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ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SOME
NONLOCAL DIFFUSION PROBLEMS

Théodore K. Boni and Firmin K. N’gohisse

Abstract. In this paper, we address the following initial-value problem

ut(x, t) =

∫

Ω
J(x− y)(u(y, t)− u(x, t))dy − a(x)f(u(x, t)) in Ω× (0,∞),

u(x, 0) = u0(x) > 0 in Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, J : RN −→ R is a kernel
which is nonnegative, symmetric, bounded and

∫
RN J(z)dz = 1, f : [0,∞) −→ [0,∞) is a C1

convex, increasing function,
∫∞ ds

f(s)
< ∞, f(0) = 0, f ′(0) = 0, the initial data u0 ∈ C0(Ω),

u0(x) > 0 for x ∈ Ω, and the potential a ∈ C0(Ω), a(x) > 0 for x ∈ Ω. We reveal that

the solution of the above problem exists globally and tends to zero uniformly in x ∈ Ω as
t approaches infinity. The description of its asymptotic behavior is also given under some
conditions.
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1. Introduction

Consider the following initial-value problem

ut(x, t) =
∫

Ω

J(x− y)(u(y, t)− u(x, t))dy − a(x)f(u(x, t)) in Ω× (0,∞), (1)

u(x, 0) = u0(x) > 0 in Ω, (2)
where Ω is a bounded domain in RN with smooth boundary ∂Ω, J : RN −→ R is a

kernel which is nonnegative, symmetric, bounded and
∫
RN J(z)dz = 1, f : [0,∞) −→

[0,∞) is a C1 convex, increasing function,
∫∞ ds

f(s) < ∞, f(0) = 0, f ′(0) = 0, the
initial data u0 ∈ C0(Ω), u0(x) > 0 for x ∈ Ω, and the potential a ∈ C0(Ω), a(x) > 0
for x ∈ Ω. Recently nonlocal diffusion problems have been the subject of investigations
of many authors (see, [1], [2], [4]-[7], [13]-[18], [20], [21], [23], [26], [27], [29], [30], and
the references cited therein). Nonlocal evolution equations of the form

ut(x, t) =
∫

RN

J(x− y)(u(y, t)− u(x, t))dy,

and variations of it, have been used by many authors to model diffusion processes
(see, [4]-[6], [13], [20], [21]). The solution u(x, t) can be interpreted as the density of a
single population at the point x, at time t, and J(x−y) as the probability distribution
of jumping from location y to location x. Then, the convolution (J ∗ u)(x, t) =∫
RN J(x− y)u(y, t)dy is the rate at which individuals are arriving at position x from

all other places, and −u(x, t) = − ∫
RN J(x − y)u(x, t)dy is the rate at which they
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are leaving location x to travel to any other site (see, [20]). Let us notice that the
absorption term −a(x)f(u(x, t)) can be rewritten as follows

−a(x)f(u(x, t)) = −
∫

RN

J(x− y)a(x)f(u(x, t))dy.

In view of this equality, the absorption term −a(x)f(u(x, t)) can be interpreted as a
force that increases the rate at which individuals are leaving location x to travel to
all other sites. It is the reason why we shall see later that, because of the absorption
term, the density of the population u(x, t) will tend to zero uniformly in x ∈ Ω as t
approaches infinity. The equation ut = J ∗u−u is called a nonlocal diffusion equation
because the diffusion of the density u at the point x and time t does not only depend
on u(x, t), but on all the values of u in a neighborhood of x through the convolution
term J ∗ u. On the other hand, for our equation defined in (1) , the integration is
taken over Ω. As we have mentioned, the integral

