A completeness theorem for three-valued temporal predicate logic

CARMEN CHIRIŢĂ

ABSTRACT. The main result in this paper is a completeness theorem for the three-valued temporal predicate calculus, obtained by providing a semantical interpretation for this logic and by using the Henkin models to define a canonical model used to prove the completeness.

2000 Mathematics Subject Classification. 03G20;03B44;03B52. Key words and phrases. Three-valued temporal predicate logic, Henkin models.

1. Introduction

The classical temporal logic is obtained from bivalent logic by adding the tense operators G ("it is always going to be the case that") and H (" it has always been the case that"). By starting from other logical systems and adding appropriate tense operators we can produce new temporal logics. In [5] we have studied a complete three-valued temporal propositional calculus based on the Lukasiewicz three-valued logic.

The goal of this paper is to construct a temporal logical system for the predicate calculus based on the three-valued logic . This logical system is obtained from the Lukasiewicz logic described in [5] by adding the quantifiers. The main result is a completeness theorem for this logical system, whose proof uses a Henkin-style method (see [8]).

The paper is organized as follows:

In Section 2 we recall from [1] and [11] some basic definitions and results on the three-valued Lukasiewicz logic: the syntax, the semantic, the completeness theorem and a list of provable sentences.

Section 3 contains a short presentation of the three-valued temporal propositional logic \mathcal{TL}_3 and the completeness theorem proved in [5].

In Section 4 we define the language and the logical structure of the three-valued temporal predicate logic \mathcal{PTL}_3 . We study the consistent sets of formulas and we prove that any consistent theory of \mathcal{PTL}_3 can be embedded in a Henkin theory.

Section 5 deals with the semantic of \mathcal{PTL}_3 . We define the structures of \mathcal{PTL}_3 and we construct the canonical model associated with a maximal consistent Henkin theory. The satisfiability of formulas in canonical model is characterized in terms of maximal consistent Henkin theories.

Section 6 contains the proof of completeness theorem for \mathcal{PTL}_3 . This proof is based on the properties of canonical model (cf. Theorem 5.1).

Received: 10 November 2008.

2. Three-valued Lukasiewicz propositional logic

The first system of three-valued logic was constructed by Lukasiewicz in 1920 in connection with the investigation of modalities (see [14]). His main idea was to consider a third truth-value $\frac{1}{2}$ between 0 (false) and 1(truth). The interpretation for the sentences of the three-valued logic is defined in $L_3 = \{0, \frac{1}{2}, 1\}$. The algebraic structures for the three-valued Lukasiewicz logic were introduced by Gr.C.Moisil in [15] under the name of three-valued Lukasiewicz algebras (see also [16], [1]). Today these structures are known as Lukasiewicz-Moisil algebras (see [1]). We shall use the Wajsberg axiomatization of the three-valued Lukasiewicz logic ([1]). The sentences of the three-valued Lukasiewicz propositional calculus \mathcal{L}_3 are obtained from a countable set V of propositional variables and the logical conectives \neg and \rightarrow , according to the following rules:

(i) the propositional variables are sentences;

(ii) if $p \neq q$ are sentences then $\neg p$ and $p \rightarrow q$ are sentences;

(iii) every sentence is obtained by applying a finite number of times the above rules(i) and (ii).

In what follows, we will denote the set of sentences of \mathcal{L}_3 by E. We are going to use the following abbreviations:

$$\begin{array}{lll} \varphi \lor \psi & := & ((\varphi \to \psi) \to \psi) \\ \varphi \land \psi & := & \neg (\neg \varphi \lor \neg \psi) \\ \varphi \leftrightarrow \psi & := & (\varphi \to \psi) \land (\psi \to \varphi) \\ \varphi \oplus \psi & := & \neg \varphi \to \psi \\ \varphi \odot \psi & := & \neg (\neg \varphi \oplus \neg \psi) \\ \sim \varphi & := & \varphi \to \neg \varphi \end{array}$$

The axioms of three-valued Lukasiewicz propositional calculus are sentences of one of the following forms:

 $\begin{array}{ll} (\mathrm{A1}) & p \to (q \to p) \\ (\mathrm{A2}) & (p \to q) \to ((q \to r) \to (p \to r)) \\ (\mathrm{A3}) & ((p \to \neg p) \to p) \to p \\ \end{array}$

(A4) $(\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p)$

Three-valued Lukasiewicz propositional logic uses modus ponens (m.p) as rule of inference:

$$\frac{p, p \to q}{a}$$

A proof of a sentence p is a finite sequence $p_1, ..., p_n = p$ of sentences such that for any $i \leq n$ we have one of the following:

(a) p_i is an axiom;

(b) there exists j, k < i such that p_k is the sentence $p_j \rightarrow p_i$.

