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The Problem of the Center for Quartic Differential Systems
with an Affine Invariant Straight Line and the Line at Infinity
of Maximal Multiplicity
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ABSTRACT. Quartic differential systems with a center-focus critical point and non-degenerate
infinity which admit an affine invariant straight line are studied. It is shown that, in this class,
the maximal multiplicity of the line at infinity is six. Modulo the affine transformations and
time rescaling the subclasses of systems with the line at infinity of multiplicity two, three,...,
six are determined. Moreover, for quartic differential systems with an affine invariant straight
line and the line at infinity of maximal multiplicity, the problem of the center is solved.
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1. Introduction

We consider a real polynomial differential system

i‘:P(.’B,y), y:Q($7y), (1)
where P(x,y) and Q(x,y) are real and coprime polynomials in the variables  and
y, & = dx/dt, y = dy/dt. The degree n of this polynomial differential system is the
maximum degrees of the polynomials P and @, n = max{degP(x,y),degQ(z,y)}.
If n = 2 (respectively, n = 3, n = 4), then the system (1) is called a quadratic
(respectively, a cubic, a quartic) differential system.

Assume that n =4 and let (zg,yo) be a critical point for (1) with pure imaginary
eigenvalues. Then via an affine transformation of coordinates and time rescaling the
system (1) can be brought to the form

{ i =y+pa(z,y) +p3(z,y) + pa(x,y) = P(z,y),
¥ =—(z+q(r,y) +a(z,9) + aalr,y) = Q(,

V), (2)

where

pilz, Zaz w7 ailz,y) sz—”x Ty, i€ {2,3,4}

7=0

are homogeneous polynomials in x and y of degree 1 with real coefficients.
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Suppose that
yp4(x,y) +Z‘Q4(Z‘,y) ?_é 0, (3)
then the system (2) has at most five distinct critical points at infinity.

The origin (0,0) is either a focus or a center for system (2), i.e. the trajectories
can be spirals or closed in some neighborhood of a critical point (0,0). The problem
of distinguishing between a center and a focus (the problem of the center) is open for
polynomial differential systems of degree n > 3.

The problem of the center was solved for some classes of cubic differential systems

with invariant straight lines: at least three invariant straight lines [4], [5], [7]; two
parallel invariant straight lines [6], [9]; the line at infinity of multiplicity four [10] and
five [11]; three affine invariant straight lines of total multiplicity four [12]; the line at

infinity and an affine real invariant straight line of total multiplicity four [15].

The center conditions were found for some classes of quartic differential systems
with: the line at infinity of maximal multiplicity [16]; an affine invariant straight line
of maximal multiplicity [19].

The goal of this paper is to solve the problem of the center for quartic differential
systems (2) with an affine invariant straight line and the line at infinity of maximal
multiplicity. The paper is organized as follows. In Section 2 we recall some known
results concerning the existence and multiplicity of invariant straight lines. In Section
3 we prove that in the class of quartic systems, with a center-focus critical point and
an affine invariant straight line, the maximal multiplicity of the line at infinity is six.
We determine the subclasses of quartic differential systems (2) with an affine invariant
straight line and the line at infinity of multiplicity two, three,...,six. In Section 4 we
solve the problem of the center for quartic differential systems with an affine invariant
straight line and the line at infinity of maximal multiplicity.

2. Multiplicity of invariant straight lines in quartic differential systems

We consider the quartic differential system (2) and the vector field
0 0
X=P — —
(@.y) 5, +Q @y 5,

associated to system (2). One of the most important question to ask is if any non-
singular trajectories of the system are contained in algebraic curves, for example,
f(z,y) =0, where f(z,y) is a polynomial.

Definition 2.1. An algebraic curve f(z,y) = 0 in C? with f € C[z,y] is an invariant
algebraic curve of a quartic system (2) if

X(f) = flz,y) Kz, y), (4)
for some polynomial Ky € Clz,y], deg(K) < n—1 called the cofactor of the invariant
algebraic curve f(z,y) = 0.

