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Some properties of the operation
x t y = (x → y) → ((y → x) → x)
in a Hilbert algebra
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Abstract. The aim of this paper is to study some properties of Hilbert algebras relative to
the operation x t y = (x → y) → ((y → x) → x).
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1. Introduction

Hilbert algebras are important tools for certain investigations in algebraic logic
since they can be considered as fragments of any propositional logic containing a
logical connective implication and the constant 1 which is considered as the logical
value “true”. The theory of Hilbert algebras has been developed by A. Diego in [4]
and the theory of Abbott algebras has been developed by Abbott in [1] and [2]. Both
theories can be found in [9], which also contains the theory of implicational lattices.

2. Preliminaries

We recall some basic definitions and results that are necessary for this paper. For
more details we refer to references.

Definition 2.1. A Hilbert algebra is an algebra (H,→, 1) of type (2,0) such that the
following three axioms hold in H :
(a1) x → (y → x) = 1;
(a2) (x → (y → z)) → ((x → y) → (x → z)) = 1;
(a3) If x → y = y → x = 1, then x = y.

If H is a Hilbert algebra, then the relation x ≤ y iff x → y = 1 is a partial order
on H which will be called the natural ordering of H. With respect to this ordering,
1 is the largest element of H.

In [4] it is proved that the Definition 2.1 is equivalent with:

Definition 2.2. A Hilbert algebra is an algebra (H,→, 1) of type (2,0) such that the
following axioms hold in H :
(a4) x → x = y → y;
(a5) (x → x) → x = x;
(a6) x → (y → z) = (x → y) → (x → z);
(a7) (x → y) → ((y → x) → x) = (y → x) → ((x → y) → y).
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So, we deduce that the class of Hilbert algebras forms a variety.
Following [1] and [2], an implication algebra is an algebra (A,→, 1) of type (2,0)

satisfying the following axioms:
(a8): x → x = 1;
(a9): (x → y) → x = x;
(a10): x → (y → z) = y → (x → z);
(a11): (x → y) → y = (y → x) → x.
In [3] and [4] it is proved that if H is a Hilbert algebra and x, y, z ∈ H, then we

have the following rules of calculus:
(c1): x → 1 = 1;
(c2): x ≤ y → x;
(c3): x → (y → z) = y → (x → z);
(c4): x ≤ (x → y) → y;
(c5): ((x → y) → y) → y = x → y;
(c6): x → y ≤ (y → z) → (x → z);
(c7): If x ≤ y, then z → x ≤ z → y and y → z ≤ x → z.
For a Hilbert algebra H and x, y ∈ H we define

x t y = (x → y) → ((y → x) → x).

In [3] and [4] the following rules of calculus are proved:
(c8): x, y ≤ x t y and x t y = y t x;
(c9): x t x = x, x t 1 = 1;
(c10): x t (x → y) = 1;
(c11): x → (y t z) = (x → y) t (x → z);
(c12): (x → y) t z = x → (y t z);
(c13): (x → y) t (y → x) = 1;
(c14): (x → z) t (y → z) = x → (y → z).
A Hilbert algebra H is called commutative if H verifies (a11).
Clearly, every implication algebra is a Hilbert algebra (see [5], p. 527).

Theorem 2.1. For a Hilbert algebra H the following are equivalent:
(i) H is commutative;

(ii) (H,→, 1) is an implication algebra.

Proof. (i) ⇒ (ii). We have to prove only (a11). Indeed, for x, y ∈ H we have
((x → y) → x) → x = (x → (x → y)) → (x → y) = (x → y) → (x → y) = 1, hence

(x → y) → x ≤ x. Since by (c1), x ≤ (x → y) → x we deduce that x = (x → y) → x.
(ii) ⇒ (i). Let x, y ∈ H. By (a7) we have (x → y) → ((y → x) → x) = (y →

x) → ((x → y) → y)
(c3)⇒ (y → x) → ((x → y) → x) = (x → y) → ((y → x) → y)

(a10)⇒ (y → x) → x = (x → y) → y, that is, H is a commutative algebra.
So, we obtain the last Corollary from [5]. ¥

3. Some properties of operation t

Following (c8), for x, y ∈ H, x t y is an upper bound for x and y.

Theorem 3.1. The following are equivalent:
(i) H is a ∨− semilattice relative to t;

(ii) H is commutative.



80 DAN DORIN TAŞCĂU

Proof. (i) ⇒ (ii). Suppose that for every x, y ∈ H, x ∨ y exists and x ∨ y = x t y.
Since x, y ≤ (y → x) → x (by (c2) and (c4)) we deduce that xty = x∨y ≤ (y → x) →
x; since (y → x) → x ≤ xty we deduce that xty = x∨y = (y → x) → x. Analogously
x t y = x ∨ y = (x → y) → y, hence x t y = x ∨ y = (y → x) → x = (x → y) → y,
that is, H is commutative.

(i) ⇒ (ii). Suppose that H is commutative. For x, y ∈ H, clearly x t y = (x →
y) → ((y → x) → x) = (x → y) → ((x → y) → y) = (x → y) → y, so to prove
x ∨ y = x t y, let t ∈ H such that x, y ≤ t. By (c7) we deduce that (x → y) → y ≤
(t → x) → x = (x → t) → t = 1 → t = t, hence x t y = (x → y) → y = x ∨ y. ¥
Remark 3.1. In [5], p. 527, the author incorrectly mentions that ” Theorem 3.3 in
[7] claims that commutative Hilbert algebras are just those which are join semilattices
w.r.t. the natural ordering”. We recall the ennounce of Theorem 3.3 in [7] : A
Hilbert algebra H is commutative iff it is a semilattice with respect to Y (where for
x, y ∈ H, x Y y = (y → x) → x) (not relative to the natural ordering!).