A sentence p is provable $(\vdash p)$ if there is at least one proof of it.

The following proposition collects the main provable sentences of \mathcal{L}_3 .

Proposition 2.1. ([1]) The following sentences are provable in the three-valued Luckasiewicz logic :

(t1)
$$p \to (q \to p)$$
,

(1) $p \to (q \to p)$; (12) $(p \to q) \to ((q \to r) \to (p \to r))$,

(t3)
$$p \to p$$
,

 $(t4) \ (p \to q) \leftrightarrow (\neg q \to \neg p),$

$$\begin{array}{ll} (\mathrm{t5}) \ p \leftrightarrow \neg \neg p, \\ (\mathrm{t6}) \ \neg p \rightarrow (p \rightarrow q), \\ (\mathrm{t7}) \ (p \rightarrow (p \rightarrow (q \rightarrow r))) \rightarrow ((p \rightarrow (p \rightarrow q)) \rightarrow (p \rightarrow (p \rightarrow r)))), \\ (\mathrm{t8}) \ \sim \sim p \rightarrow p, \\ (\mathrm{t9}) \ (p \rightarrow \sim p) \rightarrow \sim p, \\ (\mathrm{t10}) \ (p \wedge (q \wedge r)) \leftrightarrow ((p \wedge q) \wedge r), \\ (\mathrm{t11}) \ (p \wedge q) \leftrightarrow (q \wedge p), \\ (\mathrm{t12}) \ (p \wedge q) \rightarrow p, \\ (\mathrm{t13}) \ p \rightarrow (q \rightarrow (p \wedge q)), \\ (\mathrm{t14}) \ (p \vee (q \vee r)) \leftrightarrow ((p \vee q) \vee r), \\ (\mathrm{t15}) \ (p \vee q) \leftrightarrow (q \vee p), \\ (\mathrm{t16}) \ p \rightarrow (p \vee q), \\ (\mathrm{t17}) \ (p \odot (q \odot r)) \leftrightarrow ((p \odot q) \odot r), \\ (\mathrm{t18}) \ (p \odot q) \leftrightarrow (q \odot p), \\ (\mathrm{t19}) \ p \odot q \rightarrow p, \\ (\mathrm{t20}) \ p \rightarrow (q \rightarrow p \odot q), \\ (\mathrm{t21}) \ (p \rightarrow (q \rightarrow r)) \leftrightarrow (p \odot q \rightarrow r), \\ (\mathrm{t22}) \ (p \rightarrow q) \rightarrow (p \odot r \rightarrow q \odot r), \\ (\mathrm{t23}) \ (p \oplus (q \oplus r)) \leftrightarrow ((p \oplus q) \oplus r), \\ (\mathrm{t24}) \ (p \oplus q) \leftrightarrow (q \oplus p), \\ (\mathrm{t25}) \ p \rightarrow p \oplus q, \\ (\mathrm{t26}) \ (p \vee q) \rightarrow (p \oplus q). \\ (\mathrm{t27}) \ \neg (p \rightarrow q) \rightarrow p. \\ (\mathrm{t28}) \ \neg (p \rightarrow q) \rightarrow q. \\ (\mathrm{t29}) \ p \rightarrow (\neg q \rightarrow \neg (p \rightarrow q)). \\ (\mathrm{t30}) \ \sim p \rightarrow (\sim \neg q \rightarrow (p \rightarrow q)). \end{array}$$

Definition 2.1. An interpretation of \mathcal{L}_3 is an arbitrary function $v: E \to L_3$ such that:

•
$$v(p \rightarrow q) = v(p) \rightarrow v(q)$$

• $v(\neg p) = \neg v(p)$
for all $p, q \in E$.

We say that a sentence p is valid $(\models p)$ if v(p) = 1 for any interpretation v.

