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Entire large solutions for logistic-type equations

Maria-Magdalena Boureanu

Abstract. We are discussing the existence of large solutions in RN for ∆u = e−|x|
a
uαf(u)

and ∆u = u + e−|x|
a
uαf(u). We prove that even though both equations ∆u = u and

∆u = e−|x|
a
uαf(u) have positive entire large solutions, the equation ∆u = u + e−|x|

a
uαf(u)

does not have such solutions for a = 1, where N ≥ 3, α > 2 and f denotes a function satisfying
hypotheses f ∈ C1([0, ∞)), f ′ ≥ 0, f ≥ 1. In addition, for a > 1 sufficiently large, this last
equation might still have positive entire large solutions.
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1. Introduction

We consider the following class of semilinear elliptic equations
{

∆u = u + e−|x|
a

uαf(u) in RN ,
u ≥ 0, u 6≡ 0 in RN ,

(1)

where N ≥ 3, a ≥ 1, α > 1 and f is under the assumptions

f ∈ C1([0, ∞)), f ′ ≥ 0, f ≥ 1. (2)

Definition 1.1. (i) A positive solution u of an elliptic equation on Ω 6≡ RN satisfying
the condition

u(x) →∞, as dist(x, ∂Ω) → 0
is called a large (blow-up, explosive) solution of that equation.

(ii) A positive solution u of an elliptic equation on RN satisfying the condition

u(x) →∞, as |x| → ∞
is called a positive entire large solution of that equation.

In this paper we are concerned with the existence and nonexistence of positive
entire large solutions for (1). There is a vast literature on elliptic problems that
have solutions which blow up. Starting with the pioneering papers [2], [13], [7], [12],
problems related to large solutions have a long history, arise naturally from a number
of different areas and are studied by many authors and in many contexts.

In 1916, in [2], Bieberbach studied the equation ∆u = eu in the plane and in
1943, in [13], Rademacher studied the same equation in the space. Later on, singular
value problems of this type were studied under the general form ∆u = f(u) in N -
dimensional domains. A special attention was paid to the equations of the form

∆u = p(x)uγ (3)
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which was studied in bounded and in unbounded domains.
We are interested here only in studying the existence of positive entire large solu-

tions, thus we will insist on the results obtained in unbounded domains. In [4], Cheng
and Ni proved that (3) has a unique entire large solution in RN provided that function
p is positive and smooth, γ > 1 and that there exists m > 2 such that |x|mp(x) is
bounded for large |x|. In [1], Bandle and Marcus showed the existence and uniqueness
of a positive entire large solution for the more general equation

∆u = g(x, u),

which includes the case g(x, u) = p(x)uγ where γ > 1 and the function p(x) is positive
and continuous such that p and 1/p are bounded. Also, the study of superlinear case
where γ > 1 is included in the more recent work [5], as we will see in Section 2.
Nonexistence results of large positive solutions for (3) with γ > 1 were given in [11],
[10] and [3]. For the sublinear case, where 0 < γ ≤ 1, Lair and Wood stated in [9] that
for radial p with

∫∞
0

rp(r)dr = ∞ equation (3) has a positive entire large solution.
Let us denote

Mp(r) ≡ max
|x|=r

p(x) (4)

and

mp(r) ≡ min
|x|=r

p(x).

In fact, the characterization of the existence and the nonexistence of positive entire
large solutions for (3) is the following. For the superlinear case where γ > 1 equation
(3) has such solutions if p satisfies

∫ ∞

0

rMp(r)dr < ∞

and it will not generally have positive entire large solutions if
∫ ∞

0

rmp(r)dr = ∞.

The sublinear case, where 0 < γ ≤ 1, behaves generally in the opposite manner. For
more information on problems with large solutions we refer to [14] or to the recent
book [6].

In the present paper we are concerned with the intriguing situation when

∆u = q1(x)uγ1 and ∆u = q2(x)uγ2

both have positive entire large solutions while

∆u = q1(x)uγ1 + q2(x)uγ2

does not have. This is the case for

∆u = u + e−|x|uα, (5)

where α > 2 (see [8]). We will show here that a similar situation takes place for our
equation (1) when a = 1 and α > 2. Even more interesting, for a larger, (1) may have
such solutions. We note here that equation (1) with a = 1 is more general then (5)
since conditions (2) imposed on f are quite permissive. Therefore f can be chosen to
be an appropriate polynomial function or logarithmical, exponential etc.
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2. Preliminary results

In order to avoid repetition, we state here that everywhere below N ≥ 3, a ≥ 1,
α > 1 and f denotes a function satisfying (2). Also, throughout this paper, C will
denote a universal positive constant, depending on different parameters, whose value
may change from line to line.

We consider the following semilinear elliptic equation:

{
∆u = p(|x|)g(u) in RN ,
u ≥ 0, u 6≡ 0 in RN ,

(6)

where p > 0.
We recall an important result (see [5]).

