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Relational Reinforcement Learning: A Logic Programming
based approach

Mircea Cezar Preda

Abstract. A method to combine reinforcement learning with logical descriptions for states
and actions is presented. The method uses a distance measure between epistemic logic pro-
grams to evaluate the similarities between different state - action pairs and to generalize
between them. Due to the use of a more expressive representation language to represent
states and actions, reinforcement learning can be applied to a wider range of tasks.
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1. Introduction

Most representations used in reinforcement learning are not proper to describe
problems that require logical representations for states and actions. This generated
the relational reinforcement learning domain which study the combination between
reinforcement learning and logic programming. The first paper in this field [2] used
a relational regression tree to learn a Q-function from sampled traces. This paper
presents a method to integrate reinforcement learning and epistemic logic programs
by defining a distance measure between epistemic logic programs. The distance frame-
work is highly customizable to the requirements of the particular problems.

2. Reinforcement learning problem

Let M be a Markov decision problem with a set S of states, a set A of actions, a
one-step reward function r : S×A → R and a transition function T : S×A×S → [0, 1].
T (s1, a, s2) represents the probability to transit from state s1 into state s2 following
action a. The reward for a trajectory in M is the discounted sum of all of its one-step
rewards.

R =
∑

t

γtrt

where rt is the reward received at the step t and 0 ≤ γ ≤ 1 is the future reward
discount factor. A policy π is a function that maps states to probability distributions
over actions. Our aim is to compute an optimal policy, a policy which on average
generates trajectories with the highest possible reward. In order to do that, the
following notions will be stated. Define Q∗(s, a) to be the highest total expected
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reward that can be obtained by starting in state s, performing action a, and acting
optimally afterwards. Knowledge of Q∗ allows to determine an optimal policy

π∗(s) = arg max
a∈A

Q∗(s, a).

Usually, the above presented Markov decision problem is resolved by constructing
an approximation to Q∗. If the sets S and A are finite, the values of the function
Q∗ can be accurately computed by successively updates of a table with an entry for
every state - action pair. But the tabular variant does not allow to transfer infor-
mation from the already known state - action pairs to a new encountered one. By
changing the function approximation method, it will be possible to benefit of the
generalization capabilities of some advanced approximation methods and to trans-
fer knowledge between closely related state - action pairs. Due to this knowledge
transfer, the approximation will converge faster to the real Q∗ function and a control
component based on this approximation will be efficient from the early stages of the
control interaction.

Q(s, a) will denote the approximation of Q∗(s, a) for s ∈ S and a ∈ A. If a symbolic
domain is targeted, there is one possible problem: most of function approximation
methods were devised to work for functions with real numbers arguments and there
are cases when states and actions cannot be immediately converted to arrays of real
numbers. Logic programming is a powerful knowledge representation mechanism
that is easy to be understood and manipulated both by humans and computers.
In particular, logic programs may describe states and transformations between logic
programs may describe actions. To ensure the generality, the epistemic logic programs
will be used. These are programs with high representation power that subsume weaker
forms of representation like general logic programs. In following section it is presented
a framework where the approximation Q(s, a) is defined to be Q(s, a) = Q̂(g(s, a))
where g : S × A → Rn transforms state - action pairs represented by epistemic logic
programs into arrays of real numbers and Q̂ is a linear function of some parameters
w. In accordance with [3], the following proposition can be proved:

Proposition 2.1. If M =< S, A, T, r > satisfies the next properties
- S and A are finite sets, all states of S are reachable with a positive probability

and all transitions have a finite number of steps;
- The approximation Q is maintained by using the trajectory based version of

SARSA(λ), λ > 0 reinforcement learning algorithm [5]. This version changes
the policies only between trajectories by selecting at the begining of each trajec-
tory of the ε-greedy policy for its current Q function;

- g is an injective function
then the weights vector w will converge with probability 1 to a bounded region.

In order to benefit of the generalization capabilities of the linear approximation Q̂,
it is required that g to be a distance like function on the state - action pairs space.
In the next paragraphs, possibilities to define functions like g will be evaluated.

3. Distances between state-action pairs

Previously, it was stated that the states and actions involved by the reinforcement
learning framework will be represented by logic programs. Consequently, if a distance
between logic programs can be devised, then this distance can be used to compare
how close are two state-action pairs.
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3.1. Similarity measure between logic programs. Two logic programs are con-
sidered similar if they provide same answers to the most questions. Two logic pro-
grams are logically equivalent if they provide identical answers to every question.
Usually, the answers provided by logic programs are sets of literals, so a similarity
measure for logic programs can be defined specifying similarity measures for literals
and sets of literals. A discussion on this topic can be found in [4]. Most of the exis-
tent approaches cannot adapted to the particularities of a specific problem. Therefore,
they are not effective for a large class of applications that require customization ac-
cording with their domain’s insides. In the next paragraphs, it will be presented an
intuitive and highly configurable framework for measuring similarities between sets
of literals. The similarities between two literals are given by the similarities between
their structures. Directed graphs will be used to represent the elements and relations
involved by a structure.

