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A completeness theorem for three-valued temporal predicate
logic

Carmen Chiriţă

Abstract. The main result in this paper is a completeness theorem for the three-valued
temporal predicate calculus, obtained by providing a semantical interpretation for this logic
and by using the Henkin models to define a canonical model used to prove the completeness.
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1. Introduction

The classical temporal logic is obtained from bivalent logic by adding the tense
operators G (”it is always going to be the case that”) and H (” it has always been
the case that”). By starting from other logical systems and adding appropiate tense
operators we can produce new temporal logics. In [5] we have studied a complete
three-valued temporal propositional calculus based on the ÃLukasiewicz three-valued
logic.

The goal of this paper is to construct a temporal logical system for the predicate
calculus based on the three-valued logic . This logical system is obtained from the
ÃLukasiewicz logic described in [5] by adding the quantifiers. The main result is a
completeness theorem for this logical system, whose proof uses a Henkin-style method
(see [8]).

The paper is organized as follows:
In Section 2 we recall from [1] and [11] some basic definitions and results on the

three-valued ÃLukasiewicz logic: the syntax, the semantic, the completeness theorem
and a list of provable sentences.

Section 3 contains a short presentation of the three-valued temporal propositional
logic T L3 and the completeness theorem proved in [5].

In Section 4 we define the language and the logical structure of the three-valued
temporal predicate logic PT L3. We study the consistent sets of formulas and we
prove that any consistent theory of PT L3 can be embedded in a Henkin theory.

Section 5 deals with the semantic of PT L3. We define the structures of PT L3

and we construct the canonical model associated with a maximal consistent Henkin
theory. The satisfiability of formulas in canonical model is characterized in terms of
maximal consistent Henkin theories.

Section 6 contains the proof of completeness theorem for PT L3. This proof is
based on the properties of canonical model (cf. Theorem 5.1).
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2. Three-valued Lukasiewicz propositional logic

The first system of three-valued logic was constructed by Lukasiewicz in 1920 in
connection with the investigation of modalities (see [14]). His main idea was to
consider a third truth-value 1

2 between 0 (false) and 1(truth). The interpretation for
the sentences of the three-valued logic is defined in L3 = {0, 1

2 , 1}. The algebraic
structures for the three-valued ÃLukasiewicz logic were introduced by Gr.C.Moisil in
[15] under the name of three-valued ÃLukasiewicz algebras (see also [16], [1]). Today
these structures are known as ÃLukasiewicz-Moisil algebras (see [1]). We shall use the
Wajsberg axiomatization of the three-valued Lukasiewicz logic ([1]). The sentences of
the three-valued Lukasiewicz propositional calculus L3 are obtained from a countable
set V of propositional variables and the logical conectives ¬ and →, according to the
following rules:

(i) the propositional variables are sentences;
(ii) if p şi q are sentences then ¬p and p → q are sentences;
(iii) every sentence is obtained by applying a finite number of times the above rules

(i) and (ii).
In what follows, we will denote the set of sentences of L3 by E.

We are going to use the following abbreviations:

ϕ ∨ ψ := ((ϕ → ψ) → ψ)
ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ)

ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ)
ϕ⊕ ψ := ¬ϕ → ψ

ϕ¯ ψ := ¬(¬ϕ⊕ ¬ψ)
∼ ϕ := ϕ → ¬ϕ

The axioms of three-valued Lukasiewicz propositional calculus are sentences of one of
the following forms:

(A1) p → (q → p)
(A2) (p → q) → ((q → r) → (p → r))
(A3) ((p → ¬p) → p) → p
(A4) (¬p → ¬q) → (q → p)
Three-valued Lukasiewicz propositional logic uses modus ponens (m.p) as rule of
inference:

p, p → q

q

A proof of a sentence p is a finite sequence p1, ..., pn = p of sentences such that for
any i ≤ n we have one of the following:
(a) pi is an axiom;
(b) there exists j, k < i such that pk is the sentence pj → pi.
A sentence p is provable (` p) if there is at least one proof of it.
The following proposition collects the main provable sentences of L3.

Proposition 2.1. ([1]) The following sentences are provable in the three-valued
ÃLuckasiewicz logic :
(t1) p → (q → p),
(t2) (p → q) → ((q → r) → (p → r)),
(t3) p → p,
(t4) (p → q) ↔ (¬q → ¬p),
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(t5) p ↔ ¬¬p,
(t6) ¬p → (p → q),
(t7) (p → (p → (q → r))) → ((p → (p → q)) → (p → (p → r))),
(t8) ∼∼ p → p,
(t9) (p →∼ p) →∼ p,