Definition 2.2. Let g, h € C[z, y] be relatively prime in the ring Clz, y]. The function
f = exp(g/h) is called an exponential factor of (2) if it satisfies the identity (4) for
some polynomial K; € Clz,y|, deg(K) <n — 1.

In particular, a straight line

lEOé.’B+6y+’}/:O, OZ,B,’YEC
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is invariant for (2) if there exists a polynomial K; € C[z, y] such that

OéP(.I?,y) +ﬁQ(x7y) = (a$+6y+7)Kl(x’y)a (x,y) € R?. (5)

In this paper we are interested in studying quartic differential systems with a
center-focus critical point having multiple invariant straight lines.
Let us consider the homogeneous system associated with (2) of the form

{ T = yZB +p2(xay)Z2 +p3($,y)Z+p4($U,y> = P($,y7Z)7 (6)
§=—(2Z°+ q2(2,9)2° + a3(2.9) Z + qa(2,y)) = Q(z,y, Z).

Denote Xoo = P (2,4, Z) 25 + Q (2,9, Z) £ and Eee = P - Xoo(Q) — Q - Xoo(P). The
polynomial E., is expressed as

Eoo = A2('/an) + A3($ay)Z + A4(.137y)Z2 + A5(xay)Z3
+Aq(,y) Z* + A7(2,9) Z° + Ag(2,y) Z° + Ag(w,y)Z7 (7)
+A10(I7y)Z8 +A11($7y)Z93

where Ag(x,y), k =2,...,11, are polynomials in = and y.

According to [3], the invariant straight line ax+ By++~ = 0 has multiplicity v, if v is
the greatest positive integer such that (az+ Sy ++v)” divides E = P-X(Q)—Q-X(P).
For system (2), the line at infinity Z = 0 is said to have multiplicity v if

As(z,y) =0,..., Ap(z,y) =0, Apya(z,y) #0,
i.e. v — 1 is the greatest positive integer such that Z*~! divides E.,. If As(z,y) Z 0,
the line Z = 0 is said to have multiplicity one.

More information about the multiplicity of an invariant algebraic curve and, in
particular, of the line at infinity, can be found in the works [3], [13].

Polynomial differential systems of degree n, n € {3,4} with a center-focus type
critical point and a multiple line at infinity were examined in [10], [11], and [L8].
Cubic differential systems with multiple invariant straight lines, including the line at
infinity, were investigated in [2], [13], [20].

Quartic differential systems (2) having an affine invariant straight line of maximal
multiplicity were studied in [14], and the systems (2) with the line at infinity of maxi-
mal multiplicity were studied in [17]. It was established that the maximal multiplicity
of an affine invariant straight line (or of the line at infinity) equals ten.

In this paper, we prove that the maximal multiplicity of the line at infinity Z =0
in quartic differential systems (2) possessing an affine invariant straight line is six.

3. Quartic differential systems with an affine invariant straight line and a
multiple line at infinity

Let the quartic system (2) have an affine real invariant straight line [ = 0, i.e. the
identity (5) holds. By a transformation of the form

x = w(zcosp +ysing), y = w(ycosp —xsing), w #0,
we can make the line [ = 0 to be z = 1. Then,

aso = — (a2 + aso), az1 = —(1+ a11 + a21), ®)
asze = —(aog2 + a12), a1z = —ao3, aps =0,
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and the system (2) can be written in the form

= (1 —x)(agx? + ag2® + azox® +y + vy + anzy + 2%y+
+a1122y + a2 2%y + apey® + apzay® + apzy® + a03y3) = P(z,y), (9)
§ = —(z + baox? + briay + booy? + baox® + bar2%y + biazy®+
+bosy® + baoz* + bg1 3y + baox?y? + bizzy® + boay*) = Q(z,y).
Denote by m(Z) the multiplicity of the line at infinity Z = 0. Then taking into

account (3), we determine the subclasses of systems {(9), (3)} for which the line at
infinity attains multiplicities two, three, ..., and six.

