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On the Glivenko-Frink theorem for Hilbert algebras

Sergiu Rudeanu

Abstract. The Glivenko-Frink theorem for pseudocomplemented distributive lattices and,
more generally, for pseudocomplemented meet semilatices, states that the set of regular el-
ements can be made into a Boolean algebra which is a homomorphic image of the original
algebra. Buşneag has extended this theorem to bounded Hilbert algebras. In the present
paper we work with a Hilbert algebra A which is not supposed to be bounded and prove
that each principal order filter [a, 1] is a bounded Hilbert algebra (Theorem 1) whose regular
elements form a Boolean algebra which is a homorphic image of [a, 1] (Theorem 2). Then
(Theorem 3) for each element a of A we construct a Boolean-like algebra on A and a surjec-
tive homomorphism of type (2,2,1,0,0) from this algebra to the Boolean algebra obtained in
Theorem 2 .
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Motivated by intuitionistic logic, Glivenko [1929] has proved that in a pseudocom-
plemented distributive lattice (L,∨,∧,∗ , 0), the set R(L) = {x ∈ L | x∗∗ = x} = {x∗ |
x ∈ L} of regular elements can be made into a Boolean algebra (R(L),t,∧,∗ , 0, 0∗),
where x t y = (x∗ ∧ y∗)∗. This famous theorem was generalized by Frink [1962]
to pseudocomplemented meet semilattices, i.e., meet semilattices (S,∧, 0) such that
∀x ∃x∗ ∀ y x ∧ y = 0 ⇐⇒ x ≤ y∗; see e.g. Grätzer [1978], where a new proof
is given. Theorems of this type have been also given for several other classes of al-
gebras occurring in algebra of logic; see e.g. Torrens [2008] and the literature cited
therein. As certain authors do, it seems appropriate to refer to these theorems as
Glivenko-Frink(-like) theorems, the more so as this name makes a distinction from
other important contributions of Glivenko to lattice theory, for which the reader is
referred to Birkhoff [1961] or Grätzer [1978].

One of these theorems, not cited by Torrens, is due to Buşneag [1985], [2006], who
proved that although a bounded Hilbert algebra (A,→, 1, 0) need not be a semilattice,
the operation x∗ = x → 0 has certain properties similar to pseudocomplementation,
including the Glivenko-Frink theorem.

In this Note we remark that in any Hilbert algebra A (not necessarily bounded),
each principal order filter [a, 1] is a bounded Hilbert algebra (Theorem 2.1), and using
the Buşneag theorem we obtain a family of Glivenko-Frink theorems (Theorem 2.2).
Then we apply this technique to construct a family of Boolean-like structures on A,
indexed with the elements of A. Moreover, for each a ∈ A the map x 7→ xaa, where
xa = x → a, is a surjective homomorphism of type (2,2,1,0,0) from the Boolean-like
algebra A to the Boolean algebra constructed in Theorem 2.2. This is Theorem 3.1,
which produces another family of Glivenko-Frink-like theorems.
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1. Prerequisites

The concept of a Hilbert algebra is the algebraic counterpart of positive implicative
propositional calculus. Algebras dual to Hilbert algebras were introduced by Henkin
[1950] under the name implicative models. It is Diego who, in his PhD Thesis pre-
sented in 1961, introduced and studied the concept which he called Hilbert algebra
(following a suggestion of A. Monteiro); cf. Diego [1965,1966]. Nowadays Hilbert al-
gebras are much studied for their intrinsic algebraic interest; see e.g. Buşneag [1985],
[2006], Rasiowa [1974].

An algebra (A,→, 1) of type (2,0) is said to be a Hilbert algebra provided it satisfies
the axioms

(1) x → (y → x) = 1 ,

(2) (x → (y → z)) → ((x → y) → (x → z)) = 1 ,

(3) x → y = 1 and y → x = 1 imply x = y .

Every Hilbert algebra A becomes a poset with greatest element (A ≤, 1) under the
relation ≤ defined by

(4) x ≤ y ⇐⇒ x → y = 1 .

If, moreover, the poset A has a least element 0, the algebra A is said to be bounded.
It was shown by Buşneag [1985] (see also [2006]) that in a bounded Hilbert algebra

A the operation ∗ defined by

(5) x∗ = x → 0

has certain properties similar to pseudocomplementation, although A need not be a
semilattice, and in particular the Glivenko-Frink theorem holds for the set

(6) R(A) = {x ∈ A | x∗∗ = x}
of regular elements of A.