(t10) (p ∧ (q ∧ r)) ↔ ((p ∧ q) ∧ r),
(t11) (p ∧ q) ↔ (q ∧ p),
(t12) (p ∧ q) → p,
(t13) p → (q → (p ∧ q)),
(t14) (p ∨ (q ∨ r)) ↔ ((p ∨ q) ∨ r),
(t15) (p ∨ q) ↔ (q ∨ p),
(t16) p → (p ∨ q),
(t17) (p¯ (q ¯ r)) ↔ ((p¯ q)¯ r),
(t18) (p¯ q) ↔ (q ¯ p),
(t19) p¯ q → p,
(t20) p → (q → p¯ q),
(t21) (p → (q → r)) ↔ (p¯ q → r),
(t22) (p → q) → (p¯ r → q ¯ r),
(t23) (p⊕ (q ⊕ r)) ↔ ((p⊕ q)⊕ r),
(t24) (p⊕ q) ↔ (q ⊕ p),
(t25) p → p⊕ q,
(t26) (p ∨ q) → (p⊕ q).
(t27) ¬(p → q) → p.
(t28) ¬(p → q) → ¬q.
(t29) p → (¬q → ¬(p → q)).
(t30) ∼ p → (∼ ¬q → (p → q)).

Definition 2.1. An interpretation of L3 is an arbitrary function
v : E → L3 such that:
• v(p → q) = v(p) → v(q)
• v(¬p) = ¬v(p)

for all p, q ∈ E.
We say that a sentence p is valid (|= p) if v(p) = 1 for any interpretation v.

Theorem 2.1. (Completeness Theorem) For any sentence p of L3,

` p iff |= p

3. Three-valued temporal propositional logic

In this section we present a three-valued temporal logic T L3 based on the three-
valued Lukasiewicz propositional calculus [5]. Our axiomatization is inspired from the
axioms of the three-valued Lukasiewicz logic in [1] and from the Ostermann system
from [17] (see also Leuştean [13]) and introduces two temporal operators G and H.
The symbols of the three-valued propositional temporal logic are:
(i) a countable set AF of atomic sentences, denoted by v0, v1, ...,
(ii) the propositional connectives ¬,→,
(iii) the temporal operators G and H.
The set E of sentences of T L3 is defined by the canonical induction.
We shall use the ∨,∧,↔,⊕,¯ and ∼ defined in the previous section.
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We also define:

Fp := ¬G¬p

Pp := ¬H¬p

T L3 has the following axioms:
(T1) the axioms of the three-valued Lukasiewicz logic ( the axioms (A1)-(A4) in section

2)
(T2) G(p → q) → (Gp → Gq),

H(p → q) → (Hp → Hq),
(T3) G(p⊕ p) ↔ (Gp⊕Gp),

H(p⊕ p) ↔ (Hp⊕Hp),
(T4) p → GPp,

p → HFp,
The notion of formal proof in the three-valued temporal logic is defined in terms of
the above axioms and the following inference rules:

p, p → q

q
;

p

Gp
;

p

Hp

We will denote by `T L3 p the fact that p is provable in T L3.
A frame is a pair F = 〈W,R〉,where W is a not-empty set and R is a binary relation

on W .
An evaluation of T L3 in F is a function V : E ×W → L3 = {0, 1

2 , 1} such that, for
all p, q ∈ E and s ∈ W , the following equalities hold:
(i) V (¬p, s) = 1− V (p, s),
(ii) V (p → q, s) = min{1, 1− V (p, s) + V (q, s)},
(iii) V (Gp, s) = min{V (p, t)|sRt}, for all p, q ∈ E, s ∈ W

V (Hp, s) = min{V (p, t)|tRs}, for all p, q ∈ E, s ∈ W
A sentence p ∈ E is universally valid in T L3 (|=T L3 p) if for every frame (W,R)

and for any evaluation V : E ×W → L3 we have
V (p, s) = 1, for all s ∈ W .

We recall from [5] the following completeness result.

Theorem 3.1. (Completeness Theorem) For any sentence ϕ of T L3,
`T L3 ϕ iff |=T L3 ϕ

4. Syntax of three-valued temporal predicate logic

In this section we shall define the three-valued temporal predicate logic PT L3 by
adding to T L3 the universal quantifier ∀. The logical structure of PT L3 is obtained
by enriching the axiomatization of T L3 with the new axioms (A6)-(A9) and the
generalization rule of inference. We study the consistent sets of formulas and the
Henkin theories of PT L3.

A lot of properties of consistent sets follows as in the case of classical temporal
logic and we omit their proofs. We prove that any consistent theory of PT L3 can be
embedded in a Henkin theory of an extended language PT L3 obtained by adding to
PT L3 the new constants of C.

The alphabet of PT L3 consists of the following primitive symbols:
• a countable set V of variable symbols, denoted by x,y,z,..,.
• an arbitrary set of constant symbols.
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• an arbitrary set of predicate symbols; each predicate symbol P has associated a
natural number n > 0 (the order or arity of P ).