3.1. Systems (9) with m(Z) > 2. The line at infinity has multiplicity at least two
if Ao(z,y) = 0. The polynomial As(x,y) looks as As(z,y) = —Ag(x,y)Axn(z,y),
where

Asi(z,y) = z(baoz® — (a0 + aso — bs1)z®y — (1 + ar1 + as1 — baz)z?y? — (ag2 + a12 —
biz)zy® — (aos — boa)y*), and
Ago(x,y) = (ag0bs1 + asobst — bao — a11bao — as1bao)z8 +2(asobaz + azobaz — ag2bao —

a12b10) 25y + (3a20b13 +3az0b13 +boz +a11b22 + a21 b2 — ag2bsi — a12bs1 — 3agsbao)zy* +
2(2a20bo4 + 2a30bo4 + bz + a11b1s + az1b1s — apsbsr )2y + (3bos + 3a11bos + 3az1bos +
ao2b1s + a12b1s — agsbaz)z?y* 4 2(ao2 + a12)boary® + ao3boay®.

As Ay (z,y) = ypa(x,y) + zqa(z,y) Z 0, we assume that Ass(z,y) vanishes iden-
tically. The solutions of the identity Ass(x,y) = 0 leads to the following result:

Lemma 3.1. The line at infinity has multiplicity at least two in the quartic system
(9) if and only if the coefficients of (9) satisfy one of the following sets of conditions:

apz = 0, a2 = —apz2, a21 = —1 — a1, azp = —ag; (10)
ap3 =0, a12 = —ap2, a21 = —1 —a11, bosa = b3 = bag = bz1 = 0; (11)
ap3 = 0, a12 = —ag2, bos = b1z = baa =0, (12)
bao = (a0 + asz0)bs1/(1 + a11 + az1);
aps = boa = b13 =0, bg1 = (1 + a11 + a21)b2a/(ao2 + a12), (13)
bao = (ago0 + aso)baz/ (a2 + a12);
boa = 0, byo = (aoz + a12)b13/aos, bs1 = (14 a11 + az1)biz/aps, (14)

bso = (a0 + aso)b13/aos3.

3.2. Systems (9) with m(Z) > 3. The line at infinity has multiplicity m(Z) at
least three if {As(z,y) =0, Asz(z,y) = 0}. In each of the sets of equalities (10)-(14)
in Lemma 3.1, the identity As(z,y) = 0 leads, respectively, to the following series of
conditions:

(10) = As(z,y) =0 =

ap2 — O, aylp = —1, agn = O; (15)

ap2 =0, a1 = —1, bos = b13 = bag = b31 = 0; (16)

agz =0, bos = big = baa = 0, bag = az0bs1/(1 + a11); (17)
boa = b1z =0, bz1 = (1 + a11)baz/aoz, bio = az0b22/aos2. (18)

(11) = As(z,y) =0 =

azp = —ag, ag2 =0, a1 = —1; (19)
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bos = 0, b1z = ag2bao/(a20 + aso), ba1 = (1 + a11)bao/ (a0 + aso),
bso = —asobao/(a20 + aso).
(12) = As(z,y) =0 =

bos = 0, biz = ap2bsi /(1 + a1 + a21), bar = —a21bs1/(1 + ai1 + az1),
b31 = —ag — aso;

bos = 0, biz = ap2bs1/(1+ a1 + a21), ba1 = —a21b31/(1 + ai1 + az1),
bso = —asobs1 /(1 + ai1 + az1).

(13) = As(z,y) =0 =

bog = 0, bia = —a12b2a/(ao2 + a12), bso = —azobaz/(ao2 + ai2), (23)
ba1 = —a21b2a/(ap2 + a12);

boz =0, b2 = —ai2bz/(ao2 + ai2),
bzo = (ap2b21 + apza11ba1 + ai2ba1 + a11a12b21 + ag2a21b21+
+a12a21b21 + a21bo2 + a11a21b22 + a31bos — agrazobrr— (24)
—a12a30b22 + ag2b21b22 + a12b21b22 + a21552)(a02 + a12)2,
aso = —(ap2a3o + a12a3g + baa + a11baz + as1bas + b3,)/(ap2 + ai2).