Theorem 2.1. (Completeness Theorem) For any sentence p of \mathcal{L}_3 ,

 $\vdash p \; \mathit{iff} \models p$

3. Three-valued temporal propositional logic

In this section we present a three-valued temporal logic \mathcal{TL}_3 based on the threevalued Lukasiewicz propositional calculus [5]. Our axiomatization is inspired from the axioms of the three-valued Lukasiewicz logic in [1] and from the Ostermann system from [17] (see also Leuştean [13]) and introduces two temporal operators G and H. The symbols of the three-valued propositional temporal logic are:

(i) a countable set AF of atomic sentences, denoted by $v_0, v_1, ...,$

(ii) the propositional connectives \neg, \rightarrow ,

(iii) the temporal operators G and H.

The set E of sentences of \mathcal{TL}_3 is defined by the canonical induction.

We shall use the $\lor, \land, \leftrightarrow, \oplus, \odot$ and \sim defined in the previous section.

We also define:

$$\begin{array}{rcl} Fp & := & \neg G \neg p \\ Pp & := & \neg H \neg p \end{array}$$

 \mathcal{TL}_3 has the following axioms:

- (T1) the axioms of the three-valued Lukasiewicz logic (the axioms (A1)-(A4) in section 2)
- (T2) $G(p \to q) \to (Gp \to Gq),$ $H(p \to q) \to (Hp \to Hq),$
- $\begin{array}{ll} (\mathrm{T3}) & G(p\oplus p) \leftrightarrow (Gp\oplus Gp), \\ & H(p\oplus p) \leftrightarrow (Hp\oplus Hp), \end{array}$
- $\begin{array}{ll} (\mathrm{T4}) & p \to GPp, \\ & p \to HFp, \end{array}$

The notion of formal proof in the three-valued temporal logic is defined in terms of the above axioms and the following inference rules:

$$\frac{p,p \to q}{q}; \frac{p}{Gp}; \frac{p}{Hp}$$

We will denote by $\vdash_{\mathcal{TL}_3} p$ the fact that p is provable in \mathcal{TL}_3 .

A frame is a pair $\mathcal{F} = \langle W, R \rangle$, where W is a not-empty set and R is a binary relation on W.

An evaluation of \mathcal{TL}_3 in \mathcal{F} is a function $V : E \times W \to L_3 = \{0, \frac{1}{2}, 1\}$ such that, for all $p, q \in E$ and $s \in W$, the following equalities hold:

(i) $V(\neg p, s) = 1 - V(p, s),$

(ii) $V(p \to q, s) = min\{1, 1 - V(p, s) + V(q, s)\},\$

(iii) $V(Gp,s) = min\{V(p,t)|sRt\}$, for all $p,q \in E, s \in W$

 $V(Hp,s) = min\{V(p,t)|tRs\}, \text{ for all } p,q \in E, s \in W$

A sentence $p \in E$ is universally valid in \mathcal{TL}_3 ($\models_{\mathcal{TL}_3} p$) if for every frame (W, R)and for any evaluation $V : E \times W \to L_3$ we have

V(p,s) = 1, for all $s \in W$.

We recall from [5] the following completeness result.

Theorem 3.1. (Completeness Theorem) For any sentence φ of \mathcal{TL}_3 ,

 $\vdash_{\mathcal{TL}_3} \varphi \ iff \models_{\mathcal{TL}_3} \varphi$

4. Syntax of three-valued temporal predicate logic

In this section we shall define the three-valued temporal predicate logic \mathcal{PTL}_3 by adding to \mathcal{TL}_3 the universal quantifier \forall . The logical structure of \mathcal{PTL}_3 is obtained by enriching the axiomatization of \mathcal{TL}_3 with the new axioms (A6)-(A9) and the generalization rule of inference. We study the consistent sets of formulas and the Henkin theories of \mathcal{PTL}_3 .

A lot of properties of consistent sets follows as in the case of classical temporal logic and we omit their proofs. We prove that any consistent theory of \mathcal{PTL}_3 can be embedded in a Henkin theory of an extended language \mathcal{PTL}_3 obtained by adding to \mathcal{PTL}_3 the new constants of C.

- The alphabet of \mathcal{PTL}_3 consists of the following primitive symbols:
- a countable set V of variable symbols, denoted by x, y, z, ...,
- an arbitrary set of constant symbols.

- an arbitrary set of predicate symbols; each predicate symbol P has associated a natural number n > 0 (the order or arity of P).
- the propositional connectives \neg, \rightarrow .
- the temporal operators G and H.
- the universal quantifier \forall .
- the parantheses : (,), [,].

A term of \mathcal{PTL}_3 is a variable symbol or a constant symbol. An *atomic formula* of \mathcal{PTL}_3 has the form $\varphi(t_1, t_2, ...t_n)$ where φ is a n-ary P symbol and $t_1, t_2, ...t_n$ are terms.

