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1. Introduction

In [14], S. Tanno classified connected almost contact metric manifolds whose auto-
morphism groups possess the maximum dimension. For such a manifold, the sectional
curvature of plane sections containing ¢ is a constant, say c¢. He showed that they can
be divided into three classes:

(1) homogeneous normal contact Riemannian manifolds with ¢ > 0,

(2) global Riemannian products of a line or a circle with a Kaehler manifold of con-
stant holomorphic sectional curvature if ¢ = 0 and

(3) a warped product space R x ¢ C if ¢ > 0. It is known that the manifolds of class
(1) are characterized by admitting a Sasakian structure. Kenmotsu [7] characterized
the differential geometric properties of the manifolds of class (3); the structure so
obtained is now known as Kenmotsu structure. In general, these structures are not
Sasakian [7]. In the Gray-Hervella classification of almost Hermitian manifolds [6],
there appears a class, Wy, of Hermitian manifolds which are closely related to locally
conformal Kaehler manifolds [5]. An almost contact metric structure on a manifold
M is called a trans-Sasakian structure [11] if the product manifold M x R belongs to
the class Wy. The class Cg @ C5([8],[9]) coincides with the class of the trans-Sasakian
structures of type («, ). In fact, in [9], local nature of the two subclasses, namely,
Cs and Cg structures, of trans-Sasakian structures are characterized completely.

We note that trans-Sasakian structures of type (0,0), (0, 5) and («,0) are cosym-
plectic [3], 8-Kenmotsu [7] and a-Sasakian [7] respectively. In [15] it is proved that
trans-Sasakian structures are generalized quasi-Sasakian [10]. Thus, trans-Sasakian
structures also provide a large class of generalized quasi-Sasakian structures.

An almost contact metric structure (¢,&,m,g9) on M is called a trans-Sasakian
structure [11] if (M xR, J, G) belongs to the class W,[6],where J is the almost complex
structure on M x R defined by

J(X, fd/dt) = (¢X — f&,n(X)fd/dt)

Received: 11 December 2007.



8 N.S. BASAVARAJAPPA,C.S.BAGEWADI, D.G.PRAKASHA

for all vector fields X on M and smooth functions f on M x R, and G is the product
metric on M x R. This may be expressed by the condition [4]

(Vx9)Y = a(g(X,Y)E = n(Y)X) + B(g(¢X,Y)§ = n(Y)pX)
for some smooth functions o and 3 on M, and we say that the trans-Sasakian structure
is of type (a, ).

Theorem 1.1. [1] A trans-sasakian structure of type (c, 3) with 5 a nonzero constant
is always B-Kenmotsu

In this case 8 becomes a constant. If 3 = 1, then g-Kenmotsu manifold is Ken-
motsu.

The present paper dals with the study of Lorentzian S-Kenmotsu manifold sat-
isfying certian conditions. After preliminaries, in section 3 we study Lorentzian (-
Kenmotsu manifold satisfying the condition R(X, Y)ﬁ = 0, where P is the pseudo
projective curvature tensor and R(X,Y’) is considred as a derivation of the tensor
algebra at each point of the manifold for tangent vectors X,Y and it is shown that in
a Lorentzian g-Kenmotsu manifold satisfying the condition R(X,Y).P = 0 is an n-
Einstein manifold. Section 4 is devoted to the study of pseudo projectively recurrent
Lorentzian S-Kenmotsu manifolds. In the last section we show that in a Lorentzian (-
Kenmotsu manifold the transformation p which leaves the curvature tensor invariant
is an isometry and the infinitesimal paracontact transformationwhich leaves a Ricci
tensor invariant is an infinitesimal strict paracontact transformation.

2. Preliminaries
A differentiable manifold M of dimension n is called Lorentzian Kenmotsu manifold

if it admits a (1, 1)-tensor field ¢, a contravariant vector field £, a covariant vector
field n and Lorentzian metric g which satisfy

P°X =X +n(X)¢, g(X, ) =n(), (2)
9(¢X, Y ) = g(X,Y) + n(X)n(Y) (3)

forall X, Y e TM.
Also if Lorentzian Kenmotsu manifold M satisfies

Vx§ = BIX —n(X)E], (4)
(Vxn)(Y) = Blg(X,Y) —n(X)n(Y)], (5)
where V denotes the operator of covariant differentiation with respect to the Lorentzian

metric g, then M is called Lorentzian 8-Kenmotsu mnifold.
Further, on an Lorentzian S-Kenmotsu manifold M the following relations hold ([1],

2)

n(R(X,Y)Z) = B*g(X,Zn(Y) - g(Y, Z)n(X)], (6)
REX)Y = Bn(YV)X —g(X,Y)E), (7)
RX,YV), = FnX)Y —n(Y)X), (8)

S5(X,8) = —(n—1)n(X), 9)
Q¢ = —(n—1)p%, (10)
)

—_

5¢ = (n-1p% (1
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The pseudo projective curvature tensor on a Riemannian manifold is given by [12]

P(X,Y)Z = aR(X,Y)Z+0b[S(Y,2)X —S(X,2)Y] (12)
- [n i b} (9. 2)X — 9(X. 2)Y]
. where a and b constants such that a,b # 0.
3. Lorentzian 3-Kenmotsu Manifold satisfying R(X,Y)-P =0
From (6),(12) and (9) we have
n(P(X,Y)Z) = afg(X,Z)n(Y) = (¥, Z)n(X)] (13)
+b[S(Y, Z)n(X) = S(X, Z)n(Y)]
{n —+ b] Zn(X) - g(X, Z)n(Y)].