(14) = As(z,y) =0 =

_ 2 2 2
asg = —(agza20 — ap3boz — ap3a11boz — apzaz1boz + ag2bgs + a12b53—
LR z _ 3
—b3s3)/ags, b1z = —boz, ba1 = (—ap2a12bo3 — atyboz+
+agzaz1boz + a12b33 + ap2ao3bia + agzaizbiz — ap3boszbiz)/al
03621003 + a12b§3 + ao2a03b12 + apsai2bi2 — apsbosbiz)/ags,
_ 2
bso = —(aoza12bo3 + apzaiiaizbos + agza0bos + ap3a12a21bo3— (25)
2 2 2 219 2 3
—ao3bi3 — ap3a11bg3 — ap2a12b53 — afabhs — ap3a1bgs + ap2byz+
3 4 2 2 2
+2a12bg3 — by — ajsbiz — agsaiibiz — agza21012 + ag2ao3bosbia+
2 E
+ao3a12b03b12 — ao3bizbi2)/ags;

big = —bo3, bi2 = a12boz/ao3, ba1 = az1bos/ao3, bso = azobos/aos. (26)
It is easy to see that the conditions {(10), (16)} and {(11), (19)} are the same.

Lemma 3.2. In the quartic system (9), the line at infinity has multiplicity at least
three if and only if the coefficients of (9) fulfill one of the following sets of conditions:
1){(10), (15)}, 2) {(10), (16)}, 3) {(10), (17)}, 4){(10), (18)},

9) {(11), (20)}, 6) {(12), 21)},  7){(12), (22)}, 8) {(13), (23)},
9){(13), 249}, 10){(14), (25)},  11) {(14), (26)}.

3.3. Systems (9) with m(Z) > 4. The multiplicity m(Z) of the line at infinity is
at least four if {As(x,y) =0, As(x,y) =0, Ag(x,y) = 0}. Under conditions 1)-11)
of Lemma 3.2, we solve the identity A4(x,y) = 0, yielding, respectively:

{(10), (15)} = Ay(z,y) =0 =

boa = b1z = bag = byo = 0. (27)
{(10), (16)} = A4(z,y) =0 =
bao = aso(az0 + b21), bos = b1z = 0. (28)

{(10), (17)} = Ay(z,y) =0 =

bos =0, big = —(1+ an1),
bzo = ago((1 + a11)(azo + ba1) — b31) /(1 + ai1)?.
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{(10), (18)} = Au(z,y) =0 =

bos = —ag2, bea = —(1+ a11)(1 + @11 + b12) + aoz(azo + b21),
bzo = a20(1 + a11 + b12)/aoe.

{(11), (20)} = Ay(z,y) =0 =

b02 = —a02b40/(a20 + a30), b11 = _a11b40/(a20 + Cl30),
bao = —az0bao/(azo + aso).

{(12), 21)} = As(z,y) =0 =

boz = ag2(azo + aso)/(1 + a11 + az1),
bi1 = a11(az0 + aso)/(1 + a1 + az1),
bao = azo(azo + aszo)/(1 + a1 + a21),
b3o = aszo(azo + aszo)/(1 + a1 + az1).

{(12), (22)} = Ay(z,y) =0 =

bo2 = —ao2bs1/(1+ a11 + a21), b1 = —a11b31/(1 + a11 + a21),
bao = —agobs1 /(1 + a11 + a21).

{(13), (23)} = As(z,y) =0 =

boe = —ag2baz /(a2 + a12), bi1 = —a11ba2/(ao2 + a12),
bao = —agobea/(ap2 + a12);

aso = (1 +an)(1 4+ a11 + 2a21) — 4(ao2 + a12)az + a3;)/(4(ao2 + ai2)),
bo2 = ap2(1 + a11 + a21)/(2(ao2 + a12),
bi1 = a1 (1+ a1 + a21)/(2(ao2 + ai2),
b22 = 7(1 + aii —+ agl)/Q.