We will inductively define the set *Form* of *formulas*:

(i) the atomic formulas are formulas.

- (ii) if $\varphi \in Form$ and $\psi \in Form$ then $\varphi \to \psi$ and $\neg \varphi \in Form$.
- (iii) if $\varphi \in Form$ then $G\varphi \in Form, H\varphi \in Form$.
- iv) if $\varphi \in Form$ and x is a variable symbol then $\forall x \varphi$ is a formula.

We also define:

$$\begin{array}{rcl} F\varphi & := & \neg G \neg \varphi \\ P\varphi & := & \neg H \neg \varphi \\ \exists x\varphi & := & \neg \forall x \neg \varphi \end{array}$$

The notion of *subformula* is defined by induction:

- φ is a subformula of φ .
- any subformula of φ is a subformula of $\neg \varphi$
- any subformula of φ or ψ is a subformula of $\varphi \to \psi$.
- any subformula of φ is a subformula of $\forall x\varphi$.

An occurrence of a variable x in a formula φ is *free* if x does not belongs to any occurrence of a subformula of φ having the form $\forall x\psi$. Otherwise, an occurrence of x in φ is *bound*.

We say that x is *free* in φ if any occurrence of x is free in φ . A *sentence* is a formula with no free variables. We will write $\varphi(x_1, ..., x_n)$ if all the free variables of φ are among $\{x_1, ..., x_n\}$. We'll denote by $FV(\varphi)$ the set of free variables of φ .

A *theory* is a set of formulas.

The axioms of \mathcal{PTL}_3 are:

- (A0) the axioms of the three-valued logic.
- (A1) $G(\varphi \to \psi) \to (G\varphi \to G\psi)$
- $H(\varphi \to \psi) \to (H\varphi \to H\psi)$
- (A2) $G\varphi \oplus G\psi \to G(\varphi \oplus \psi)$
- $\begin{array}{c} H\varphi \oplus H\psi \to H(\varphi \oplus \psi) \\ ({\rm A3}) \ G(\varphi \oplus \varphi) \to G\varphi \oplus G\varphi \end{array}$
- $H(\varphi \oplus \varphi) \to H\varphi \oplus H\varphi$
- (A4) $F\varphi \oplus F\varphi \to F(\varphi \oplus \varphi)$ $P\varphi \oplus P\varphi \to P(\varphi \oplus \varphi)$
- $\begin{array}{cc} (A5) & \varphi \to GP\varphi \\ & \varphi \to HF\varphi \end{array}$
- (A6) $\forall x \varphi(x) \rightarrow \varphi(t)$, where t is a term
- (A7) $\forall x(\varphi \to \psi(x)) \to (\varphi \to \forall x\psi(x))$, where x is not free in φ
- (A8) $\forall x(\varphi \oplus \varphi) \leftrightarrow \forall x\varphi \oplus \forall x\varphi$
- (A9) $\forall x(\varphi \odot \varphi) \leftrightarrow \forall x\varphi \odot \forall x\varphi$

 \mathcal{PTL}_3 has the following rules of inference:

$\frac{\varphi, \varphi \to \psi}{\psi}$	(Modus Ponens)
$\frac{\varphi}{\forall x\varphi}$	(Generalization)
$\frac{\varphi}{G\varphi}$	(Temporal Generalization)
$\frac{\varphi}{H\varphi}$	(Temporal Generalization)

The formal theorems of \mathcal{PTL}_3 are obtained from axioms by applying a finite number of times the rules of inference. We denote by $\vdash \varphi$ the fact that φ is a formal theorem. The sintactic deduction is defined by:

$$\Gamma \vdash \varphi \iff \text{ there exists } \gamma_1, \dots \gamma_n \in \Gamma \text{ with } \vdash \bigwedge_{i=1}^n \gamma_i \to \varphi$$

We say that a set Γ of formulas is *consistent* if there is no formula φ such that $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$; otherwise we say that Γ is *inconsistent*.

A consistent set Γ is said to be maximal consistent if $\varphi \in \Gamma$ for any formula φ such that $\Gamma \cup \{\varphi\}$ is consistent.

We are going to present some formal theorems and properties for three-valued temporal predicate calculus. The proofs are similar to the corresponding results for Lukasiewicz predicate logic[10].

Proposition 4.1. Let $\Sigma \subseteq Form and p \in Form$.