Let us start by presenting the graph representation of a literal. The following
assumption that does not limit the generality is made: only ground instantiations
of logical programs are used and all literals are considered ground. From now, the
attribute ground will be eliminated from descriptions.

Let F be a finite set of function symbols and P a finite set of predicate symbols.
A term is of the form f(t1, ..., tn), n ≥ 0 with f/n a functor with arity n and t1, ...,
tn terms. Let Γt be the graph attached to the term t = f(t1, ..., tn). Γt is described
by the rules:
(1) If f is a function symbol with arity 0 (a constant) then Γt has only one node

(the ”root”) labeled with f .
(2) If f is a function symbol with arity > 0 then Γt is composed by a node labeled

with f(t1, ..., tn) connected by arcs to a node labeled with f and to the ”root”
nodes of the graphs Γt1 , ..., Γtn . These directed edges are labeled by numbers
from 0 to n.

(3) Γt cannot include two nodes with identical labels. Each node from Γt is uniquely
identified by its label.

(4) Γt cannot include two arcs with identical sources, destinations and labels. An
arc is identified by a triple (s, t, e) where s is the label of the source node, t is
the label of the destination node and e is the arc label.

An atom is of the form p(t1, ..., tn), n ≥ 0 with p/n an n-ary predicate symbol and
t1, ..., tn terms. Let Γa be the graph attached to the atom a = p(t1, ..., tn). Γa is
described by the following rules:
(1) If p is a predicate symbol with arity 0 then Γa consists from only one node labeled

by p.
(2) If p is a predicate symbol with arity > 0 then Γa consists from a node labeled

with p(t1, ..., tn) that is connected by arcs to a node labeled with p and to the
”root” nodes of the graphs Γt1 , ..., Γtn . These arcs are labeled with numbers from
0 to n.

Γa can be represented as a pair Γa = (Va, Ea) where Va and Ea are the sets of
nodes (vertices) and, respective, edges from Γa.

A literal l is an atom l = p(t1, ..., tn) or is the classical negation of an atom l =
¬p(t1, ..., tn). Let P ′ be a finite set of predicate symbols, P ∩P ′ = ∅ and cn : P → P ′
an injective function. For P ′ and cn fixed, Γl, the graph attached to a literal l, is
defined as:

Γl =
{

Γp(t1,...,tn) if l = p(t1, ..., tn)
Γp′(t1,...,tn) if l = ¬p(t1, ..., tn) and p′ = cn(p).
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It can be observed that the classical negation was handled by using the concept of
positive form. The positive form is constructed by using the function cn every time
when the classical negation appears.

A set of literals is reduced to a set of atoms by using cn. Ag describes the family
of the all atoms constructed using F and P ∪ P ′. Ag = 2Ag is the collection of the
all subsets of Ag.

Let V = {V1, V2, ..., Vn} be a family of sets of elements that can be found in the
graphs associated to the atoms from Ag. For example, a set Vi, i ∈ 1, n can be a set
of node labels or a set of arc labels. Or, Vi can be a set of subgraphs. V will act as a
collection of criteria devised to study similarities between two sets of graphs. Let us
suppose that for every v ∈ Vi, i ∈ 1, n, exists a function f(v) : Ag → N that satisfies
the following properties:

a) f(v)(A) ≥ 0, ∀A ⊆ Ag;
b) f(v)(∅) = 0;
c) If Ai,i≥0 ⊆ Ag, ∀i, j : Ai ∩Aj = ∅ then f(v)(∪iAi) =

∑
i

f(v)(Ai).

f(v), v ∈ Vi, i ∈ 1, n are pseudo measures on the universe Ag. They are not measures
because the property f(v)(A) = 0 ⇒ A = ∅,∀A ⊆ Ag is not imposed.

Example: If v ∈ Vi, i ∈ 1, n is a node label then f(v) can be defined as

f(v)(A) = |{Va|∃a ∈ A, Γa = (Va, Ea), v ∈ Va}|. (1)

f(v)(A) represents the number of occurrences of the node labeled by v in the set
of graphs attached to the ground atoms from A. By |.|, it is denoted the cardinal
function for sets. Similarly, if v is an arc label, f(v) can be defined as

f(v)(A) = |{Ea|∃a ∈ A, Γa = (Va, Ea), v ∈ Ea}|,
which is the number of occurrences of the arc label v in the graphs Γa, a ∈ A.