• the propositional connectives ¬,→.
• the temporal operators G and H.
• the universal quantifier ∀.
• the parantheses : (, ), [ , ].
A term of PT L3 is a variable symbol or a constant symbol. An atomic formula

of PT L3 has the form ϕ(t1, t2, ..tn) where ϕ is a n-ary P symbol and t1, t2, ...tn are
terms.

We will inductively define the set Form of formulas:
(i) the atomic formulas are formulas.
(ii) if ϕ ∈ Form and ψ ∈ Form then ϕ → ψ and ¬ϕ ∈ Form.
(iii) if ϕ ∈ Form then Gϕ ∈ Form, Hϕ ∈ Form.
iv) if ϕ ∈ Form and x is a variable symbol then ∀xϕ is a formula.

We also define:

Fϕ := ¬G¬ϕ

Pϕ := ¬H¬ϕ

∃xϕ := ¬∀x¬ϕ

The notion of subformula is defined by induction:
• ϕ is a subformula of ϕ.
• any subformula of ϕ is a subformula of ¬ϕ
• any subformula of ϕ or ψ is a subformula of ϕ → ψ.
• any subformula of ϕ is a subformula of ∀xϕ.
An occurence of a variable x in a formula ϕ is free if x does not belongs to any

occurence of a subformula of ϕ having the form ∀xψ. Otherwise, an occurence of x
in ϕ is bound.

We say that x is free in ϕ if any occurence of x is free in ϕ. A sentence is a formula
with no free variables. We will write ϕ(x1, ..., xn) if all the free variables of ϕ are
among {x1, ...xn}. We’ll denote by FV (ϕ) the set of free variables of ϕ.

A theory is a set of formulas.
The axioms of PT L3 are:

(A0) the axioms of the three-valued logic.
(A1) G(ϕ → ψ) → (Gϕ → Gψ)

H(ϕ → ψ) → (Hϕ → Hψ)
(A2) Gϕ⊕Gψ → G(ϕ⊕ ψ)

Hϕ⊕Hψ → H(ϕ⊕ ψ)
(A3) G(ϕ⊕ ϕ) → Gϕ⊕Gϕ

H(ϕ⊕ ϕ) → Hϕ⊕Hϕ
(A4) Fϕ⊕ Fϕ → F (ϕ⊕ ϕ)

Pϕ⊕ Pϕ → P (ϕ⊕ ϕ)
(A5) ϕ → GPϕ

ϕ → HFϕ
(A6) ∀xϕ(x) → ϕ(t), where t is a term
(A7) ∀x(ϕ → ψ(x)) → (ϕ → ∀xψ(x)), where x is not free in ϕ
(A8) ∀x(ϕ⊕ ϕ) ↔ ∀xϕ⊕ ∀xϕ
(A9) ∀x(ϕ¯ ϕ) ↔ ∀xϕ¯ ∀xϕ

PT L3 has the following rules of inference:
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ϕ,ϕ → ψ

ψ
(Modus Ponens)

ϕ

∀xϕ
(Generalization)

ϕ

Gϕ
(Temporal Generalization)

ϕ

Hϕ
(Temporal Generalization)

The formal theorems of PT L3 are obtained from axioms by applying a finite num-
ber of times the rules of inference. We denote by ` ϕ the fact that ϕ is a formal
theorem. The sintactic deduction is defined by:

Γ ` ϕ ⇐⇒ there exists γ1, ...γn ∈ Γ with `
n∧

i=1

γi → ϕ

We say that a set Γ of formulas is consistent if there is no formula ϕ such that
Γ ` ϕ and Γ ` ¬ϕ; otherwise we say that Γ is inconsistent.
A consistent set Γ is said to be maximal consistent if ϕ ∈ Γ for any formula ϕ such
that Γ ∪ {ϕ} is consistent.

We are going to present some formal theorems and properties for three-valued
temporal predicate calculus. The proofs are similar to the corresponding results for
ÃLukasiewicz predicate logic[10].

Proposition 4.1. Let Σ ⊆ Form and p ∈ Form.
(i) Σ is inconsistent iff Σ ` r for any formula r.
(ii) Σ ∪ {p} is inconsistent iff Σ `∼ p.
(iii) Σ ∪ {∼ p} is inconsistent iff Σ ` p.
(iv) Σ is consistent iff every finite subset of Σ is consistent.
(v) If Σ is consistent, then for any formula p, at least one of Σ∪ {p} and Σ∪ {∼ p}

is consistent.