Theorem 2.1. Assume that the nonlinearity g verifies
• (g1) g ∈ C1([0, ∞)), g′ ≥ 0, g(0) = 0 and g > 0 on (0,∞)

and the Keller-Osserman condition (see [7] and [12])
• (g2)

∫∞
1

[2G(t)]−1/2dt < ∞ where G(t) =
∫ t

0
g(s)ds.

Also, assume that the function p ∈ C0,µ
loc (RN ) (0 < µ < 1) verifies p > 0 and

• (p)
∫∞
0

rp(r)dr < ∞.
Then (6) has a positive entire large solution.

With the aid of the above theorem we can prove the following lemma.

Lemma 2.1. Equation
{

∆u = e−|x|
a

uαf(u) in RN ,
u ≥ 0, u 6≡ 0 in RN .

(7)

has a positive entire large solution.

Proof. We will show that we are under the hypotheses of Theorem 2.1.
First we consider the function g defined by g(u) := uαf(u). We will show that g

verifies conditions (g1) and (g2).
Due to the fact that f is satisfying (2), is easy to see that g is satisfying (g1). It

remains to see if (g2) is also fulfilled.
Since f ≥ 1,

G(t) =
∫ t

0

g(s)ds =
∫ t

0

sαf(s)ds ≥
∫ t

0

sαds =
tα+1

α + 1
.

There exists t0 (e.g. t0 := α + 1) such that for all t > t0 > 1,

2G(t) ≥ 2
α + 1

tα+1 ≥ 1.

Hence, for t > t0 > 1,

[2G(t)]−1/2 ≤
[

2
α + 1

tα+1

]−1/2

which implies
∫ ∞

t0

[2G(t)]−1/2dt ≤
∫ ∞

t0

[
2

α + 1
tα+1

]−1/2

dt.
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We obtain ∫ ∞

1

[2G(t)]−1/2dt =
∫ t0

1

[2G(t)]−1/2dt +
∫ ∞

t0

[2G(t)]−1/2dt

≤ C + C

∫ ∞

t0

t−(α+1)/2dt

≤ C + C · t(−α+1)/2
∣∣∞
t0

.

But α > 0, therefore limt→∞ t(−α+1)/2 = 0 and consequently∫ ∞

1

[2G(t)]−1/2dt < ∞.

Now it only remains to show that

p1(r) := e−ra

satisfies (p) for every a ≥ 1. We have
∫ ∞

0

rp1(r)dr =
∫ ∞

0

re−ra

dr =
∫ 1

0

re−ra

dr +
∫ ∞

1

re−ra

dr ≤ C +
∫ ∞

1

re−ra

dr.

Since a ≥ 1, then −ra ≤ −r, for any r ≥ 1. Hence∫ ∞

0

rp1(r)dr ≤ C +
∫ ∞

1

re−rdr = C −
∫ ∞

1

r
(
e−r

)′
dr = C − re−r

∣∣∞
1
− e−r

∣∣∞
1

< ∞.

Therefore equation (7) has a positive entire large solution.
¤

3. Main result

We first consider the particular case of equation (1) when a = 1 and α > 2, namely{
∆u = u + e−|x|uαf(u) in RN ,
u ≥ 0, u 6≡ 0 in RN .

(8)

Theorem 3.1. Although both equations{
∆u = u in RN ,
u ≥ 0, u 6≡ 0 in RN ,

(9)

and {
∆u = e−|x|uαf(u) in RN ,
u ≥ 0, u 6≡ 0 in RN ,

(10)

have positive entire large solutions, equation (8) has no such solutions.

Proof. The fact that (9) has positive entire large solutions is well known, while (10) is
a particular case of (7) for a = 1. Consequently, by Lemma 2.1, this second equation
also has positive entire large solutions.

We focus on showing that (8) does not have such solutions. The proof basically
follows the same ideas as in the proof for (5), see [8]. Arguing by contradiction, we
assume that there exists a positive entire large solution w of (8). Then, we can assume
that there exists a radial solution u such that u satisfies the integral equation

u(r) = u0 +
∫ r

0

t1−N

∫ t

0

sN−1[u(s) + e−suα(s)f(u(s))]dsdt, (11)

where 0 < u0 =: u(0) < w(0). We note that if (11) did not have a positive solution
valid for all r > 0, its solution u, since it is an increasing function, would blow up
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at some R > 0 letting u to be a positive large solution of ∆u = u + e−|x|uαf(u) on
the ball |x| ≤ R, therefore u ≥ w on |x| ≤ R and u0 < w(0) which is a contradiction.
Since we have established that u satisfies (11) and it is clear that e−suα(s)f(u(s)) ≥ 0,

u(r) ≥ u0 +
∫ r

0

t1−N

∫ t

0

sN−1u(s)dsdt.