Let v ∈ Vi, i ∈ 1, n. The relation =v⊆ Ag × Ag defined by A =v B if and only if
f(v)(A) = f(v)(B) is an equivalence relation (reflexive, symmetrical and transitive).

Let d : Ag×Ag → R+. d is a =v-distance defined on Ag if and only if the following
three properties are satisfied:

a) d(A,B) ≥ 0, d(A,B) = 0 ⇔ A =v B, ∀A,B ⊆ Ag,
b) d(A,B) = d(B, A),∀A,B ⊆ Ag,
c) d(A,B) ≤ d(A,C) + d(C,B),∀A,B, C ⊆ Ag.

d is a =V-distance if and only if d is =v - distance ∀v ∈ Vi,∀i ∈ 1, n. If d is a =V -
distance then the equivalence d(A,B) = 0 ⇔ A =v B, ∀v ∈ Vi,∀i ∈ 1, n is true.

In these conditions, the following proposition is satisfied:

Proposition 3.1. Let {d(v) : Ag × Ag → R+, =v -distance|v ∈ Vi} be n families of
=v - distances defined for the all subsets of ground atoms. If V includes only finite
sets, the functions dp

a : Ag × Ag → Rn
+ defined by

dp
a(A,B) = (dp

1(A,B), ..., dp
n(A,B)) ∈ Rn

+ (2)

where
dp

i (A,B) = (
∑

v∈Vi

d(v)(A,B)p)1/p,∀i ∈ 1, n, ∀p ∈ N∗ (3)

and
d∞i (A,B) = max

v∈Vi

{d(v)(A,B)}, ∀i ∈ 1, n, p = ∞ (4)

are =V - distances defined on the family of the all subsets of ground atoms ∀p ∈
N∗ ∪ {∞}.



128 MIRCEA CEZAR PREDA

Remark 3.1. If the set V satisfies the property that ∀A,B ⊆ Ag : A =v B, ∀v ∈
Vi, ∀i ∈ 1, n infer A = B then the functions dp

a are distances (metrics), ∀p ∈ N∗∪{∞}.
Proposition 3.2. Each of the distances dp

a, p ∈ N∗∪{∞} are similar in sense that for
any p, q ∈ N∗∪{∞}, ∃a, b ∈ R such that a·dq

a(A,B) ≤ dp
a(A,B) ≤ b·dq

a(A,B),∀A,B ⊆
Ag.

Example: If k = maxi∈1,n{|Vi|}, then d∞a (A, B) ≤ d2
a(A,B) ≤

√
k · d∞a (A,B) and

d∞a (A,B) ≤ d1
a(A,B) ≤ k · d∞a (A, B),∀A,B ⊆ Ag.

Proposition 3.3. Fix v ∈ Vi, i ∈ 1, n. If f(v) : Ag → N is a pseudo - measure on
the universe Ag then the functions d(v) : Ag × Ag → R+ defined by

d(v)(A,B) = |f(v)(A)− f(v)(B)|, (5)

d(v)(A,B) =
|f(v)(A)− f(v)(B)|

max{f(v)(A), f(v)(B)} , (6)

d(v)(A,B) =
|f(v)(A)− f(v)(B)|

f(v)(A ∪B)
, (7)

d(v)(A,B) = f(v)((A \B) ∪ (B \A)), (8)

d(v)(A,B) =
f(v)((A \B) ∪ (B \A))

f(v)(A ∪B)
. (9)

are =v - distances on Ag.

3.2. Representing epistemical information. Two unary operators K and M are
used [1]. Intuitively, if l is a literal then Kl represents l is known and Ml, l may be
believed. The constructions Kl, Ml, ¬Kl and ¬Ml, where l is a literal, are called
subjective literals. An epistemic logic program is a finite set of rules

l1 or...or lk ← g1, ..., gm, not h1, ..., not hn

where l1, ..., lk and h1, ..., hn are literals, g1, ..., gm are subjective literals or literals
and k ≥ 1, m,n ≥ 0.

Let P be an epistemic program and W a collection of sets of literals, W ⊆ Ag.
∪W =

⋃
L∈W L denotes the set of the literals that may be believed regarding to

W and ∩W =
⋂

L∈W L the set of the literals that are known. PW represents the
disjunctive logic program [1] obtained from P by: a) removing all rules containing
subjective literals g that are not entailed by W and b) removing all other subjective
literals from rules in P . W is named a world view of P if W is the collection of
all answer sets of PW . Two epistemic programs P1, P2 are considered to be similar
if their world views are similar. The attached world views give the semantic of an
epistemic program.