∫
Ω

J(x − y)(u(y, t) − u(x, t))dy
considers the individuals arriving or leaving position x from other places. Since, we
have imposed that the diffusion takes place only in Ω, no individuals may enter or
leave the domain. This is the reason why in the title of the paper, we have added
Neumann boundary conditions.
In this paper, we are interested in the global existence and asymptotic behavior
of solutions of the problem (1) − (2) . For local diffusion problems, the asymptotic
behavior of solutions has been the subject of investigations of several authors (see,
[3], [9]-[12], [24], [25] and the references cited therein). Recently, in [29], Pazoto and
Rossi considered the problem (1) − (2) in the case where Ω = RN , a(x) = 1, and
f(u) = up with p > 0. They showed that, if p > 1, then the solution u of (1) − (2)
exists globally and tends to zero uniformly in x ∈ RN as t approaches infinity. They
also described the asymptotic behavior of the solution u. Analogous results have been
obtained by Nabongo and Boni in [26] for the problem described in (1) − (2) in the
case where f(s) = sp with p > 1. Our purpose in this paper is to extend the above
results considering the problem described in (1)− (2) where the nonlinearity is more
general. The remainder of the paper is organized in the following manner. In the next
section, we prove the local existence and uniqueness of solutions, and prove that the
solution u of (1) − (2) exists globally. In the last section, we show that the solution
u of (1) − (2) tends to zero as t approaches infinity uniformly in x ∈ Ω. A complete
description of its asymptotic behavior is also given under some conditions.

2. Local existence

In this section, we shall establish the existence and uniqueness of solutions of
(1)− (2) in Ω× (0, T ) for small T .
Let t0 be fixed and define the function space Yt0 = {u; u ∈ C([0, t0],C(Ω))} equipped
with the norm defined by ‖u‖Yt0

= max0≤t≤t0 ‖u‖∞ for u ∈ Yt0 . It is easy to see
that Yt0 is a Banach space. Introduce the set Xt0 = {u; u ∈ Yt0 , ‖u‖Yt0

≤ b0}, where
b0 = 2‖u0‖∞ + 1. We observe that Xt0 is a nonempty bounded closed convex subset
of Yt0 . Define the map R as follows

R : Xt0 −→ Xt0 ,

R(v)(x, t) = u0(x) +
∫ t

0

∫

Ω

J(x− y)(v(y, s)− v(x, s))dyds− a(x)
∫ t

0

f(v(x, s))ds.
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Theorem 2.1. Assume that u0 ∈ Yt0 . Then R maps Xt0 into Xt0 and R is strictly
contractive if t0 is appropriately small relative to ‖u0‖∞.

Proof. Using the fact that
∫
Ω

J(x − y)dy ≤ ∫
RN J(x − y)dy = 1, a straightforward

computation reveals that

|R(v)(x, t)− u0(x)| ≤ 2‖v‖Yt0
t + ‖a‖∞f(‖v‖Yt0

)t,
which implies that ‖R(v)‖Yt0

≤ ‖u0‖∞ + 2b0t0 + ‖a‖∞f(b0)t0. If

t0 ≤ b0 − ‖u0‖∞
2b0 + ‖a‖∞f(b0)

, (3)

then
‖R(v)‖Yt0

≤ b0.

Therefore if (3) holds, then R maps Xt0 into Xt0 . Now, we are going to prove that
the map R is strictly contractive. Let t0 > 0, and let v, z ∈ Xt0 . Setting α = v − z,
we discover that

|(R(v)−R(z))(x, t)| ≤ |
∫ t

0

∫

Ω

J(x− y)(α(y, s)− α(x, s))dyds|

+|a(x)|
∫ t

0

(f(v(x, s))− f(z(x, s)))ds|.
Use Taylor’s expansion to obtain

|(R(v)−R(z))(x, t)| ≤ 2‖α‖Yt0
t + t‖a‖∞‖v − z‖Yt0

f ′(‖β‖Yt0
),

where β is an intermediate value between v and z. We deduce that

‖R(v)−R(z)‖Yt0
≤ 2‖α‖Yt0

t0 + t0‖a‖∞‖v − z‖Yt0
f ′(‖β‖Yt0

),

which implies that

‖R(v)−R(z)‖Yt0
≤ (2t0 + t0‖a‖∞f ′(b0))‖v − z‖Yt0

.