We substitute u(r) ≥ u0 into the right side and we obtain

u(r) ≥ u0

(
1 +

r2

1!21N

)
.

We substitute this new expression into the right side and we obtain

u(r) ≥ u0

(
1 +

r2

1!21N
+

r4

2!22N(N + 2)

)
.

Continuing to substitute every new expression obtained into the right side we arrive
at

u(r) ≥ u0

∞∑

k=0

r2k

k!2kN(N + 2) ... (N + 2k − 2)
.

Rewriting, we get

u(r) ≥ u0Γ(N/2)
∞∑

k=0

1
k!Γ(N

2 + k)

(r

2

)2k

hence
u(r) ≥ Cr1−N/2IN/2−1(r),

where IN/2−1 is the modified Bessel function with index N/2− 1. It is a known fact
that for r large enough there exists C such that

IN/2−1(r) ≥ Cerr−1/2.

Combining the last two relations we obtain

u(r) ≥ Cerr(1−N)/2 for large r,

thus there exists ε > 0 small enough such that

u(r) ≥ ε[1 + e(1−ε)r] for all r ≥ 0. (12)

We will choose ε > 0 small enough so that α− 1
1−ε > 1.

For β := α − 1
1−ε > 1 and c0 := ε1/(1−ε), let vn be a nonnegative solution to the

problem {
∆vn = c0v

β
n in Ωn,

vn(x) →∞ as x → ∂Ωn,

where by Ωn we understand the ball |x| < n. Since Ωn ⊂ Ωn+1 we can apply, for each
n ≥ 1, the maximum principle in order to find that vn ≥ vn+1 in Ωn. The nonnegative
sequence (vn)n is monotonically decreasing and thus converges to a function v on RN

with
∆v = c0v

β . (13)
If we show that u ≤ v, it follows that v is a positive entire large solution of (13) and
we obtain the desired contradiction since (13) has no such solution (see [7] and [12]).
Therefore, when we will show that u ≤ v, the proof of our theorem will be complete.

To obtain u ≤ v we will show that u ≤ vn in Ωn, for all n, since RN =
⋃∞

n=1 Ωn.
For that we will use again the method of reduction to absurdity. Suppose that there
exists a n0 such that maxΩn0

[u(x) − vn0(x)] > 0. Since this maximum cannot occur
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on ∂Ωn0 , we deduce that there exists x0 ∈ Ωn0 where it does occur. Keeping in mind
(12) and that f ≥ 1, at this point x0 we have

0 ≥ ∆(u− vn0) = u + e−|x0|uαf(u)− c0v
β
n0

≥ u + e−|x0|uα − c0v
β
n0

≥ u + e−|x0|u1/(1−ε)uβ − c0v
β
n0

≥ u + e−|x0|
[
ε
(
1 + e(1−ε)|x0|

)]1/(1−ε)

uβ − c0v
β
n0

≥ u + c0u
β − c0v

β
n0

> 0,

which is a contradiction.
¤

4. An open problem

As we have seen in the last section, equation (1) has no positive entire large solu-
tions for a = 1 and α > 2. But what happens when a is bigger? One way to approach
this matter is by considering the problem

{
∆u = e−|x|

a+ α+2N−5
2(N−2) |x|buαf(u) in RN ,

u ≥ 0, u 6≡ 0 in RN .
(14)

We will demonstrate that equation (14) admits positive entire large solutions for
a > 3 and b ∈ (2, a − 1). As in the proof of Lemma 2.1, we can prove that we are
under hypotheses of Theorem 2.1 for g(u) = uαf(u). Therefore it remains to show
that

p2(r) := e−ra+ α+2N−5
2(N−2) r2

satisfies (p) for every a > 3 and b ∈ (2, a− 1).
For r > α+2N−5

2(N−2) +1 > 1, a > 3 and b ∈ (2, a−1) it is true that ra−b > α+2N−5
2(N−2) +1,

hence

ra >
α + 2N − 5
2(N − 2)

rb + rb >
α + 2N − 5
2(N − 2)

rb + r.

We immediately deduce that
∫ ∞

0

rp2(r)dr =
∫ ∞

0

re−ra+ α+2N−5
2(N−2) rb

dr

=
∫ α+2N−5

2(N−2) +1

0

re−ra+ α+2N−5
2(N−2) rb

dr +

+
∫ ∞

α+2N−5
2(N−2) +1

re−ra+ α+2N−5
2(N−2) rb

dr

≤ C +
∫ ∞

α+2N−5
2(N−2) +1

re−rdr < ∞.