Putting Z = £ in (13) we get

n(P(X,Y)¢) =0. (14)
Again taking X = £ in (13), we have

WBev)z) = [ (- vo)+o| vz rav ) )
“S(Y, 2) + (n— DSV )0(2).

Now ,
(R(X,Y)-P)U,V)Z = R(X,Y)P(UV)Z— P(R(X,Y)U,V)Z
—P(U,R(X,Y)V)Z — P(U,V)R(X,Y)Z.
Let R(X,Y)- P =0, then we have
R(X,Y)-P(U,V)Z — P(R(X,Y)U,V)Z (16)
—P(U,R(X,Y)V)Z — ﬁ(U, V)R(X,Y)Z = 0.
Therefore,
glR(&,Y)P(U,V)Z,&] — g[P(R(&,Y)U,V)Z,¢] (17)
—g[P(U, R(&,Y)V)Z, €] = g[P(U,V)R(,Y)Z,€] = 0.
From this it follows that
PUV,Z,Y) + n(Y)n(PWU,V)Z)=nUmn(P(Y,V)Z) (18)
+ U Y)IN(PEV)Z) —n(V)n(P(U,Y)Z)
+ gV, Vn(P(U,€)Z) = n(Z)n(PU,V)Y) =0
where P(U,V, Z,Y) = g(P(U,V)Z,Y).
Putting Y = U in (18), we get
P(U,V,Z,U) + gUUMPEV)Z)+g(U,V)n(PU,$)Z) (19)
n(V)n(P(U,U)Z) — n(Z)n(P(U,V)U) = 0.
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Let {e;}, i = 1,2,...,n be an orthonormal basis of the tangent space at any point.
Then the sum for 1 < i <n of the relation (19) for U = e; yields

WPEVI) = (0= 0) | s + 5] V). (20)
From (15) and (20) we have
svz) = [t (Gt ) av2) (1)
+ |28+~ b(na_ 3 +1) +(n—1)p"
S ()|

Taking Z = £ in (21), then using (1) and (9) we obtain

r=—n(n-—1)5. (22)
Now using (13), (14), (21) and (22) in (18) we get

P(U,V,Z,Y) =0. (23)
From (23) it follows that

P(U,V)Z = 0. (24)

Therefore the Lorentzian S-Kenmotsu manifold is pseudo projectively flat. Hence we
can state

Theorem 3.1. If in an Lorentzian [(-Kenmotsu manifold M n > 1 the relation
R(X,Y) - P =0 holds, then the manifold is pseudo projectively flat.

4. Pseudo projectively flat Lorentzian g-Kenmotsu Manifold

Suppose that P(X,Y)Z = 0. Then from (12), we have

MXYM:E%ﬂﬂKmX—ﬂXZWL (25)
From (25), we have
ROGY,Z,0) = —2[S(Y 2)g(X,W) = S(X, Z)g(Y, 2)]
L[ 2 0 200 ) - X, 200 (29
(27)
where R(X,Y,Z, W) = g(R(X,Y)Z,W).
Putting W = £ in (26), we get
NRXY)Z) = = 2[S(V, Z)n(X) ~ S(X, Z)n(Y ) (28)
|t 2] e 200 - 9, 20y
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Again taking X = ¢ in (28), and using (1),(6) and (9), we get
S(Y,Z) = [2 (b(na_ 5+ 1> + 252} 9(Y, 2) (29)
r a 9 . Qo
(g +1) om0 5 ez o)
Therefore, the manifold is n-Einstein.
From (29), it follows that
r=-—n(n—1)p%. (31)

Hence we can state

Theorem 4.1. A Pseudo projectively flat Lorentzian 3-Kenmotsu manifold M n > 1
is an n-Finstein manifold.

Thus from Theorems 3.1 and 4.1, we conclude

Theorem 4.2. A Lorentzian 3-Kenmotsu manifold M satisfying R(X,Y) - P=0is
an n-Einstein manifold and also a manifold of negative curvature —n(n — 1)32.

5. Pseudo projectively recurrent Lorentzian S-Kenmotsu Manifold

A non-flat Riemannian manifold M is said to be pseudo projectively recurrent if
the pseudo-projective curvature tensor P satisfies the condition VP = A®P where A
is an everywhere non-zero 1-form. We now define a function f on M by f2 = g(P, P),
where the metric g is extended to the inner product between the tensor fields in the
standard fashion.

