∈ X and for each net (xα

εα
) in X, if xα

εα
→ xε, then f(xα

εα
) P→ f(xε).

Proof. (a)⇒(b). Let µ ≤ Y be a fuzzy set having P -complement and let xε ∈ f−1(µ)
be a fuzzy point. Then f(xε) ∈ µ. By (a), there exists a fuzzy open set β such that
xε ∈ β ≤ X and f(β) ≤ µ. This implies that β ≤ f−1(µ) and xε ∈ int(f−1(µ)).
Thus, f−1(µ) ≤ int(f−1(µ)).
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(b)⇒(a). Suppose that the fuzzy set µ ≤ Y has P -complement and f(xε) ∈ µ.
Then xε ∈ f−1(µ) and by (b), xε ∈ f−1(µ) ≤ int(f−1(µ)). Take β = int(f−1(µ)).
Thus, f(β) ≤ µ.

(b)⇔(c). Let β ≤ Y be a fuzzy P -set. Then the fuzzy set co(β) ≤ Y has P -
complement. By (b), f−1(co(β)) ≤ int(f−1(co(β))) and then co(f−1(β)) ≤ int(co(f−1(β)))
iff co(f−1(β)) ≤ co(cl(f−1(β))) iff cl(f−1(β)) ≤ f−1(β).

The reverse is similar.
(b)⇔(d). Suppose that the fuzzy set µ ≤ Y has P -complement and f(xε)qµ. Then

xεqf
−1(µ) and by (b), f−1(µ) ≤ int(f−1(µ)). Thus, xεqint(f−1(µ)) and hence, (d)

holds.
The reverse is obvious.
(d)⇒(e). Let µ ≤ Y be any fuzzy set having P -complement and let f(xε)qµ. Then

xεqint(f−1(µ)). Take η = int(f−1(µ)). Thus, f(η) = f(int(f−1(µ))) ≤ f(f−1(µ)) ≤
µ.

(e)⇒(d). Let µ ≤ Y be any fuzzy set having P -complement and let f(xε)qµ. By
(e), there exists open fuzzy set η such that xεqη and f(η) ≤ µ. Thus, η ≤ f−1(µ)
and then xεqint(f−1(µ)).

(a)⇒(f). Suppose that ρ is a fuzzy set containing f(xε) and having P -complement.
Since f is fuzzy P -continuous, then there exists a fuzzy open set µ containing xε such
that f(µ) ≤ ρ. Since xα

εα
→ xε, there exists an index α0 ∈ J such that xα

εα
∈ µ

for all α ≥ α0. Thus, f(xα
εα

) ∈ f(µ) ≤ ρ and f(xα
εα

) ∈ ρ for all α ≥ α0. Hence,

f(xα
εα

) P→ f(xε).
(f)⇒(a). Suppose that (a) is not true. There exists a point xε and a fuzzy set ρ

containing f(xε) and having P -complement such that f(µ) 
 ρ for each µ ∈ τ where
xε ∈ µ. Let xεµ ∈ µ and f(xεµ) /∈ ρ for each µ ∈ τ where xε ∈ µ. Then for the
neighborhood net (xεµ), xεµ → xε, but the net (f(xεµ)) is not P -converges to xε.
This is a contradiction. Thus, f is fuzzy P -continuous function.

Example 2.1. Let f : X → Y be a fuzzy function from a fuzzy topological space
(X, τ) to a fuzzy topological space (Y, υ). If we consider fuzzy P -set as fuzzy closed
compact set, then by Theorem 1, the following statements are equivalent.

a-) f is fuzzy c-continuous,
b-) f−1(µ) ≤ int(f−1(µ)) for any fuzzy open set µ ≤ Y which has compact com-

plement,
c-) cl(f−1(β)) ≤ f−1(β) for any fuzzy closed compact set β ≤ Y ,
d-) For any fuzzy open set µ ≤ Y which has compact complement and for any

xε ∈ X if f(xε)qµ, then xεqint(f−1(µ)),
e-) For any fuzzy open set µ ≤ Y which has compact complement and for any

xε ∈ X if f(xε)qµ, then there exists a fuzzy open set η such that xεqη and f(η) ≤ µ,
f-) For each xε ∈ X and for each net xα

εα
in X, if xα

εα
→ xε, then for each fuzzy

open set µ containing f(xε) and having compact complement, there exists an index
α0 ∈ J such that f(xα

εα
) ∈ µ for all α ≥ α0.

Theorem 2.2. Let (X, τ), (Y, υ), (Z, ω) be fuzzy topological spaces and let f : X → Y
and g : Y → Z be fuzzy functions. If f : X → Y is fuzzy continuous function and
g : Y → Z is fuzzy P -continuous function, then g◦f : X → Z is a fuzzy P -continuous
function.