Proposition 4.2. Let Σ be a maximal consistent set and p, q ∈ Form.
(i) Σ ` p implies p ∈ Σ.
(ii) If Σ ⊆ Γ and Γ is consistent, then Σ = Γ.
(iii) p ∈ Σ iff ∼ p /∈ Σ.
(iv) p ∨ q ∈ Σ iff (p ∈ Σ or q ∈ Σ).
(v) p ∧ q ∈ Σ iff (p ∈ Σ and q ∈ Σ).
(vi) p¯ q ∈ Σ iff (p ∈ Σ and q ∈ Σ).
(vii) If p ∈ Σ or q ∈ Σ, then p⊕ q ∈ Σ.
(viii) If (p → q) ∈ Σ, then p ∈ Σ implies q ∈ Σ.
(ix) If (p ↔ q) ∈ Σ, then p ∈ Σ iff q ∈ Σ.

Lemma 4.1. (Lindenbaum’s Lemma) Every consistent set of formulas is contained
in a maximal consistent set.

Lemma 4.2. Let ∆ and Γ be maximal consistent sets of formulas. The following are
equivalent:
(a) ϕ ∈ Γ ⇒ Pϕ ∈ ∆, for all formula ϕ.
(b) ψ ∈ ∆ ⇒ Fψ ∈ Γ, for all formula ψ.
(c) Gγ ∈ Γ ⇒ γ ∈ ∆, for all fromula γ.
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(d) Hδ ∈ ∆ ⇒ δ ∈ Γ, for all fromula δ.

Lemma 4.3. If Σ is a maximal consistent set of formulas and γ a formula of PT L3,
then:
(a) If Fγ ∈ Σ then there exists a maximal consistent set ∆ with Σ ≺ ∆ and γ ∈ ∆.
(b) If Pγ ∈ Σ then there exists a maximal consistent set Γ with Γ ≺ Σ and γ ∈ Γ.

Proposition 4.3. If x is a variable, ϕ and ψ are formulas and x is not free in ψ
then
(1) ` ∀x(ϕ → ψ) ↔ (∃xϕ → ψ)
(2) ` ∃x(ψ → ϕ) ↔ (ψ → ∃xϕ)

Lemma 4.4. If ` ϕ → ψ then ` ϕ2 → ψ2, where we denote ϕ2 = ϕ¯ ϕ.

Proposition 4.4. If ϕ is a formula then
` ∃ϕ2 ↔ (∃ϕ)2

Lemma 4.5. Let T a theory and ϕ a formula. The following are equivalent:
• T ∪ {ϕ} is inconsistent.
• T ` ¬ϕ2.

Proposition 4.5. Any consistent theory can be embedded in a maximal consistent
theory.

Let C a set of new constants having the same cardinality as PT L3 and PT L3(C)
the language obtained from PT L3 by adding the constants of C.

Lemma 4.6. Let T a theory of PT L3, ϕ(x) a formula of PT L3 and c ∈ C.
We have:

T ` ∀xϕ(x) in PT L3 iff T ` ϕ(c) in PT L3(C)

Definition 4.1. A consistent theory T of PT L3(C) is said to be a Henkin theory if
for any formula ϕ(x) in PT L3(C) there exists c ∈ C such that T ` ∃xϕ(x) → ϕ(c).

The following lemma will be the main tool in proving the properties of the canonical
model (see the proof of Theorem 5.1).

Lemma 4.7. Let T be a consistent theory in PT L3. Then, there is a set C of new
constants and a Henkin theory T in PT L3(C) such that T ⊆ T .

Proof. Let α be the cardinal of the language PT L3. Let C a set of new constants
such that |C| = α. Then |PT L3(C)| = α. Let us consider an enumeration {cξ}ξ<α

of C such that cβ 6= cγ for all γ < β < α. We can take an enumeration {ϕξ(xξ)}ξ<α

of the formulas of PT L3(C) with at most one free variable. We will construct by
transfinite induction an increasing sequence of theories in PT L3(C): T = T0 ⊆ T1 ⊆
... ⊆ Tξ ⊆ ... with ξ < α and a sequence {dξ}ξ<α of constants in C such that the
following conditions hold:
• Tξ is consistent in PT L3(C).
• If ξ = µ + 1 is an succesor ordinal then

Tξ = Tµ∪{∃xµϕµ(xµ) → ϕµ(dµ)} where dµ is the first constant in C which does
not appear in Tµ.

• If ξ is a non-zero limit ordinal then Tξ =
⋃

µ<ξ

Tµ.

Let’s assume that Tµ is consistent and Tµ+1 = Tµ ∪ {∃xµϕµ(xµ) → ϕµ(dµ)} is
inconsistent in PT L3(C).
By the Lemma 4.5 we obtain: Tµ ` ¬(∃xµϕµ(xµ) → ϕµ(dµ))2.
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Since dµ does not apear in Tµ, using Lemma 4.6 we get:
Tµ ` ∀y¬(∃xµϕµ(xµ) → ϕµ(y))2, where y is a variable does not apear in ϕµ(xµ). Thus
Tµ ` ¬∃y(∃xµϕµ(xµ) → ϕµ(y))2 and by proposition 4.4 we get Tµ ` ¬(∃y(∃xµϕµ(xµ) →
ϕµ(y)))2. Using proposition 4.3 (2) we obtain Tµ ` ¬(∃xµϕµ(xµ) → ∃yϕµ(y))2. From
Tµ ` (∃xµϕµ(xµ) → ∃yϕµ(y))2 we obtain a contradiction because Tµ is assumed con-
sistent. Thus Tµ+1 is consistent. If ξ is a non-zero limit ordinal and the theories
Tµ,µ<ξ are consistent then Tξ =

⋃
µ<ξ

Tµ is consistent. We denote T =
⋃

n<α
Tn.