Then we know that f(Y f) = f2A(Y). So from this we have

Yi=fAY) (becausef #0). (32)
From (32) we have

%(Xf)(Yf) + (XA

X(YVf) =Y (X[) = {XAY) - YAX)}S.

X(Y/f)=

Hence

Therefore we get
(VxVy = VyVx = Vixy))f = {XAY) - YAX) - A(X,Y])}f.
Since the left hand side of the above equation is identically zero and f # 0 on M by
our assumption. We obtain
dA(X,Y)=0. (33)
that is the 1-form A4 is closed. B
Now, from (VxP)(U,V)Z = A(X)P(U,V)Z, we get
(VuVyP)(X,Y)Z = {UA(V) + A(U)A(V)}P(X,Y)Z.

Hence from (33), we get

(R(X,Y).P)(U,V)Z = [2dA(X,Y)]|P(U,V)Z = 0. (34)
Therefore, for a pseudo projectively recurrent manifold, we have
R(X,Y)P =0 for all X,Y. (35)

Thus, we can state the following:
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Theorem 5.1. A pseudo projectively recurrent Lorentzian (3-Kenmotsu manifold M
is an n-Finstein manifold.

Since for a pseudo projectively symmetric Lorentzian $-Kenmotsu manifold M,
(n > 1). we have (VyP)(X,Y)Z = 0 which implies R(X,Y).P = 0. We can state
the following;:

Lemma 5.1. A pseudo projectively symmetric Lorentzian (3-Kenmotsu manifold M,
(n > 1) is an n-Finstein manifold.

6. Some transformation in Lorentzian S-Kenmotsu Manifold

We now consider a transformation p which transform a Lorentzian [S-Kenmotsu
structure (¢,&,7,g) into another Lorentzian $-Kenmotsu structure (¢,£,7,7). We
denote by the notation ’bar’ the geometric objects which are transformed by the
transformation pu.

We first suppose that in a Lorentzian 8-Kenmotsu manifold the Riemannian cur-
vature tensor remains invariant with respect to the transformation p.

Thus we have

R(X.Y)Z = R(X,Y)Z (36)
for all X,Y, Z.
This gives, n(R(X,Y)Z) = n(R(X,Y)Z), and hence by virtue of (6) we get
N(R(X,Y)Z) = B*[g(X, Z)n(Y) = g(Y, Z)n(X). (37)

Putting Y = £ in (37) and then using (7) we obtain

1(§)g9(X, Z) —n(X)g(&, 2) = n(©)g(X, 2) — 7(Z)n(X). (38)
Interchanging X and Z

n(€)9(X, 2) = n(X)g(&, X) = n()g(X, Z) = 5(X)n(Z). (39)
Substracting (39) from (38) we obtain
1(2)g(§, X) —n(X)g(&, Z) = n(X)n(Z) = 7(Z)n(X). (40)
Putting Z = £ in (40) we obtain by using (7)
—9(&, X) — g(&, On(X) = —7(X) = 7()n(X). (41)

Also from (36) we have

S(X,Y) = S(X,Y)
and hence
5(€,€) =S(£,9)
This gives by virtue of (9) that

7(€) = n(¢) (42)
Using (42) in (41) and since n(€) = g(&,€) we get
n(X) = g(§,X) (43)

By virtue of (43) we get from (39) that
9(X. 2) = 9(X, Z)]n(&).
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This implies
9(X,2) =9(X, Z).
Hence we can state the following:

Theorem 6.1. In a Lorentzian (3-Kenmotsu manifold the transformation p which

leaves the curvature tensor invariant and n(€) # 0.

Definition 6.1. A wector field V' on a contact manifold with contact form n is said
to be an infinitesimal contact transformation [13] if V' satisfies

(£vm)X = on(X) (44)

for a scalar function o, where £, denotes the Lie differentiation with respect to V.
Especially , if o vanishes identically, then it is called an infinitesimal strict contact
transformation [13]

Let us now suppose that in a Lorentzian g-Kenmotsu manifold, the infinitesimal
contact transformation leaves Ricci tensor invariant. Then we have

(£vS)(X,Y)=0
which gives
(£vS)(X,§) =0 (45)
Now,
(LvS)(X,§) = LvS(X,§) = S(Lyv X, §) = S(X, Lvg). (46)
By virtue of (9) and (45) we get from (46) that

—(n = 1B (Lyn)(X) - S(X, Lv€) = 0. (47)
Using (44) in (47) we obtain

S(X, £v€) = —(n — 1)%on(X). (48)
Putting X = ¢ in (48) and then using (9), we get

n(£vg) = —o. (49)
Again putting X = £ in (44), we have
(Lvn)(€) = —o.
that is,
£v(n(€) = n(£vE) = 0. (50)
By virtue of (49) and (50) we get]
o=0.

Thus we can state the following:

Theorem 6.2. In a Lorentzian 3-Kenmotsu manifold, the infinitesimal contact trans-
formation which leaves the Ricci tensor invariant is an infinitesimal strict contact
transformation.
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