If
t0 ≤ 1

4 + 2‖a‖∞f ′(b0)
,

then
‖R(v)−R(z)‖Yt0

≤ 1
2
‖v − z‖Yt0

.

Hence, we see that R(v) is a strict contraction in Yt0 and the proof is complete. ¤

It follows from the contraction mapping principle that for appropriately chosen
t0 ∈ (0, 1), R has a unique fixed point u(x, t) ∈ Yt0 which is a solution of (1)− (2) .
In order to prove that the solution is global, we need to show that

‖u(·, t)‖∞ ≤ ‖u0‖∞ for t > 0.

To demonstrate this estimate, we proceed in the following manner. Multiply both
sides of (3) by (u(x, t)− ‖u0‖∞)+ and integrate over Ω to obtain

d

dt

∫

Ω

(u(x, t)− ‖u0‖∞)2+
2

dx

=
∫

Ω

∫

Ω

J(x− y)(u(y, t)− u(x, t))(u(x, t)− ‖u0‖∞)+dxdy

−
∫

Ω

a(x)f(u(x, t))(u(x, t)− ‖u0‖∞)+dx,
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where (x)+ denotes max(x, 0). Due to the fact that the kernel J is symmetric, we
note that ∫

Ω

∫

Ω

J(x− y)(ϕ(y)− ϕ(x))ψ(x)dxdy

= −1
2

∫

Ω

∫

Ω

J(x− y)(ϕ(y)− ϕ(x))(ψ(y)− ψ(x))dxdy.

It is also easy to see that (A−B)(A+ −B+) ≥ (A+ −B+)2. Use the above relations
to arrive at

d

dt

∫

Ω

(u(x, t)− ‖u0‖∞)2+
2

dx

≤ −1
2

∫

Ω

∫

Ω

J(x− y)|(u(y, t)− ‖u0‖∞)+ − (u(x, t)− ‖u0‖∞)+|2dxdy

−
∫

Ω

a(x)f(u(x, t))(u(x, t)− ‖u0‖∞)+dx ≤ 0.

We infer that
∫
Ω

(u(x,t)−‖u0‖∞)2+
2 dx = 0, which implies that

‖u(·, t)‖∞ ≤ ‖u0‖∞ for t > 0,

and our estimate is proved.

3. Asymptotic behavior of solutions

In this section, we show that the solution u of (1)−(2) tends to zero as t approaches
infinity uniformly in x ∈ Ω. We also describe its asymptotic behavior as t →∞.
Before starting, let us prove the following lemma which is a version of the maximum
principle for nonlocal problems.

Lemma 3.1. Let b ∈ C0(Ω × [0,∞)), and let u ∈ C0,1(Ω × [0,∞)) satisfying the
following inequalities

ut −
∫

Ω

J(x− y)(u(y, t)− u(x, t))dy + b(x, t)u(x, t) ≥ 0 in Ω× (0,∞),

u(x, 0) ≥ 0 in Ω.

Then, we have u(x, t) ≥ 0 in Ω× (0,∞).

Proof. Let T0 be any quantity satisfying T0 ∈ (0,∞), and let λ be such that b(x, t)−
λ > 0 in Ω × [0, T0]. Introduce the function z(x, t) = eλtu(x, t), and suppose that
m = minx∈Ω,t∈[0,T0]

z(x, t). Since the function z(x, t) is continuous in the compact
Ω× [0, T0], then it attains its minimum at a point in Ω× [0, T0], that is, there exists
(x0, t0) ∈ Ω × [0, T0] such that m = z(x0, t0). We get z(x0, t0) ≤ z(x0, t) for t ≤ t0
and z(x0, t0) ≤ z(y, t0) for y∈ Ω, which implies that

zt(x0, t0) ≤ 0, (4)

and ∫

Ω

J(x0 − y)(z(y, t0)− z(x0, t0))dy ≥ 0. (5)