Proof. Let µ ≤ Z be any fuzzy set having P -complement and let (g ◦ f)(xε) ∈ µ.
Then g(f(xε)) ∈ µ. Since g is fuzzy P -continuous function, then there exists an open
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fuzzy set ρ containing f(xε) such that g(ρ) ≤ µ. Since f is fuzzy continuous function,
then there exists an open fuzzy set β containing xε such that f(β) ≤ ρ. This implies
that (g ◦ f)(β) = g(f(β)) ≤ g(ρ) ≤ µ. Thus, g ◦ f is a fuzzy P -continuous function.

Theorem 2.3. Let f : X → Y be a fuzzy function from a fuzzy topological space
(X, τ) to a fuzzy topological space (Y, υ) and let µ ≤ X be a fuzzy set. If f is a
fuzzy P -continuous function, then the restriction function f |µ: µ → Y is a fuzzy
P -continuous function.

Proof. Suppose that β ≤ Y is a fuzzy set having P -complement. Let xε ∈ µ and let
f |µ (xε) ∈ β. Since f is fuzzy P -continuous, then there exists a fuzzy open set xε ∈ ρ
such that f(ρ) ≤ β. We have xε ∈ ρ ∧ µ and f(ρ ∧ µ) = f |µ (ρ ∧ µ) ≤ β. Thus, the
restriction function f |µis a fuzzy P -continuous.

Theorem 2.4. Let f : X → Y be a fuzzy function from a fuzzy topological space
(X, τ) to a fuzzy topological space (Y, υ). Let {γα : α ∈ Φ} be an open cover of X.
If the restriction function fα = fγα

is a fuzzy P -continuous function for each α ∈ Φ,
then f is a fuzzy P -continuous function.

Proof. Let µ ≤ Y be a fuzzy set having P -complement. Since fα is fuzzy P -
continuous for each α, by Theorem 1, f−1

α (µ) ≤ intγα
(f−1

α (µ)) and then f−1(µ)∧γα ≤
intγα

(f−1(µ) ∧ γα) = intX(f−1(µ)) ∧ γα. Since {γα : α ∈ Φ} is an open cover of
X, then f−1(µ) ≤ intX(f−1(µ)). Thus, by Theorem 1, f is a fuzzy P -continuous
function.

Theorem 2.5. Suppose that a finete product of fuzzy P -sets is a fuzzy P -set. Let
f : X → Y be a fuzzy function from a fuzzy topological space (X, τ) to a fuzzy
topological space (Y, υ) and let X be a fuzzy P -set. If the graph function of f is fuzzy
P -continuous, then f is fuzzy P -continuous function.

Proof. Let xε ∈ X, f(xε) ∈ υ and let υ be a fuzzy set having P -complement. Then
grf(xε) = (xε, f(xε)) ∈ X × υ and X × υ is a fuzzy set having P -complement. Since
grf is fuzzy P -continuous, then there exists an open fuzzy set β containing xε such
that grf(β) ≤ X × υ. We have f(β) ≤ υ. Thus, f is fuzzy P -continuous function.

Theorem 2.6. Suppose that for each α ∈ J , (Xα, τα) and (X, τ) are fuzzy topological
spaces and Xα possesses property P for each α ∈ J . Let f : (X, τ) → (

∏
α∈J

Xα, τ p)

be a fuzzy function from X to the product space
∏

α∈J

Xα and let product of fuzzy P -

sets be a fuzzy P -set. If f is fuzzy P -continuous function, then each pα ◦ f is fuzzy
P -continuous function where pα is the projection function for each α ∈ J .

Proof. Let µ be any fuzzy set having P -complement and let (pα ◦ f)(xε) ∈ µ. Then
pα(f(xε)) ∈ µ. We have f(xε) ∈ p−1

α (µ) = µ × ∏
β 6=α

Xβ . Since product of fuzzy

P -sets is fuzzy P -set and Xα possesses property P for each α, then µ × ∏
β 6=α

Xβ has

P -complement. This implies that there exists an open fuzzy set ρ containing xε such
that f(ρ) ≤ µ × ∏

β 6=α

Xβ . We obtain pα(f(ρ)) = (pα ◦ f)(ρ) ≤ pα(µ × ∏
β 6=α

Xβ) = µ.

Thus, pα ◦ f is fuzzy P -continuous function for each α ∈ J .
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Theorem 2.7. Suppose that (Xα, τα), (Yα, υα) are fuzzy topological spaces and Yα

possesses property P for each α ∈ J and the product of fuzzy P -sets is a fuzzy P -set.
Let fα : Xα → Yα be a fuzzy function for each α ∈ J and let the fuzzy function
f :

∏
α∈J

Xα →
∏

α∈J

Yα be defined by f((xα)) = (fα(xα)) from the product space
∏

α∈J

Xα

to the product space
∏

α∈J

Yα. If f is fuzzy P -continuous function, then each fα is fuzzy

P -continuous function.