{(13), (24)} = As(z,y) =0 =

aso = (—a12 — 2a11a12 — a3 a12 — 2a12a21 — 2411012021 —
—a12a3; + 4adybo1 + 8apaarzbar + 4aiybar)/(4(aoe + a12)?),
bi1 = (apza11 + ap2al; + arnaiz + aijars + ap2ai1az + a12a21+
+2a11a12a21 + a12a3, — 2a02a12b21 — 2a3,b21)/(2(ap2 + a12)?)),
boz = ap2(1 + a1 + a1)/(2(ao2 + a12)), bz = —(1 + a1 + a21)/2;

boz = ao2(1 + a1 + a21)/(2(ao2 + ai2)),

bi1 = a1 (1 + a1 + a21))/(2(agz + aiz)),

ba1 = az1 (1 + a1y + a21)/(2(ao2 + ai2)),
bag = —(1+ a1 + a21)/2;

bo1 = —a21522/(a02 + alZ); bo2 = —002522/(%2 + a12),
bao = baa(ap2aso + a12aso + baz + a11b22 + ag1b22 + b%g)/(aw + 012)27
bi1 = —(ag2a12b21 + a%2b21 + agaai1ba2 + ar1aizbaa+

+a12a21b92)/(ap2 + ai2)?.

587

(33)
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{(14), (25)} = Au(z,y) =0 =

as = —(aps + aozain — 2ag2bos — 2a12boz + 3b33)/aos,
a0 = (ao2a03bo2 + agsai2boz — agybos + aosbos + aoza11bos — ag2a12bo3—
—3a03boz2bos + 2a02b33) /a3, biz = —(aosboz — ao2boz — a12bos) /aos,
bag = (—adsboz — azai1boz — ap2aozaizboz — agsaisboz + adsbi,+ (39)
+ao2a03bos + adya12bo3 — apzaiiaiabos + ap2aisbos + 2a02a03bo2bosz+
+5a03a12b02bo3 — 3adyb3s + ao3bls + 3aozai1bis — Sagaai2bgs—
—Tagsbo2bds + 6ag2bls + ag2adsbii + adsaiabin — 2ad3bosbin)/ads;

a1 = —(ao3 + agzarr — 2ap2bos — 2a12bos + 3b33)/a03, bia = ai2bos/ags,
bo2 = ag2bo3/aos, bao = (—apzai1bos — ar1ai2bos + aozasobos + 2a11b35+ (40)
+ag2a03b11 + agzai2bin — 2agsbosbii)/ads;

bio = a12b03/ao3, bo2 = ap2bos/ao3, bi1 = a11bos/aos, bao = azeboz/aos. (41)

as = —(ag3 + agzain — 2ag2bos — 2a12boz + 3b3;) /aos,
asg = —(aggazo - aozb(Q)g - a12b(2)3 + 2b83)/a33’
boz = ao2bosz /a3, bao = (—ag2ai1bos — a11ai2bes + agzazoboz+
+2a11bg3 + agaag3bi1 + agzaiabin — 2a03b03b11)/a%3;

boz2 = ao2bos /a3, bao = azobos/aos, b1 = ai1bos/aos. (43)

The set of conditions {(12), (21), (32)} is a particular case of {(12), (22), (33)}.

Similarly, the set {(13), (24), (37)} is a particular case of {(13), (23), (35)}; the set

{(13), (24), (38)} is a particular case of {(13), (23), (34)}; and the set {(14), (25),

(41)} is a particular case of {(14), (26), (43)}. Moreover, the sets of conditions {(14),
(25), (40)} and {(14), (26), (43)} are identical.