Using the first inequality of the lemma, it is not hard to see that

zt(x0, t0)−
∫

Ω

J(x0 − y)(z(y, t0)− z(x0, t0))dy + (b(x0, t0)− λ)z(x0, t0) ≥ 0. (6)
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It follows from (4) − (6) that (b(x0, t0) − λ)z(x0, t0) ≥ 0, which implies that
z(x0, t0) ≥ 0 because b(x0, t0) − λ > 0. We deduce that u(x, t) ≥ 0 in Ω × [0, T0],
which leads us to the result. ¤

Another version of the maximum principle for nonlocal problems is the following
comparison lemma.

Lemma 3.2. Let u, v ∈ C0,1(Ω× (0,∞)) satisfying the following inequalities

ut(x, t)−
∫

Ω

J(x− y)(u(y, t)− u(x, t))dy + a(x)f(u(x, t)) >

vt(x, t)−
∫

Ω

J(x− y)(v(y, t)− v(x, t))dy + a(x)f(v(x, t)) in Ω× (0,∞),

u(x, 0) > v(x, 0) in Ω.

Then, we have u(x, t) > v(x, t) in Ω× (0,∞).

Proof. Let w = u− v in Ω× (0,∞), and let t0 be the first t > 0 such that w(x, t) > 0
in Ω × [0, t0), but w(x0, t0) = 0 for a certain x0 ∈ Ω. Since w(y, t0) ≥ w(x0, t0) for
y ∈ Ω, w(·, t0) 6≡ w(x0, t0) in Ω, we deduce that∫

Ω

J(x0 − y)(w(y, t0)− w(x0, t0))dy > 0.

We observe that wt(x0, t0) ≤ 0 because w(x0, t) ≥ w(x0, t0) for t ∈ [0, t0). It follows
that

wt(x0, t0)−
∫

Ω

J(x0 − y)(w(y, t0)− w(x0, t0))dy

+a(x0)(f(u(x0, t0))− f(v(x0, t0))) ≤ 0.

But, this contradicts the first strict inequality of the lemma, and the proof is complete.
¤

Remark 3.1. Since the initial data u0 is positive in Ω, if we modify slightly the proof
of Lemma 3.2, we easily see that the solution u is also positive in Ω× (0,∞).

Let F (s) =
∫ 1

s
dσ

f(σ) , and let H(s) be the inverse of F (s). In this notation, the
initial-value problem

β′(t) = −λf(β(t)), t > 0, β(0) = 1 (λ > 0), (7)

has the unique solution β(t) = H(λt). It follows from f(0) = 0, f ′(0) = 0 that
0 < f(t) < t for 0 < t < δ (δ > 0) and hence

F (0) = ∞, F (1) = 0 and H(0) = 1, H(∞) = 0,

which implies that β(∞) = 0. The function β(t) will be used later in the construction
of supersolutions and subsolutions of (1) − (2) to obtain the asymptotic behavior of
solutions. In what follows, we suppose that for given λ > 0, δ satisfies the following
equality

δ = −λ +
1
|Ω|

∫

Ω

a(x)dx. (8)

Consider the following problem

−λ−
∫

Ω

J(x− y)(ψ(y)− ψ(x))dy + a(x) = δ in Ω. (9)

Since J is symmetric, we observe that
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∫

Ω

∫

Ω

J(x− y)(ψ(y)− ψ(x))dydx = 0. (10)

We have the following result.

Lemma 3.3.
(i) ψ solution of (9) implies that ψ +const is also solution of (9).
(ii) There exists a solution of (9) if and only if δ satisfies the equality in (8).

Proof. The proof of (i) is straightforward. In order to prove (ii), we proceed in the
following manner. Introduce the operator L defined as follows

Lψ(x) =
∫

Ω

J(x− y)ψ(y)dy in Ω.