2. Boolean algebras in principal order filters

We refer the reader to Buşneag, Diego or Rasiowa (op.cit.) for the following prop-
erties, which will be needed in the sequel:

(7) x → x = 1 ,

(8) 1 → x = x ,

(9) y ≤ x → y ,

(10) x ≤ y =⇒ y → z ≤ x → z ,

(11) x → (y → z) = (x → y) → (x → z) ,

(12) x → (y → z) = y → (x → z) ,

(13) x ≤ (x → y) → y .

Let us begin with a characterization of principal order filters.
Recall that a deductive system of a Hilbert algebra A is a subset D ⊆ A such that

(i) 1 ∈ D, and (ii) if x, x → y ∈ D then y ∈ D. We will say that D is bounded
provided it has a least element.

Proposition 2.1. Principal order filters coincide with bounded deductive systems.
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Proof: Let us prove that [a, 1] is a bounded deductive system. For a is least element,
1 ∈ [a, 1] and if x, x → y ∈ [a, 1], then by applying (4), (11) and (8) we get

1 = a → (x → y) = (a → x) → (a → y) = 1 → (a → y) = a → y ,

hence a ≤ y.
Conversely, let D be a deductive system with least element a. Then a ≤ d for every

d ∈ D, showing that D ⊆ [a, 1]. To prove that [a, 1] ⊆ D, take b ∈ [a, 1]. Then (4)
implies a → b = 1 ∈ D and since a ∈ D, it follows that b ∈ D. 2

To prove Theorem 2.1, we first note the following

Lemma 2.1. For every x, y ∈ A, if y ∈ [a, 1], then x → y ∈ [a, 1].

Proof: By (9). 2

Theorem 2.1. [a, 1] is a subalgebra of (A,→, 1) and a bounded Hilbert algebra.

Proof: The first statement follows from Lemma 2.1 and 1 ∈ [a, 1]. But it was
shown by Diego [1965,1966] that the class of Hilbert algebras is equational, threfore
the subalgebra ([a, 1],→, 1) is a bounded Hilbert algebra. 2

The next Proposition generalizes results established by Buşneag [1985] (see also
[2006]) for a bounded Hilbert algebra. The proof of properties (14)–(16) is the same
as in op. cit., but we give it for the sake of self-containedness.

Proposition 2.2. I) The assignment x 7→ xa defines a map from A to [a, 1] which
satisfies
(14) x ≤ y =⇒ ya ≤ xa ,

(15) x ≤ xaa ,

(16) xaaa = xa .

II) The assignment x 7→ xaa is a closure operator on A, for which the set Ra(A)
of fixed points is included in [a, 1].

Proof: I) The fact that xa ∈ [a, 1] follows from (9). Properties (14) and (15) are
obtained by (10) and (13), respectively. Taking x := xa in (15) we get xa ≤ xaaa,
while (15) implies xaaa ≤ xa via (14).

II) The fact that x 7→ xaa is a closure operator follows from (14) and (15) by a
well-known argument. It is also well known that (14) and (15) imply Ra(A) = {xa |
x ∈ A}, whence the second part of II) follows via I). 2

Taking into account Theorem 2.1 and using also the identity
(17) x → ya = y → xa ,

which follows by (12), the Glivenko-Frink-like theorem of Buşneag amounts to the
following structure for Ra(A) ⊆ [a, 1]:

Theorem 2.2. I) A Boolean algebra (Ra(A),ua,ta,a , a, 1) is defined by the opera-
tions
(18) xa = x → a ,

(19) x ua y = (x → ya)a = (y → xa)a ,

(20) x ta y = (xa ua ya)a = xa → y = ya → x .

II) The mapping
(21) ϕ : [a, 1] −→ Ra(A)
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defined by ϕ(x) = xaa is a surjective homomorphism of bounded Hilbert algebras.

3. Boolean-like algebras

Beside (18), we introduce the following operations on A:
(22) x ∧a y = xaa ua yaa = (xaa → ya)a = (yaa → xa)a ,

(23) x ∨a y = xaa ta yaa = xaa → ya = yaa → xa ,

and we are going to study their properties.
For every Boolean term f, that is, a term of type (2,2,1,0,0), we denote by fA

and fR the term function generated by f in the algebra (A,∧a,∨a,a , a, 1) and in the
Boolean algebra (Ra(A),ua,ta,a , a, 1), respectively.

Proposition 3.1. For every Boolean term f which is not a variable we have the
identity
(24) fA(x1, . . . , xn) = fR(xaa

1 , . . . , xaa
n ) .