Let m : 2Ag × 2Ag → 2R,R = {r|r ⊆ 2Ag × 2Ag} be a function that associates to
every pair W1, W2 ⊆ Ag a family of binary relations on the collection of subsets of
atoms with the property ∀r ∈ m(W1,W2), r ⊆ 2W1 × 2W2 . The functions dm,p

w :
2Ag × 2Ag → Rn

+, dm,p
w (W1,W2) = minr∈m(W1,W2){(

∑
(W ′

1,W ′
2)∈r(d

p
a(∩W ′

1,∩W ′
2) +

dp
a(∪W ′

1,∪W ′
2)))/|r|}, p ∈ N∗ ∪ {∞} are, in general, pseudo distances because they

do not satisfy the triangle inequality for every m. If m is set to be m∗(W1, W2) =
{{ (W1, W2)}}, dm∗,p

w are distances and can be used to compare two world views.
These are compared regarding the literals that are known or may be believed.

Let Π be the set of epistemic logic programs that have an unique world view. In
these conditions, dp

e : Π × Π → Rn
+, dp

e(P1, P2) = dm∗,p
w (WP1 ,WP2), where WP is

the world view attached to the epistemic program P and p ∈ N∗ ∪ {∞}, are ∼V -
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Figure 1. Two initial states (A and B) and the terminal one (F )
of the experimental blocks world.

distances on Π. ∼V⊆ Π× Π is the equivalence relation P1 ∼V P2 ⇔ ∩WP1 =V ∩WP2

and ∪WP1 =V ∪WP2 .

4. Application

To illustrate the above presented method, let us consider a blocks world with 4 ele-
ments: a ball denoted by a and three cubes denoted by b, c, d. An element can be put
on top of another element if the last one is clear or can be put directly on the floor,
which is denoted by f . There is one restriction, the ball cannot hold any other object.
The figure 1 presents three possible configurations of this world. The aim is to find
the shortest sequences of movements to transfer the world from an initial state like
A or B to the final state F . The optimal paths are depicted in the figures 2 and 3.
Each state of the world will be described by a logical program. The following three
represent the states A, B, F :

PA :





on(b, f) ←
on(d, f) ←
on(c, b) ←
on(a, d) ←
clear(c) ←
over(X,Y ) ← on(X, Y )
over(X,Y ) ← on(X, Z), over(Z, Y )

,

PB :





on(b, f) ←
on(d, f) ←
on(c, d) ←
on(a, b) ←
clear(c) ←
over(X, Y ) ← on(X, Y )
over(X, Y ) ← on(X, Z), over(Z, Y )

,
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Figure 2. The optimal movements path from initial state A to final
state F .

PF :





on(d, f) ←
on(c, d) ←
on(b, c) ←
on(a, b) ←
over(X, Y ) ← on(X,Y )
over(X, Y ) ← on(X,Z), over(Z, Y )

.

The semantics of these programs are given by the next three sets of atoms:

A = {on(b, f), on(d, f), on(c, b), on(a, d),
clear(c), over(c, b), over(a, d)},

B = {on(b, f), on(d, f), on(c, d), on(a, b),
clear(c), over(c, d), over(a, b)},

F = {on(d, f), on(c, d), on(b, c), on(a, b),
over(a, b), over(a, c), over(a, d),
over(b, c), over(b, d), over(c, d)}.

Atoms over(X, f), X ∈ {a, b, c, d} were omitted as obvious. These sets will be used
to evaluate the distances between A and F and between B and F .

The sets V = {V1, V2, V3, V4, V5} are composed from node labels as results below:
- V1 = {clear} compares two states from point of view of the number of elements

that are clear;
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Figure 3. The optimal movements path from initial state B to final
state F .

- V2 = {clear(b)}, V3 = {clear(c)}, V4 = {clear(d)} - the states are compared by
the precise identification of the elements that are clear;

- V5 = {over(a, b), over(a, c), over(a, d), over(b, c), over(b, d), over(c, d)} compares
two states from point of view of the relative positioning of the elements.

Following parameters were used during training episodes: the reward function was
considered to be r(s, a) = −1, ∀a ∈ A, ∀s ∈ S, s 6= F and 0 otherwise; Q was defined
using tile coding (CMAC) linear function approximator and the discount rate was
γ = 1. The rest of parameters received standard settings. The training was performed
first with A as initial state. After 500 episodes, when the optimal path from A to F
was found and the approximation Q was constructed, the initial state was transformed
in B. Due to the generalization capabilities of the CMAC approximation, the system
followed almost immediately the optimal path from B to F . .

5. Conclusion

A configurable framework to define distances between epistemic logic programs was
presented in order to adapt a distance to the specific of a particular problem. Based on
this framework, reinforcement learning could be applied to domains where the states
and actions were represented by epistemic logic programs. The generalization capa-
bilities of the reinforcement learning algorithms that use functional approximations
were proved in a simple blocks’ world domain.
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