- (i) Σ is inconsistent iff $\Sigma \vdash r$ for any formula r.
- (ii) $\Sigma \cup \{p\}$ is inconsistent iff $\Sigma \vdash \sim p$.
- (iii) $\Sigma \cup \{\sim p\}$ is inconsistent iff $\Sigma \vdash p$.
- (iv) Σ is consistent iff every finite subset of Σ is consistent.
- (v) If Σ is consistent, then for any formula p, at least one of $\Sigma \cup \{p\}$ and $\Sigma \cup \{\sim p\}$ is consistent.

Proposition 4.2. Let Σ be a maximal consistent set and $p, q \in Form$.

- (i) $\Sigma \vdash p \text{ implies } p \in \Sigma.$
- (ii) If $\Sigma \subseteq \Gamma$ and Γ is consistent, then $\Sigma = \Gamma$.
- (iii) $p \in \Sigma$ iff $\sim p \notin \Sigma$.
- (iv) $p \lor q \in \Sigma$ iff $(p \in \Sigma \text{ or } q \in \Sigma)$.
- (v) $p \wedge q \in \Sigma$ iff $(p \in \Sigma \text{ and } q \in \Sigma)$.
- (vi) $p \odot q \in \Sigma$ iff $(p \in \Sigma and q \in \Sigma)$.
- (vii) If $p \in \Sigma$ or $q \in \Sigma$, then $p \oplus q \in \Sigma$.
- (viii) If $(p \to q) \in \Sigma$, then $p \in \Sigma$ implies $q \in \Sigma$.
- (ix) If $(p \leftrightarrow q) \in \Sigma$, then $p \in \Sigma$ iff $q \in \Sigma$.

Lemma 4.1. (Lindenbaum's Lemma) Every consistent set of formulas is contained in a maximal consistent set.

Lemma 4.2. Let Δ and Γ be maximal consistent sets of formulas. The following are equivalent:

- (a) $\varphi \in \Gamma \Rightarrow P\varphi \in \Delta$, for all formula φ .
- (b) $\psi \in \Delta \Rightarrow F\psi \in \Gamma$, for all formula ψ .
- (c) $G\gamma \in \Gamma \Rightarrow \gamma \in \Delta$, for all fromula γ .

(d) $H\delta \in \Delta \Rightarrow \delta \in \Gamma$, for all fromula δ .

Lemma 4.3. If Σ is a maximal consistent set of formulas and γ a formula of \mathcal{PTL}_3 . then:

(a) If $F\gamma \in \Sigma$ then there exists a maximal consistent set Δ with $\Sigma \prec \Delta$ and $\gamma \in \Delta$. (b) If $P\gamma \in \Sigma$ then there exists a maximal consistent set Γ with $\Gamma \prec \Sigma$ and $\gamma \in \Gamma$.

Proposition 4.3. If x is a variable, φ and ψ are formulas and x is not free in ψ then

 $(1) \vdash \forall x(\varphi \to \psi) \leftrightarrow (\exists x\varphi \to \psi)$ (2) $\vdash \exists x(\psi \to \varphi) \leftrightarrow (\psi \to \exists x\varphi)$

Lemma 4.4. If $\vdash \varphi \rightarrow \psi$ then $\vdash \varphi^2 \rightarrow \psi^2$, where we denote $\varphi^2 = \varphi \odot \varphi$.

Proposition 4.4. If φ is a formula then

$$\vdash \exists \varphi^2 \leftrightarrow (\exists \varphi)^2$$

Lemma 4.5. Let T a theory and φ a formula. The following are equivalent:

- $T \cup \{\varphi\}$ is inconsistent.
- $T \vdash \neg \varphi^2$.

Proposition 4.5. Any consistent theory can be embedded in a maximal consistent theory.

Let C a set of new constants having the same cardinality as \mathcal{PTL}_3 and $\mathcal{PTL}_3(C)$ the language obtained from \mathcal{PTL}_3 by adding the constants of C.

Lemma 4.6. Let T a theory of \mathcal{PTL}_3 , $\varphi(x)$ a formula of \mathcal{PTL}_3 and $c \in C$. We have:

 $T \vdash \forall x \varphi(x) \text{ in } \mathcal{PTL}_3 \text{ iff } T \vdash \varphi(c) \text{ in } \mathcal{PTL}_3(C)$

Definition 4.1. A consistent theory T of $\mathcal{PTL}_3(C)$ is said to be a *Henkin theory* if for any formula $\varphi(x)$ in $\mathcal{PTL}_3(C)$ there exists $c \in C$ such that $T \vdash \exists x \varphi(x) \to \varphi(c)$.