Lemma 3.3. In the quartic system (9), the line at infinity is of multiplicity at least
four if and only if the coefficients of (9) obey one of the following sets of conditions:

1){(10), (15), 27}, 2) {(10), (16), (28)},  3) {(10), (17), (29)},
4) {(10), (18), (30)},  5) {(11), (20), B1)},  6){(12), (22), (33)},
7){(13), (23), (34)}, &) {(13), (23), (35)}, 9) {(13), (24), (36)},
10) {(14), (25), (39)},  11) {(14), (26), (42)},  12) {(14), (20), (43)}-

3.4. Systems (9) with m(Z) > 5. Under conditions 1) —12) of Lemma 3.3 we solve
the identity As(x,y) = 0. We obtain the following results for multiplicity:
{(10), (15), (27)} = As(z,y) =0 =

b3p = b1z = bp3 = 0. (44)
{(10), (16), (28)} = As(z,y) =0 =

bo2 = —(2ag0 + ba1)/ (a0 + ba21),
b1 = (2a3, + 2a3yb21 + 2a20bs0 + b21b30)/(az0(azo + ba1)).

{(10), (17), (29)} = As(x,y) # 0 because (a1 + 1) # 0.
{(10), (18), (30)} = As(x,y) £ 0, because agy # 0.

{(11), (20), (31)} = As(x,y) # 0 because (az + azg) # 0.
{(12), (22), (33)} = As(z,y) Z 0 because (1 + aj1 + az1) # 0.
{(13), (23), (34)} = As(z,y) # 0 because (agz + a12) # 0.
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{(13), (23), (35)} = As(z,y) =0 =

ap2 = —a12(1 + bao), az0 =0, az1 = —(1 +an). (46)

{(13), (24), (36)} = As(z,y) =0 =
apz = —a12(1 + bag), as; = —(1+ a11), be; = 0. (47)

{(14), (25), (39)} = As(z,y) =0 =
a11 = 2bo2 — 1, a1z = —aog2 + 3bos, bi1 = 2bos(2a03bo2 — ao2bos)/ags; (48)

_ 2 2 2 2
a11 = (—ap20gs — aG3a12 — ao3bos + 3agsbos — ap2a12b03 — aisbos+
2 2 3 _
+4agabgs + Sai2bgs — 6b3s)/(ao3bos), boz = ap2bos/aos,

49
bi1 = (—ap2ads — adsa12 + 3adsbos — ao2a12bo3 — aiybos + 4ao2bis+ 49)
+5a12b35 — 6b33) /ags;
a1 = (—ao2a03 + 2a82bos — 2a03bo3)/ (a02a03), a1z = —agz + 3bos, (50)
bi1 = —2(—ady + 2a03)b33)/(aoza?s), boz = (a3y — ao3)bos/ (ao2a03);
a12 = —aog2, boz = b1y = bz = 0. (51)
{(14), (26), (42)} = As(z,y) =0 =
asy = —(ao2ags + agzaiz — 3agzbos + ao2a12bo3 + atzbos — 3ag2bis—
—5a12b(2)3 + 6b83)/a(2)3, a1l = (—a02a83 - a(2)3a12 — ao3bos + 3a%3b03— (52)
—ap2a12boz — atsbos + 4agebds + 5a12b3s — 6b35)/(aosbos),
bi1 = (1 + a11)bo3/aos;
a12 = —agz, b1y = boz = 0. (53)
{(14), (26), (43)} = As(z,y) =0 =
aiz = —agz, az1 = —(1 +ai1), azo = —azo, boz = 0. (54)

The sets of conditions {(13), (24), (36), (47)} and {(13), (24), (35), (46)} are the
same. The set of conditions {(14), (25), (39), (51)} is a particular case of the set
{(14), (26), (42), (53)}. The set of conditions {(14), (26), (43), (54)} coincides with
the set of conditions {(14), (26), (42), (53)}.

Lemma 3.4. The line at infinity of the quartic system (9) has multiplicity at least
five if and only if the coefficients of (9) verify one of the following sets of conditions:

1){(10), (15), (27), (44)},  2) {(10), (16), (28), (49)},
3) {(13), (23), (35), (46)},  4) {(14), (25), (39), (48)},
9) {(14), (25), (39), (49)},  6) {(14), (25), (39), (50)},
7){(14), (26), (42), (52)},  8) {(14), (26), (42), (53)}.