Based on Theorem 2.1, for a > 3 and b ∈ (2, a − 1), we can consider a positive
radial entire large solution k of (14),

k(r) = k0 +
∫ r

0

t1−N

∫ t

0

sN−1e−sa+ α+2N−5
2(N−2) sb

kα(s)f(k(s))dsdt,
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for some positive k0 and a positive radial entire large solution h of (9),

h(r) = 1 +
∫ r

0

t1−N

∫ t

0

sN−1h(s)dsdt.

In order to show that (1) has positive entire large solutions for a > 3 and b ∈
(2, a− 1), we need to show that the integral equation

z(r) = z0 +
∫ r

0

t1−N

∫ t

0

sN−1
[
z(s) + e−sa

zα(s)f(z(s))
]
dsdt, (15)

has, for a well chosen z0, a positive solution valid for all r ≥ 0. It is clear that such a
solution z, if exists, will of necessity be large because

z(r) ≥ z0 +
∫ r

0

t1−N

∫ t

0

sN−1z(s)dsdt ≥ z0 + z0

∫ r

0

t1−N

∫ t

0

sN−1dsdt →∞,

when r → ∞. Thus it is enough to prove that equation (15) has a valid solution for
all nonnegative r. If we let z0 ∈ (0, k0), we deduce that a solution to (15) exists on
some interval. It remains the question: is this interval [0,∞)?

A problem of this type was treated by Lair in his recent work [8], and we refer to
the problem

∆u = Mp(|x|)u + Mq(|x|)uβ , (16)
where Mp, Mq are given as in the formula (4), β > 1, q satisfies

∫ ∞

0

rMq(r)e(β−1)(N−2)
∫ r
0 sMp(s)dsdr < ∞

and p satisfies ∫ ∞

0

rMp(r)dr = ∞.

The existence of a positive entire large solution to (16) was proved by showing that
the integral equation

w(r) = w0 +
∫ r

0

t1−N

∫ t

0

sN−1
[
Mp(s)w(s) + Mq(s)wβ(s)

]
dsdt

has, for an appropriately chosen positive value for w0, a positive solution valid for all
nonnegative r. In order to obtain such a result, Lair established that

w(r) ≤ w1(r)w2(r) for all r ≥ 0,

where w1, w2 are positive radial entire large solutions respectively to

∆u = Mp(r)u and ∆u = Mq(r)e(β−1)(N−2)
∫ r
0 sMp(s)dsuβ .

In our case we should prove that z(r) ≤ h(r)k(r) on [0,∞). Following the steps
from [8] we define R as

R := sup{r0 ∈ (0,∞)| z(r) ≤ h(r)k(r) for all r ∈ [0, r0]}.
If R = ∞, we are done. Arguing by contradiction, we suppose R < ∞. We have

z(R) = z0 +
∫ R

0

t1−N

∫ t

0

sN−1
[
z(s) + e−sa

zα(s)f(z(s))
]
dsdt (17)

< k0 +
∫ R

0

t1−N

∫ t

0

sN−1
[
h(s)k(s) + e−sa

hα(s)kα(s)f(z(s))
]
dsdt.

On the other hand,
∆(hk) ≥ h∆k + k∆h.
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We know that k and h are, respectively, positive radial entire large solutions of (14)
and (9),

∆(hk) ≥ he−|x|
a+ α+2N−5

2(N−2) |x|bkαf(k) + kh,

which, in radial form, produces
[
rN−1(kh)′

]′ ≥ rN−1
[
he−|x|

a+ α+2N−5
2(N−2) |x|bkαf(k) + kh

]
.

Integrating, we come to

h(r)k(r) ≥ k0 +
∫ r

0

t1−N

∫ t

0

sN−1
[
h(s)e−sa+ α+2N−5

2(N−2) sb

kα(s)f(k(s)) + k(s)h(s)
]
dsdt,

(18)
for all r ≥ 0. To obtain the desired contradiction, we would like to have

hα−1f(z) < e
α+2N−5
2(N−2) rb

f(k), (19)

for all r ∈ [0, R]. That is because if relation (19) holds, then, by (17) and (18), we
have

z(R) < h(R)k(R)
and, consequently, there exists ε > 0 such that z(r) < h(r)k(r) on [0, R + ε]. This
contradicts the definition of R.

Let us focus on (19). We take into account that

h(r) ≤ 1 +
1

N − 2

∫ r

0

sh(s)ds, ∀r (see relation (9) in [9])

and by applying Grönwall’s inequality we obtain

h(r) ≤ e
∫ r
0

s
N−2 ds,

therefore

hα−1(r) ≤ e
r2(α−1)
2(N−2) ,

for r > 1. Thus for r > 1 and b > 2,

hα−1(r) < e[
α−1

2(N−2)+1]rb

= e
α+2N−5
2(N−2) rb

.

Unfortunately, this is not enough to prove relation (19) since f is increasing and
z < hk on [0, R). For now, we let this matter as an open problem. Still, for b big
enough, we believe that (19) could hold, giving us the contradiction mentioned above.
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