Using the fact that Tµ,µ<α is consistent and Tµ ⊂ T , for all µ < α we obtain that T
is consistent.
Let’s show that T is a Henkin theory. Let ϕ(x) ∈ PT L3(C) with at most one free
variable, hence there exists n with ϕ(x) = ϕn(xn).
Hence ∃xϕ(x) → ϕ(en) = ∃xnϕn(xn) → ϕn(en) ∈ Tn+1 ⊆ T , where en is the first
constant in C does not appear in Tn.
We obtain that T ` ∃xϕ(x) → ϕ(en) and T is a Henkin theory. ¤

5. The semantic of PT L3 and the canonical model

This section concerns with the semantic of PT L3. We define the structures cor-
responding to PT L3 and the interpretation of formulas in these structures. This
definition combines the Kripke semantics and three-valued semantics.

The contribution of this section is the construction of the canonical model asso-
ciated with a maximal consistent Henkin theory. The idea of this construction is
inspired from [8]. The main result of this section (Theorem 5.1) expresses the sat-
isfiability of formulas in the canonical model by their position w.r.t. the maximal
consistent Henkin theories.

A structure of the three-valued temporal predicate calculus has the form:
A = 〈(K, R), {Ak, k ∈ K}〉 where K is a nonempty set, R is a binary relation on K and
Ak is a three-valued structure of the form
Ak = 〈Ak, {PAk}P :predicate, {cAk}c:constant〉 where :
• Ak is a nonempty set called the universe of structure;
• PAk : An

k → L3, where n is the arity of P , is the interpretation of the predicate
P in Ak.

• cAk ∈ Ak is the interpretation of c in Ak.
Let Ak be a three-valued structure, ϕ(x1, .., xn) be a formula and a1, .., an ∈ Ak,

k ∈ K. We will define inductively ‖ϕ(a1, .., an)‖k ∈ L3.
(a) If ϕ(x1, .., xn) = P (x1, .., xn) where P is a n-ary predicat, ‖ϕ(a1, .., an)‖k =

‖P (a1, .., an)‖k = PAk(a1, .., an).
(b) If ϕ(x1, .., xn) = ¬ψ(x1, .., xn) then ‖ϕ(a1, .., an)‖k = ¬‖ψ(a1, .., an)‖k = 1 −

‖ψ(a1, .., an)‖k.
(c) If ϕ(x1, .., xn) = ψ(x1, .., xn) → θ(x1, .., xn) then ‖ϕ(a1, .., an)‖k =

= ‖ψ(a1, .., an)‖k → ‖θ(a1, .., an)‖k =
= min{1, 1− ‖ψ(a1, .., an)‖k + ‖θ(a1, .., an)‖k}

(d) If ϕ(x1, .., xn) = ∀xψ(x, x1, .., xn) then ‖ϕ(a1, .., an)‖k =
= ‖∀xψ(x, a1, .., an)‖k =

∧
a∈Ak

‖ψ(a, a1, .., an)‖k

(e) If ϕ(x1, .., xn) = Gψ(x1, .., xn) then ‖ϕ(a1, .., an)‖k =
=

∧{‖ψ(a1, .., an)‖k′ |kRk
′}

(f) If ϕ(x1, .., xn) = Hψ(x1, .., xn) then ‖ϕ(a1, .., an)‖k =
=

∧{‖ψ(a1, .., an)‖k′ |k
′
Rk}
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Definition 5.1. If A = 〈(K,R), {Ak, k ∈ K}〉 is a stucture, k ∈ K and a1, .., an ∈ Ak

we will denote:
A |=k ϕ(a1, ..an) ⇐⇒ ‖ϕ(a1, .., an)‖k = 1

Let C be a set of new constants with the same cardinal number as the language
PT L3 and Σ be a maximal consistent Henkin theory in the language PT L3(C).
In what follows we shall define a structure nammed the canonical model of Σ.
Let C1, C2, .., a denumerable sequence of sets of new constants such that
• C ∩ Ci = ∅, for all i;
• Ci ∩ Cj = ∅, for all i 6= j.

For any natural number n ≥ 1, PT L3(C ∪ C1 ∪ ... ∪ Cn) is the language obtained
from PT L3 by adding the constants of C ∪ C1 ∪ ... ∪ Cn.