Hence, the problem (9) can be rewritten in the following manner

Lψ(x) = b(x) in Ω, (11)

where

b(x) = −δ − λ + ψ(x)
∫

Ω

J(x− y)dy + a(x).

It is not hard to see that the operator L is self-adjoint. It follows by virtue of
Fredholm theory that a solution ψ of (11) exists if and only if

∫

Ω

Lψ(x)dx =
∫

Ω

b(x)dx. (12)

In view of (10) , we note that (12) is satisfied if and only if δ obeys the equality in
(8) . This finishes the proof. ¤

The following result reveals that the solution u of the problem (1) − (2) tends to
zero uniformly in x ∈ Ω as t →∞.

Theorem 3.1. Let u be the solution of (1)− (2) . Then, we have

lim
t→∞

u(x, t) = 0 uniformly in x ∈ Ω.

Proof. From Remark 3.1, we know that the solution u is positive in Ω × (0,∞).
Introduce the function w(x, t) defined by

w(x, t) = β(t) + ψ(x)f(β(t)) in Ω× [1,∞),

where β(t) and ψ(x) > 0 are solutions of (7) and (9), respectively for 0 < λ ≤
∫
Ω a(x)dx

2|Ω| ,

which implies that δ > 0. A straightforward computation reveals that

wt −
∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + a(x)f(w)

= f(β(t))
(
−λ− λψ(x)f ′(β(t))−

∫

Ω

J(x− y)(ψ(y)− ψ(x))dy

)

+a(x)f (β(t) + ψ(x)f(β(t))) in Ω× [1,∞).

Applying the mean value theorem, we get

f(β(t) + ψ(x)f(β(t))) = f(β(t)) + ψ(x)f(β(t))f ′(M(x, t)),
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where M(x, t) is an intermediate value between β(t) and β(t)+ψ(x)f(β(t)). It follows
from (9) that

wt −
∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + a(x)f(w)

= f(β(t))(δ − λψ(x)f ′(β(t))− a(x)ψ(x)f ′(M(x, t))) in Ω× [1,∞).
Due to the fact that f(0) = 0 and f ′(0) = 0, we deduce that there exists T ≥ 1 such
that

wt −
∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + a(x)f(w) > 0 in Ω× (T,∞).

Let k ≥ 1 be large enough that

u(x, 0) < kw(x, T ) in Ω.

We observe that

(kw)t −
∫

Ω

J(x− y)(kw(y, t)− kw(x, t))dy + a(x)f(kw) > 0 in Ω× (T,∞).

It follows from Lemma 3.2 that

u(x, t) < kw(x, T + t) in Ω× (0,∞).

Use the fact that u(x, t) > 0 in Ω× (0,∞) and

lim
t→∞

w(x, t) = 0 uniformly in x ∈ Ω,

to complete the rest of the proof. ¤
Up to now, we have seen that the solution u of (1)−(2) exists globally and tends to

zero as t approaches infinity in x ∈ Ω. In the sequel, we shall describe its asymptotic
behavior under some conditions.

Theorem 3.2. Assume that there exists a constant C2 > 0 such that

lim
s→∞

sf(H(s))
H(s)

≤ C2,

and let u be the solution of (1)− (2) . Then, we have

u(x, t) = H(C0t)(1 + o(1)) as t →∞,

where C0 =
∫
Ω a(x)dx

|Ω| .

The proof of the above theorem is based on the following lemmas.

Lemma 3.4. Let u be the solution of (1) − (2). Then, for any ε > 0 small enough,
there exist positive times τ and T1 such that

u(x, t + τ) ≤ β1(t + T1) + ψ1(x)f(β1((t + T1))) in Ω× (0,∞),

where β1(t) and ψ1(x) > 0 are solutions of (7) and (9) , respectively for λ = C0− ε/2.