3.5. Systems (9) with m(Z) = 6. The line at infinity Z = 0 has multiplicity at
least six if, in each of cases 1)—8) of Lemma 3.4, the identity Ag(z,y) = 0 holds.
Following the approach used in the previous case and taking (3) into account, we
examine each case separately:
{(10), (15), (27), (44)} = As(2,y) = byra'y(booa® — 2y* — bo2y®) =0 =
bao = 0, oz = —2. (55)

{(10), (16), (28), (45)} = Ag(z,y) = az02°((3a3ybao + dazobaobar + baob3; —
—a%obgo — agobar1bsg — bgo)l‘Q + (12(1%0 + 16&%01721 + 4(1201)%1—}-
+8as0b30 + 2ba1b30)xy — 3aso(3as + b21)y?)/(ase + ba1) =0 =
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b21 = 730,20, b30 = 0 (56)
{(13), (23), (35), (46)} = Ag(z,y) = 0 contradicts the conditions (3).
{(14), (25), (39), (48)} = Ag(z,y) Z 0 because ags # 0.
{(14), (25), (39), (49)} = Ags(x,y) # 0 because agszboz # 0.
{(14), (25), (39), (50)} = Aﬁ(I7y) ?é 0 because ag2ap3 7& 0.
{(14), (26), (42), (52)} = Ag(z,y) # 0 because agzbos # 0.
{(14), (26), (42), (53)} = the identity Ag(x,y) = 0 contradicts the conditions (3).

Lemma 3.5. For the quartic system (9), the line at infinity has multiplicity at least
siz if and only if the coefficients of (9) satisfy one of the following sets of conditions:
1) {(10), (15), (27), (44), (55)}, ) {(10), (16), (28), (45), (56)}.

Next we prove that the maximal multiplicity of the line at infinity in quartic
differential systems (2) possessing an affine invariant straight line is six.

In the conditions 1) of Lemma 3.5 we have

Az(z,y) = bs12°y + (ba1 + 3bz1)2®y? and ypa(z,y) + zqa(z,y) = bs1a'y.

It is easy to see that the identity A(z,y) = 0 contradicts the conditions (3).
Hence, the multiplicity of the line at infinity Z = 0 is exactly six.

In the conditions 2) of Lemma 3.5 we obtain

147(1'7 y) = 7&201’3(a20(2b20 — 1)1’3 + 2(3&%0 + bQO)xzy + 6a20xy2 + y3)
and yps(z,y) + zqu(z,y) = —2a3y2°. It is clear that the identity A7(z,y) = 0 is
incompatible with the conditions (3). Consequently, the line at infinity Z = 0 has
multiplicity exactly six.

In this manner, we have proved the following theorem.

Theorem 3.6. In the class of quartic differential systems with a center-focus critical
point, a real affine invariant straight line, and non-degenerate infinity, the mazximal
multiplicity of the line at infinity is siz.

4. Centers in quartic systems with an affine invariant straight line and the
line at infinity of maximal multiplicity

An approach to the problem of the center for differential systems (2) is to study the
local integrability of the system in some neighborhood of the critical point (0, 0). It is
known from Poincaré and Lyapunov [1] that a critical point (0, 0) is a center for system
(2) if and only if the system has in some neighborhood of (0,0) a nonconstant analytic
first integral F(z,y) = C or an analytic integrating factor of the form p(z,y) =
1+ >, ui(w,y), where py, are homogeneous polynomials of degree k.
If a first integral or an integrating factor can be constructed in the form
q)?l . ¢?s’ (57)
where ®;, 1 < 5 < p are invariant algebraic curves and ®;, p+1 < j < s are
exponential factors, then the system (2) is called Darboux integrable.
Let F(z,y) = 2% + 4y?> + F3(x,y) + - + Fu(x,y) + - - - be a function such that
oo
e P+ Q) = 3L 1) (58)

Jj=1

where Fi(z,y) = > ;1 fijz'y?, fo; = 0if j is even.
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In (58) L; are polynomials in the coefficients of system (2) called the Lyapunov
(focus) quantities. For example, the first Lyapunov quantity looks as L1 = (a12 —
02011 — @11G20 + 3azo + 2a02bo2 — 3bo3 + bo2b11 — 2a20b20 + bi1b2o — ba1)/4.