Let us denote by K the family of the sets ∆ having the following
properties:
(i) there exists a natural number n ≥ 1 such that ∆ is a maximal

consistent Henkin theory of PT L3(C ∪ C1 ∪ ... ∪ Cn).
(ii) Σ ⊆ ∆.

We consider A∆ = C ∪ C1 ∪ ... ∪ Cn where n is the smallest natural number with
∆ ⊆ PT L3(C ∪ C1 ∪ ... ∪ Cn) and ∆ ∈ K. We will organize each A∆, ∆ ∈ K like a
three-valued structure for the language PT L3 with the following properties:

- If R is a three-valued predicate then the n-ary relation RA∆ on A∆ is defined:
RA∆ : An

∆ −→ L3,

RA∆ =





1, if R(c1, .., cn) ∈ ∆
0, if ¬R(c1, .., cn) ∈ ∆
1
2 , otherwise

- If c is a constant simbol then its interpretation in A∆ is cA∆ = c.
We will define the binary relation ≺ on K: if ∆ , Γ ∈ K then we say that Γ ≺ ∆ if
the conditions of the Lemma 4.2 hold.

We have defined a structure, A = 〈(K,≺), {A∆, ∆ ∈ K}〉 for the language PT L3.

Theorem 5.1. For every formula ϕ(x1, .., xn) of PT L3, for every ∆ ∈ K and for all
c1, ..., cn ∈ A∆ we have the equivalence:

A |=∆ ϕ(c1, .., cn) ⇐⇒ ϕ(c1, .., cn) ∈ ∆

Proof. We will prove by induction of ϕ(x1, ..., xn).
(a) ϕ is an atomic formula, i.e ϕ(x1, .., xn) = P (x1, .., xn) where P is a three-valued

predicate. We have the equivalence:
A |=∆ P (c1, ..., cn) ⇐⇒ ‖P (c1, .., cn)‖∆ = 1 (from Definition 5.1) ⇐⇒
PA∆(c1, .., cn) = 1 ⇐⇒ P (c1, .., cn) ∈ ∆ ⇐⇒ ϕ(c1, .., cn) ∈ ∆.

(b) ϕ(x1, .., xn) = ¬ψ(x1, .., xn), where for ψ the hypothesis is satisfied: A |=∆

ψ(c1, .., cn) ⇐⇒ ψ(c1, .., cn) ∈ ∆. We have:
A |=∆ ϕ(c1, .., cn) ⇐⇒ A |=∆ ¬ψ(c1, .., cn) ⇐⇒ ‖¬ψ(c1, .., cn)‖∆ = 1 ⇐⇒
‖ψ(c1, .., cn)‖∆ = 0 ⇐⇒ A 6|=∆ ψ(c1, .., cn) ⇐⇒ ψ(c1, .., cn) /∈ ∆ ⇐⇒
¬ψ(c1, .., cn) ∈ ∆ (from the fact that ∆ is maximal consistent), i.e ϕ(c1, .., cn) ∈
∆.

(c) ϕ(x1, .., xn) = ψ(x1, .., xn) → θ(x1, .., xn).
(⇒) Assume that A |=∆ ϕ(c1, .., cn). We have :

A |=∆ (ψ(c1, ..., cn) → θ(c1, .., cn)) ⇐⇒ ‖ψ(c1, .., cn)‖∆ → ‖θ(c1, .., cn)‖∆ =
1 ⇐⇒ min{1, 1−‖ψ(c1, .., cn)‖∆+‖θ(c1, .., cn)‖∆} = 1 ⇐⇒ ‖ψ(c1, .., cn)‖∆ ≤
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‖θ(c1, .., cn)‖∆.
We consider the following cases:
(1) Let ‖ψ(c1, .., cn)‖∆ = 0. This implies that A 6|=∆ ψ(c1, .., cn) ⇐⇒

ψ(c1, .., cn) /∈ ∆(by inductive hypothesis) ⇐⇒ ¬ψ(c1, .., cn) ∈ ∆
(from ∆ -maximal consistent). Using (t6) and Proposition 4.2 ((i) and
(viii)) we obtain ψ(c1, .., cn) → θ(c1, .., cn) ∈ ∆ hence ϕ(c1, .., cn) ∈ ∆.

(2) Let ‖ψ(c1, .., cn)‖∆ = 1.
Then it is necessary that ‖θ(c1, .., cn)‖∆ = 1. From this we have:
A |=∆ ψ(c1, .., cn) and A |=∆ θ(c1, .., cn) and by inductive hypothesis
we obtain ψ(c1, .., cn) ∈ ∆ and θ(c1, .., cn) ∈ ∆. Using (t1) and Propo-
sition 4.2 ((i) and (viii)) we obtain that ψ(c1, .., cn) → θ(c1, .., cn) ∈ ∆,
hence ϕ(c1, .., cn) ∈ ∆.