Proof. Introduce the function w(x, t) defined as follows

w(x, t) = β1(t) + ψ1(x)f(β1(t)) in Ω× [1,∞).

Since C0 =
∫
Ω a(x)dx

|Ω| , then δ = ε/2 > 0. As in the proof of Theorem 3.1, we get

wt −
∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + a(x)f(w)

= f(β1(t))(δ − λψ1(x)f ′(β1(t))− a(x)ψ1(x)f ′(M1(x, t))) in Ω× [1,∞),
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where M1(x, t) is an intermediate value between β1(t) and β1(t) + ψ1(x)f(β1(t)). It
follows that there exists a time T1 ≥ 1 such that

wt −
∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + a(x)f(w) > 0 in Ω× (T1,∞).

Since u tends to zero as t approaches infinity uniformly in x ∈ Ω, we deduce that
there exists a time τ ≥ T1 such that

u(x, τ) < w(x, T1) in Ω.

Setting z(x, t) = u(x, t + τ − T1), we observe that

zt −
∫

Ω

J(x− y)(z(y, t)− z(x, t))dy + a(x)f(z) = 0 in Ω× (T1,∞),

z(x, T1) = u(x, τ) < w(x, T1) in Ω.

It follows from Lemma 3.2 that

z(x, t) < w(x, t) in Ω× (T1,∞),

which implies that

u(x, t + τ − T1) < w(x, t) in Ω× (T1,∞).

Consequently
u(x, t + τ) ≤ w(x, t + T1) in Ω× (0,∞),

and the proof is complete. ¤

Lemma 3.5. Let u be the solution of (1)− (2) . Then, there exists a time T2 ≥ 1 such
that

u(x, t + 1) ≥ β2(t + T2) + ψ2(x)f(β2(t + T2)) in Ω× (0,∞),
where β2(t) and ψ2(x) > 0 are solutions of (7) and (9) , respectively for λ = C0 + ε/2.

Proof. From Remark 3.1, we know that u is positive in Ω × (0,∞). Introduce the
function w(x, t) defined as follows

w(x, t) = β2(t) + ψ2(x)f(β2(t)) in Ω× [1,∞).

Since C0 =
∫
Ω a(x)dx

|Ω| , then δ = −ε/2 < 0. As in the proof of Theorem 3.1, we get

wt −
∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + a(x)f(w)

= f(β2(t))(δ − λψ2(x)f ′(β2(t))− a(x)ψ2(x)f ′(M2(x, t))) in Ω× [1,∞).
where M2(x, t) is an intermediate value between β2(t) and β2(t) + ψ2(x)f(β2(t)). It
follows that there exists a time T1 ≥ 1 such that

wt −
∫

Ω

J(x− y)(w(y, t)− w(x, t))dy + a(x)f(w) < 0 in Ω× (T1,∞).

Since w tends to zero as t approaches infinity uniformly in x ∈ Ω, there exists a time
T2 ≥ T1 such that

w(x, T2) < u(x, 1) in Ω.

Set z(x, t) = w(x, t + T2 − 1). We observe that

zt −
∫

Ω

J(x− y)(z(y, t)− z(x, t))dy + a(x)f(z) < 0 in Ω× (1,∞),

z(x, 1) = w(x, T2) < u(x, 1) in Ω.
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It follows from Lemma 3.2 that

z(x, t) < u(x, t) in Ω× (1,∞),

which implies that

w(x, t + T2 − 1) < u(x, t) in Ω× (1,∞).

Consequently, we get

u(x, t + 1) ≥ w(x, t + T2) in Ω× (0,∞).

Thus, we have

u(x, t + 1) ≥ β2(t + T2) + ψ2(x)f(β2(t + T2)) in Ω× (0,∞),

and the proof is complete. ¤

Lemma 3.6. Let β(t, λ) be a solution of (7). Then
(i) for γ > 0,

lim
t→0

β(t + γ, λ)
β(t, λ)

= 1.