For a ∈ H we denote by [a) = {x ∈ H : a ≤ x}. We have a similar result for
Theorem 3.6. from [7] for the case of operation t :

Theorem 3.2. A Hilbert algebra is commutative iff [a)∩ [b) = [atb), for all a, b ∈ H.

Proof. ′′ ⇒′′ . Suppose H is commutative and let a, b ∈ H. Since a, b ≤ a t b,
we deduce that [a t b) ⊆ [a) ∩ [b). If x ∈ [a) ∩ [b), then a ≤ x and b ≤ x. Then
a t b = (a → b) → b ≤ (x → b) → b = (b → x) → x = 1 → x = x, so x ∈ [a t b) and
we deduce that [a) ∩ [b) = [a t b).

′′ ⇐′′Let a, b ∈ H and suppose [a)∩ [b) = [at b). By (c2), (c4) we deduce that (a →
b) → b ∈ [a) ∩ [b) = [a t b), hence a t b = (b → a) → ((a → b) → b) ≤ (a → b) → b,
that is a t b = (a → b) → b. Analogously we deduce that a t b = (b → a) → a, hence
(a → b) → b = (b → a) → a, that is, H is commutative. ¥

4. New characterization for the maximal deductive systems

We recall that a subset D of a Hilbert algebra H is called a deductive system if
(a12): 1 ∈ D;
(a13): If x, x → y ∈ D, then y ∈ D.
We denote by Ds(H) the set of all deductive systems of H.
For a Hilbert algebra H we denote by Max(H) the set of all maximal deductive

systems of H. For D ∈ Ds(H) and a ∈ H, we denote by D(a) the deductive system
generated by D ∪ {a}.

We recall ([3], [4]) that D(a) = {x ∈ H : a → x ∈ D}.
Theorem 4.1. For D ∈ Ds(H) the following are equivalent:
(i) D ∈ Max(H);

(ii) If x, y ∈ H and x t y ∈ D, then x ∈ D or y ∈ D.

Proof. (i) ⇒ (ii). Let D ∈ Max(H) and suppose by contrary that there exist
x, y ∈ H such that x /∈ D and y /∈ D. By the maximality of D we deduce that D(x) =
D(y) = H, hence x → y, y → x ∈ D. From xt y = (x → y) → ((y → x) → x) ∈ D we
deduce that x ∈ D, a contradiction.

(ii) ⇒ (i). Suppose that D is not maximal, that is, there existS D′ ∈ Ds(H), D′ 6=
H such that D ⊂ D′ (that is, there exists x ∈ D′\D and y ∈ H\D). Since x t (x →
y) = 1 ∈ D (by (c10)) and x /∈ D, then x → y ∈ D ⊂ D′, hence x → y ∈ D′. Since
x ∈ D′ we deduce that y ∈ D′ , a contradiction. ¥
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Theorem 4.2. For M ∈ Ds(H),M 6= H, the following are equivalent:
(i) M ∈ Max(H);

(ii) If x /∈ M then x → y ∈ M, for every y ∈ M.

Proof. (i) ⇒ (ii). Suppose M ∈ Max(H) and x /∈ M. Since xt (x → y) = 1 ∈ M
for every y ∈ H, by Theorem 4.1 we deduce that x → y ∈ M.

(ii) ⇒ (i). Suppose that M is not maximal, that is, there exists N ∈ Max(H)
such that M ⊂ N (hence there exists x0 ∈ N\M). Since N is proper there exists
y0 ∈ H\N. Then x0 → y0 ∈ M ⊂ N ⇒ x0 → y0 ∈ N ⇒ y0 ∈ N , a contradiction. ¥

We recall that an element r ∈ H is called regular if (r → x) → r = r, for every
x ∈ H.

For D ∈ Ds(H) and a ∈ H\D we say that a is associated with D or that D is
maximal relative to a, if D is maximal with respect to the deductive systems which
do not contain a, i.e. D is maximal in the set {D′ ∈ Ds(H) : a /∈ D′}.

We have (see [4], p. 23):

Theorem 4.3. (A. Monteiro) For D ∈ Ds(H) and a ∈ H\D, the following are
equivalent:

(i): D is maximal relative to a;
(ii): a /∈ D and x /∈ D ⇒ x → a ∈ D.

Corollary 4.1. If r ∈ H is regular and D ∈ Ds(H) is maximal relative to r, then
D ∈ Max(H).

Proof. We have r /∈ D and suppose by contrary that D is not maximal, that
is, there is, D′ ∈ Ds(H), D′ 6= H such that D ⊂ D′. Then there exists x0 ∈ H\D′

and by the maximality of D relative to r we deduce that r ∈ D′, hence r → x0 /∈ D′.
Then r → x0 /∈ D, hence by Theorem 4.3, (r → x0) → r = r ∈ D, a contradiction. ¥
Remark 4.1. The above Corollary is stated in [8] (see Proposition 13.3), but without
proof !
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