(3) Let ‖ψ(c1, .., cn)‖∆ = 1
2 . Hence ‖θ(c1, .., cn)‖∆ ∈ { 1

2 , 1}.
(a) If ‖θ(c1, .., cn)‖∆ = 1

2 then we have: A 6|=∆ ψ(c1, .., cn) and A 6|=∆

θ(c1, .., cn) and by inductive hypothesis
ψ(c1, .., cn) /∈ ∆ and θ(c1, .., cn) /∈ ∆, so from the fact that ∆ is
maximal consistent we obtain ¬ψ(c1, .., cn) ∈ ∆ and ¬θ(c1, .., cn) ∈
∆. Using (t1),(t4) and Proposition 4.2 ((i) and (viii)) it follows
ψ(c1, .., cn) → θ(c1, .., cn) ∈ ∆, so ϕ(c1, .., cn) ∈ ∆.

(b) If ‖θ(c1, .., cn)‖∆ = 1 then the Definition 5.1 we obtain A |=∆

θ(c1, .., cn) and by inductive hypothesis θ(c1, .., cn) ∈ ∆. Using
(t1) and Proposition 4.2 ((i) and (viii)) we have ψ(c1, .., cn) →
θ(c1, .., cn) ∈ ∆, hence ϕ(c1, .., cn) ∈ ∆.

(⇐) Assume that ϕ(c1, .., cn) ∈ ∆.
This is equivalent to ψ(c1, ..., cn) → θ(c1, .., cn) ∈ ∆. We consider the
following cases:
(a) Assume that ψ(c1, .., cn) ∈ ∆. Using Proposition 4.2(viii) we obtain

θ(c1, .., cn) ∈ ∆. By the inductive hypothesis about ψ and θ it follows
thatA |=∆ ψ(c1, .., cn) andA |=∆ θ(c1, .., cn), and using Definition 5.1
we have ‖ψ(c1, ..cn)‖∆ = 1 and ‖θ(c1, .., cn)‖∆ = 1.
Thus ‖ϕ(c1, .., cn)‖∆ = 1, so A |=∆ ϕ(c1, .., cn).

(b) Assume that ψ(c1, .., cn) /∈ ∆. Because ∆ is maximal consistent, it
results that ¬ψ(c1, .., cn) ∈ ∆ and by inductive hypothesis A |=∆

¬ψ(c1, ..., cn). By Definition 5.1 we have ‖ψ(c1, .., cn)‖∆ = 0.
It follows that ‖ψ(c1, .., cn)‖∆ → ‖θ(c1, .., cn)‖∆ = 1, so
‖ϕ(c1, .., cn)‖∆ = 1, hence A |=∆ ϕ(c1, .., cn).

(d) ϕ(x1, .., xn) = Gψ(x1, .., xn), where for ψ the hypothesis of induction is satisfied
, i.e
A |=∆ ψ(c1, .., cn) ⇐⇒ ψ(c1, .., cn) ∈ ∆.
(⇐) Assume ϕ(c1, .., cn) ∈ ∆, i.e Gψ(c1, .., cn) ∈ ∆.

Let ∆ ≺ ∆
′
, and by definition of ≺ it results that ψ(c1, ..., cn) ∈ ∆

′
. By

inductive hypothesis we obtain A |=∆′ ψ(c1, .., cn). So, A |=∆′ ψ(c1, .., cn)
for all ∆

′
with ∆ ≺ ∆

′
and we get

A |=∆ Gψ(c1, .., cn).
(⇒) Assume Gψ(c1, .., cn) /∈ ∆, so ¬Gψ(c1, .., cn) ∈ ∆.

Hence F¬ψ(c1, .., cn) = ¬Gψ(c1, .., cn) ∈ ∆.
By Lemma 4.3 and from F¬ψ(c1, .., cn) ∈ ∆ it follows that there exists
∆
′ ∈ K, ∆ ≺ ∆

′
and ¬ψ(c1, .., cn) ∈ ∆

′
.

Because ∆
′

is maximal consistent we have ψ(c1, .., cn) /∈ ∆
′
, so A 6|=∆′
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ψ(c1, .., cn). We proved that there exists ∆ ≺ ∆
′
with A 6|=∆′ ψ(c1, .., cn),

hence A 6|=∆ Gψ(c1, .., cn).
(e) ϕ(x1, .., xn) = ∀xψ(x, x1, .., xn).

(⇒) Suppose that A |=∆ ϕ(c1, .., cn), i.e A |=∆ ∀xψ(x, c1, .., cn) and by Defini-
tion 5.1 we get ‖∀xψ(x, c1, .., cn)‖∆ = 1 ⇐⇒∧
a∈A∆

‖ψ(a, c1, .., cn)‖∆ = 1. It follows that for all a ∈ A∆

‖ψ(a, c1, .., cn)‖∆ = 1 ⇐⇒ for all a ∈ A∆,A |=∆ ψ(a, c1, .., cn). By the
inductive hypothesis we obtain: for all a ∈ A∆, ψ(a, c1, .., cn) ∈ ∆ and
using Lemma 4.6 it follows that ∀xψ(x, c1, .., cn) ∈ ∆, so ϕ(c1, .., cn) ∈ ∆.