The origin is a fine focus of order m if Ly =0, k =1, m — 1 and L,, # 0; at most
m small amplitude limit cycles can bifurcate from a fine focus of order m (see [3]).

Theorem 4.1. The critical point (0,0) is a center for system (2) if and only if all
the Lyapunov quantities vanish (L, =0, k=1, c0).

In what follows, we solve the problem of the center for system (9) with invariant
straight line 2 — 1 = 0 under conditions 1) and 2) of Lemma 3.5, i.e., when the line
at infinity Z = 0 has maximal multiplicity.

Lemma 4.2. The following two sets of conditions are sufficient conditions for the
origin to be a center of system (9):

(i) a20 = ap2 = ap3 = a1z = az1 = azo = 0, a1 = —1, bog = b13 = baa = by = 0,
b3 = b1a = bggz = bag = 0, bga = —2, b1 = b31, by = —2b3y;
(i) @ao2 = apgs = a12 = az1 =0, azgp = —agg, a11 = —1, boa = bz = bag = bz1 = 0,

bao = —2a3g, boz = b1z = 0, ba1 = —3ago, bzo = 0, 2boz = —1, b1y = 2ago.
Proof. In the case (i), the quartic system (9) has the form

z=(1-2z)y= P(z,y),

y = —x — by1zy + 2y* + 2bs12%y — by123y = Q(z,y), (59)

where b3 # 0. Applying the identity (4), it is easy to show that the system (59) has
the following exponential factors:
@, = exp(z), Py = exp(x?), &3 = exp(3y — bs1z?),
O, = exp(12zy + 4bs1 23 — 3bg12t), ®5 = exp(2022y + 5bgx?t — 4bgy 2°)
with cofactors, respectively
K1 =y(l—x), Ko =2yl —x), K3 = 3(ba1a’y — byrzy + 2y° — ),
Ky =12(xy® — 2® + 9?), K5 = 202(2y* — 7).

Using the Darboux integrability method [6], we can construct for system (59) a
Darboux integrating factor of the form (57)

w(z,y) = (x — 1) exp((bsy (4b312° — 5bg12%(2 — 4 + 322) — 20(z — 1)%y))/20).
In the case (ii), the quartic system (9) takes the form

i = (1—a)(ag2® +y) = P(z,vy),

. 60
y = (—2x — 2byox? — dagozy + y* + 6axz?y + 4a3yzt) /2 = Q(z,y), (60)

where agg # 0. It is easy to check that the divergence vanishes identically

div(P,Q) = Pu(z,y) + Qy(z,y) =0
in a neighborhood of a critical point (0,0). The first integral of the system is

2 4
2+ + ngQJZB — zy? + 2a902%y — 2a002°y — ga30x5 =C.
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Lemma 4.3. Let the quartic differential system (2) have an affine invariant straight
line and the line at infinity of the mazximal multiplicity six. Then the critical point
(0,0) is a center if and only if the first two Lyapunov quantities vanish.

Proof. We compute the first two Lyapunov quantities L; and Lo assuming that one
of the conditions of Lemma 3.5 holds.
In the case 1) the first two Lyapunov quantities are

L1 = —(2b11 + b21)/4,

Ly = (498by1 + 46b3, + 225ba; + 23b2 byy — 48b31)/96.

The equations L1 = 0, Ly = 0 yield b1y = b31,ba1 = —2b3; and we obtain the set of
conditions (i) of Lemma 4.2.

In the case 2) the first two Lyapunov quantities vanish. We are in the conditions
(ii) of Lemma 4.2. O

Taking into account Lemmas 4.2 and 4.3, we give the necessary and sufficient
conditions for the origin to be a center in the following theorem.

Theorem 4.4. The critical point (0,0) is a center for quartic differential system (2),
with one invariant straight line x = 1 and the line at infinity Z = 0 of maximal
multiplicity siz, if and only if one of the sets of conditions (i), (ii) holds.
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