Proof: By algebraic induction. The constant terms satisfy (0)A = a = (0)R and
(1)A = 1 = (1)R. For the terms x ∧ y and x ∨ y the property is checked by (22) and
(23). Now suppose the terms g and h are not variables and satisfy (24). Then

(g ∧ h)A(x1, . . . , xn) = gA(x1, . . . , xn) ∧a hA(x1, . . . , xn)

= gR(xaa
1 , . . . , xaa

n ) ∧a hR(xaa
1 , . . . , xaa

n )
= (gR(xaa

1 , . . . , xaa
n ))aa ua (hR(xaa

1 , . . . , xaa
n ))aa

= gR(xaa
1 , . . . , xaa

n ) ua hR(xaa
1 , . . . , xaa

n ) = (g ∧ h)R(xaa
1 , . . . , xaa

n )
and a similar proof holds for g ∨ h, while

(g′)A(x1, . . . , xn) = (gA(x1, . . . , xn))a

= (gR(xaa
1 , . . . , xaa

n ))a = (g′)R(xaa
1 , . . . , xaa

n ) .

2

Proposition 3.2. Suppose f = g is a Boolean identity, where the Boolean terms f
and g are not variables. Then the identity fA = gA holds.

Proof: fA(x1, . . . , xn) = fR(xaa
1 , . . . , xaa

n ) = gR(xaa
1 , . . . , xaa

n ) = gA(x1, . . . ,
xn). 2

Corollary 3.1. The operations ∧a,∨a are commutative, associative, mutually dis-
tributive and satisfy the De Morgan laws.

Proof: For instance,

x ∧a (y ∧a z) = xaa ua (yaa ua zaa) = (xaa ua yaa) ua zaa = (x ∧a y) ∧a z .

2

Corollary 3.2. For every Boolean term f such that f(x1, . . . , xn) = xi (where 1 ≤
i ≤ n) is a lattice identity, we have the identity
(25) fA(x1, . . . , xn) = xaa

i .

Proof: fA(x1, . . . , xn) = fR(xaa
1 , . . . , xaa

n ) = xaa
i . 2

Corollary 3.3. The following identities hold:
(26) x ∧a x = xaa, x ∨a x = xaa ,
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(27) x ∧a (x ∨a y) = xaa, x ∨a (x ∧a y) = xaa ,

(28) x ∧a 1 = xaa, x ∨a a = xaa .

Proposition 3.3. For every Boolean term f such that f(x1, . . . , xn) = 0 (such that
f(x1, . . . , xn) = 1) is a Boolean identity, we have the identity fA(xa, . . . , xn) = a (the
identity f(x1, . . . , xn) = 1).

Proof: fA(x1, . . . , xn) = fR(xaa
1 , . . . , xaa

n ) = a and dually. 2

Corollary 3.4. The following identities hold:
(29) x ∧a a = a, x ∨a 1 = 1 ,

(30) x ∧a xa = a, x ∨a xa = 1 .

The Boolean likeness extends to the ordering as well.
The order relation in the Boolean algebra Ra(A) is inherited from the ordering of

[a, 1], which, in its turn, is the restriction of the partial order of A. So, if x, y ∈ Ra(A),
then x ≤ y ⇐⇒ x ua ya = a.

Now for arbitrary x, y ∈ A define
(31) x ¹ y ⇐⇒ xaa ≤ yaa .

This relation is a quasi-order such that x ≤ y =⇒ x ¹ y, its restriction on Ra(A) is
the partial oder ≤ and which has a Boolean-like behaviour, as shown below.
(32) x ∧a y ¹ x, y ¹ x ∨a y

because (x ∧a y)aa = x ∧a y = xaa ua yaa ≤ xaa, yaa and dually.
(33) z ¹ x, y =⇒ z ¹ x ∧a y and x, y ¹ z =⇒ x ∨a y ¹ z .

For suppose z ¹ x, y. Then zaa ≤ xaa, yaa, hence zaa ≤ xaa ua yaa = x ∧a y =
(x ∧a y)aa, and dually.
(34) x ∧a y ≤ z ⇐⇒ x ¹ yaa → zaa .

For x ∧a y ≤ z ⇐⇒ xaa ua yaa = (xaa ua yaa)aa ≤ zaa ⇐⇒ xaa ≤ yaa → zaa. In
particular, taking z := a we get
(35) x ∧a y = a ⇐⇒ x ¹ ya .

Theorem 3.1. I) The binary operations of the algebra (A,∧a,∨a,a , a, 1) are commu-
tative, associative and mutually distributive, and properties (26)–(34) hold.

II) The mapping
(36) ϕ : (A,∧a,∨a,a , a, 1) −→ (Ra(A),ua,ta,a , a, 1)
defined by ϕ(x) = xaa is a surjective homomorphism.

Proof: Part I) has already been proved. The surjectivity of ϕ is clear and

ϕ(x ∧a y) = (x ∧a y)aa = (xaa ua yaa)aa = xaa ua yaa = ϕ(x) ua ϕ(y)

and dually, while ϕ(xa) = xaaa = (ϕ(x))a. 2
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