(⇐) Suppose that ϕ(c1, .., cn) ∈ ∆. We have : ∀xψ(x, c1, .., cn) ∈ ∆ ⇐⇒ for
all a ∈ A∆, ψ(a, c1, .., cn) ∈ ∆. By the inductive hypothesis we get for all
a ∈ A∆, A |=∆ ψ(a, c1, .., cn) ⇐⇒
A |=∆ ∀xψ(x, c1, .., cn), hence A |=∆ ϕ(c1, .., cn).

¤

Remark 5.1. Since Σ ⊆ ∆, for each Σ ⊆ ∆, it follows that
A |=∆ ϕ(c1, .., cn) for all ∆ ∈ K, ϕ(x1, .., xn) in PT L3 and c1, .., cn ∈ A∆.

6. Completeness theorem

This section contains the main result of this paper: the strong completeness theo-
rem for PT L3. The proof of the completeness theorem is based on Theorem 5.1.

Theorem 6.1. If Γ is a set of formulas of PT L3 and ϕ is a formula of PT L3 then
we have the following equivalence:

Γ ` ϕ ⇐⇒ Γ |= ϕ

Proof. (⇐) Assume that Γ 6` ϕ. We get Γ∪{¬ϕ} is consistent and by Theorem 5.1 it
follows that there exists a structure A such that A |= Γ ∪ {¬ϕ}. It follows that
A |= Γ and A 6|= ϕ, hence Γ 6|= ϕ.

(⇒) By the induction on the concept Γ ` ϕ.
(1) Suppose that ϕ ∈ Γ. Let A be a model for Γ. Then we have A |= ψ, for

all ψ ∈ Γ, hence A |= ϕ. Because A is an arbitrary model for Γ, we obtain
that Γ |= ϕ.

(2) Suppose that ϕ is an axiom. Let A be a model for Γ.
(a) Let ϕ = G(θ → ψ) → (Gθ → Gψ). We must prove that A |= ϕ, i.e

A |=k ϕ, for all moments k. Suppose that
A |=k G(θ → ψ), and A |=k Gθ. By the definition of the concept
A |=k ϕ we obtain: A |=k′ θ → ψ , A |=k′ θ for all kRk

′
, so A |=k′ ψ

for all kRk
′
. It follows that A |=k Gψ.

(b) Let ϕ = ψ → GPψ. We must prove that A |= ψ implies A |= GPψ
i.e for all moments k, A |=k ψ implies
A |=k GPψ.
Proving A |=k GPψ is equivalent to showing that for all kRk

′ A |=k′

Pψ or to the following : for all kRk
′
there exists k

′′
Rk

′
withA |=k′′ ψ.

We assumed that A |=k ψ, hence, for k
′′

= k we obtain A |=k GPψ
i.e A |=k ψ → GPψ.
In a similar way we can prove the remaining axioms.
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(3) (a) Suppose that ϕ was obtained by the rule
Γ ` ψ, Γ ` ψ → ϕ

Γ ` ϕ
and Γ |=

ψ, Γ |= ψ → ϕ.
Let A be a model for Γ. We have: A |= ψ and A |= ψ → ϕ, i.e.
A |=k ψ, A |=k ψ → ϕ for all k, so A |=k ϕ, for all k. It follows that
A |= ϕ, i.e. Γ |= ϕ.

(b) Suppose that ϕ(x1, .., xn) = ∀xψ(x, x1, .., xn) , obtained by the rule
Γ ` ψ

Γ ` ∀xψ
and Γ |= ψ. We want to prove that Γ |= ϕ. Let A be a

model for Γ. It follows that A |= ψ, i.e. A |=k ψ, for all moments
k. This is equivalent with A |=k ψ(a, a1, .., an) for all a ∈ Ak and we
have A |=k ϕ.

(c) Assume that ϕ = Gψ , obtained by the rule
Γ ` ψ

Γ ` Gψ
, and Γ |= ψ. We

must prove that Γ |= ϕ, i.e. Γ |= Gψ. Let A be a model for Γ. Then
A |= ψ ⇐⇒ A |=k ψ, for all k, so, we have A |=k′ ψ for all kRk

′
, i.e.

A |=k Gψ.
¤

Theorem 6.2 (The completeness theorem). For any formula ϕ of PT L3 the following
equivalence holds:

` ϕ ⇐⇒ |= ϕ

Proof. By Theorem 6.1, with Γ = ∅. ¤
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