Proof. Let pα :
∏

α∈J

Xα → Xα and qα :
∏

α∈J

Yα → Yα be the projection functions. We

have qα ◦ f = fα ◦ pα for each α ∈ J .
Let xα ∈ Xα and let µα ≤ Yα be a fuzzy set containing fα(xα) and having P -

complement. Take any point xε ∈ p−1
α (xα). Since each Yα is fuzzy P -set and the

product of fuzzy P -sets is a fuzzy P -set, then q−1
α (µα) = µα ×

∏
β 6=α

Yβ ≤
∏

α∈J

Yα is a

fuzzy set having P -complement. This implies that there exists an open fuzzy set β
containing xε such that f(β) ≤ q−1

α (µα). We obtain qα(f(β)) ≤ µα and (fα◦pα)(β) =
(qα ◦ f)(β) ≤ µα. Since pα(β) is an open fuzzy set containing xα, then fα is P -
continuous fuzzy function.

Theorem 2.8. Let f : X → Y be a fuzzy function from a fuzzy topological space
(X, τ) to a fuzzy topological space (Y, υ). Suppose that Y have a base of neigbourhood
such that complement of each fuzzy set of the base of neighbourhood is finite unions
of P -sets. If f is fuzzy P -continuous function, then f is fuzzy continuous.

Proof. Let xε ∈ X and let µ be a fuzzy open set containing f(xε). Then there exists
a neighbourhood β of f(xε) such that β ≤ µ and co(β) =

n∨
i=1

ηi where each ηi is a

P -set. We have β =
n∧

i=1
co(ηi). Then f(xε) ∈ co(ηi) for each i = 1, 2, ..., n. Since f is

P -continuous fuzzy function, then there exists an open set ρi containing xε such that
f(ρi) ≤ co(ηi). Take ρ =

n∧
i=1

ρi. Then f(ρ) ≤ n∧
i=1

f(ρi) ≤
n∧

i=1
co(ηi) = β ≤ µ. Thus, f

is continuous fuzzy function.

Theorem 2.9. Suppose that (X1, τ1), (X2, τ2), (Y1, υ1) and (Y2, υ2) are fuzzy topo-
logical spaces and f1 : X1 → Y1, f2 : X2 → Y2 are fuzzy functions and suppose that
η×β has fuzzy P -complement iff η and β have fuzy P -complements for any fuzzy sets
η ≤ Y1, β ≤ Y2. Let f1 × f2 : X1 ×X2 → Y1 × Y2 be a fuzzy function which is defined
by (f1 × f2)(xε, yν) = (f1(xε), f2(yν)). Then f1 × f2 is fuzzy P -continuous function
iff f1 and f2 are fuzzy P -continuous functions.

Proof. It is know that (µ∗ × β∗)(xε, yν) = min{(µ∗(x), β∗(y)} for any fuzzy sets µ∗,
β∗ and for any fuzzy points xε, yν . Let µ × β ≤ Y1 × Y2 be a fuzzy set having P -
complement. We have (f1 × f2)−1(µ × β) = f−1

1 (µ) × f−1
2 (β). By Theorem 1, the

proof is obtained.

Theorem 2.10. Suppose that (X, τ), (Y, υ), (Z, ω) are fuzzy topological spaces and
f1 : X → Y , f2 : X → Z are fuzzy functions and suppose that η × β has fuzzy P -
complement iff η and β have fuzy P -complements for any fuzzy sets η ≤ Y , β ≤ Z.
Let f1 × f2 : X → Y × Z be a fuzzy function which is defined by (f1 × f2)(xε) =
(f1(xε), f2(xε)). Then f1 × f2 is fuzzy P -continuous function iff f1 and f2 are fuzzy
P -continuous functions.
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Proof. (⇒:) Let xε ∈ X and let µ ≤ Y , β ≤ Z be fuzzy sets having P -complement
such that f1(xε) ∈ µ and f2(xε) ∈ β. We have (f1×f2)(xε) = (f1(xε), f2(xε)) ∈ µ×β
and µ×β has P -complement. Since the fuzzy function f1× f2 is fuzzy P -continuous,
then there exists an open fuzzy set ρ containing xε such that (f1 × f2)(ρ) ≤ µ × β.
We have (f1 × f2)(ρ) = f1(ρ) × f2(ρ) ≤ µ × β and f1(ρ) ≤ µ, f2(ρ) ≤ β. Thus, f1

and f2 are fuzzy P -continuous functions.
(⇐:) Let xε ∈ X and let µ× ρ ≤ Y ×Z be a fuzzy set having P -complement such

that (f1 × f2)(xε) ∈ µ × ρ. We have (f1 × f2)(xε) = (f1(xε), f2(xε)) ∈ µ × ρ and
f1(xε) ∈ µ, f2(xε) ∈ ρ. Since f1 and f2 are fuzzy P -continuous functions, then there
exists fuzzy open sets η containing xε and β containing xε such that f1(η) ≤ µ and
f2(β) ≤ ρ. Take xε ∈ η ∧β. Thus, (f1× f2)(η ∧β) ≤ µ× ρ and hence f1× f2 is fuzzy
P -continuous function.
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