(ii) if lims→∞
sf(H(s))

H(s) ≤ C2 and α > 0, then

1 ≥ lim
t→∞

sup
β(t, λ + α)

β(t, λ)
≥ lim

t→∞
inf

β(t, λ + α)
β(t, λ)

≥ 1− C2α

λ
, (13)

1 ≤ lim
t→∞

inf
β(t, λ− α)

β(t, λ)
≤ lim

t→∞
sup

β(t, λ− α)
β(t, λ)

≤ 1 +
2C2α

λ
, (14)

for α small enough.

Proof. (i) Since βλ(t) = β(t, λ) is decreasing and convex, then we get

β(t, λ)− γλf(β(t, λ)) ≤ β(t + λ, λ) ≤ β(t, λ),

which implies limt→∞
β(γ+t,λ)

β(t,λ) = 1 because lims→0
f(s)

s = 0.

(ii) We have

1 ≥ β(t, λ + α)
β(t, λ)

=
H(λt + αt)

H(λt)
≥ H(λt)− αtf(H(λt))

H(λt)
.

Since lims→∞
sf(H(s))

H(s) ≤ C2, we obtain (13) . We also get by means of (13) the fol-
lowing inequalities:

1 ≤ lim
t→∞

inf
β(t, λ− α)

β(t, λ)
≤ lim

t→∞
sup

β(t, λ− α)
β(t, λ)

≤ 1
1− C2α

λ−α

≤ 1 +
2C2α

λ

which yields (13) . This ends the proof. ¤

Now, we are in a position to prove the main result of this paper.
Proof of Theorem 3.2. It follows from Lemmas 3.4, 3.5 and 3.6 that, for any ε > 0
small enough, we have

1− k1ε ≤ lim
t→∞

inf
u(x, t)
β(t)

≤ lim
t→∞

sup
u(x, t)
β(t)

≤ 1 + k2ε,

where k1 and k2 are two positive constants. Consequently

u(x, t) = β(t)(1 + o(1)) as t →∞,

which gives the desired result.2
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[25] V. A. Kondratiev and L. Véron, Asymptotic behavior of solutions of some nonlinear parabolic
or elliptic equations, Asympt. Anal., 14, 117-156 (1997).

[26] D. Nabongo and T. K. Boni, Asymptotic behavior for a nonlocal diffusion problem with Neu-
mann boundary conditions, Submitted.

[27] D. Nabongo and T. K. Boni, Blow-up time for a nonlocal diffusion problem with Dirichlet
boundary conditions, To appear in Comm. Anal. Geom.



ASYMPTOTIC BEHAVIOR FOR NONLOCAL DIFFUSION 31

[28] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice
Hall, Englewood Cliffs, NJ, (1967).

[29] A. F. Pazoto and J. D. Rossi, Asymptotic behavior for a semilinear nonlocal equation, Asympt.
Anal., 52, 143-155 (2007).

[30] M. Perez-LLanos and J. D. Rossi, Blow-up for a non-local diffusion problem with Neumann
boundary conditions and a reaction term, To appear in Nonl. Anal. TMA.

[31] V. Radulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations, Con-
temporary Mathematics and its Applications, 6, Hindawi Publ. Corp., (2008).

[32] L. Véron, Equations d’evolution semi-lineares du second ordre dans L1, Rev. Roumaine Math.
Pures Appl., XXXVII, 95-123 (1982).

[33] W. Walter, Differential-und Integral-Ungleichungen, Springer, Berlin, (1964).
[34] L Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some

integral differential equations arising from neuronal networks, J. Diff. Equat., 197(1), 162-196
(2004).

(T. K. Boni) Institut National Polytechnique Houphouet-Boigny de Yamoussoukro,
BP 1093 Yamoussoukro, (Côte d’Ivoire),
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