The following lemma will be the main tool in proving the properties of the canonical model (see the proof of Theorem 5.1).

Lemma 4.7. Let T be a consistent theory in \mathcal{PTL}_3 . Then, there is a set C of new constants and a Henkin theory \overline{T} in $\mathcal{PTL}_3(C)$ such that $T \subseteq \overline{T}$.

Proof. Let α be the cardinal of the language \mathcal{PTL}_3 . Let C a set of new constants such that $|C| = \alpha$. Then $|\mathcal{PTL}_3(C)| = \alpha$. Let us consider an enumeration $\{c_{\xi}\}_{\xi < \alpha}$ of C such that $c_{\beta} \neq c_{\gamma}$ for all $\gamma < \beta < \alpha$. We can take an enumeration $\{\varphi_{\xi}(x_{\xi})\}_{\xi < \alpha}$ of the formulas of $\mathcal{PTL}_3(C)$ with at most one free variable. We will construct by transfinite induction an increasing sequence of theories in $\mathcal{PTL}_3(C)$: $T = T_0 \subseteq T_1 \subseteq$ $\ldots \subseteq T_{\xi} \subseteq \ldots$ with $\xi < \alpha$ and a sequence $\{d_{\xi}\}_{\xi < \alpha}$ of constants in C such that the following conditions hold:

- T_{ξ} is consistent in $\mathcal{PTL}_3(C)$.
- If $\xi = \mu + 1$ is an successor ordinal then $T_{\xi} = T_{\mu} \cup \{\exists x_{\mu}\varphi_{\mu}(x_{\mu}) \to \varphi_{\mu}(d_{\mu})\}$ where d_{μ} is the first constant in C which does not appear in T_{μ} .

• If ξ is a non-zero limit ordinal then $T_{\xi} = \bigcup_{\mu < \xi} T_{\mu}$. Let's assume that T_{μ} is consistent and $T_{\mu+1} = T_{\mu} \cup \{\exists x_{\mu}\varphi_{\mu}(x_{\mu}) \to \varphi_{\mu}(d_{\mu})\}$ is inconsistent in $\mathcal{PTL}_3(C)$.

By the Lemma 4.5 we obtain: $T_{\mu} \vdash \neg (\exists x_{\mu} \varphi_{\mu}(x_{\mu}) \rightarrow \varphi_{\mu}(d_{\mu}))^2$.

Since d_{μ} does not appar in T_{μ} , using Lemma 4.6 we get:

 $T_{\mu} \vdash \forall y \neg (\exists x_{\mu} \varphi_{\mu}(x_{\mu}) \rightarrow \varphi_{\mu}(y))^2$, where y is a variable does not appear in $\varphi_{\mu}(x_{\mu})$. Thus $T_{\mu} \vdash \neg \exists y (\exists x_{\mu} \varphi_{\mu}(x_{\mu}) \to \varphi_{\mu}(y))^2$ and by proposition 4.4 we get $T_{\mu} \vdash \neg (\exists y (\exists x_{\mu} \varphi_{\mu}(x_{\mu}) \to \varphi_{\mu}(x_{\mu}))^2)$ $\varphi_{\mu}(y))^2$. Using proposition 4.3 (2) we obtain $T_{\mu} \vdash \neg(\exists x_{\mu}\varphi_{\mu}(x_{\mu}) \rightarrow \exists y\varphi_{\mu}(y))^2$. From $T_{\mu} \vdash (\exists x_{\mu}\varphi_{\mu}(x_{\mu}) \to \exists y\varphi_{\mu}(y))^2$ we obtain a contradiction because T_{μ} is assumed consistent. Thus $T_{\mu+1}$ is consistent. If ξ is a non-zero limit ordinal and the theories $T_{\mu,\mu<\xi}$ are consistent then $T_{\xi} = \bigcup_{\mu<\xi} T_{\mu}$ is consistent. We denote $\overline{T} = \bigcup_{n<\alpha} T_n$.

Using the fact that $T_{\mu,\mu<\alpha}$ is consistent and $T_{\mu} \subset \overline{T}$, for all $\mu < \alpha$ we obtain that \overline{T} is consistent.

Let's show that \overline{T} is a Henkin theory. Let $\varphi(x) \in \mathcal{PTL}_3(C)$ with at most one free variable, hence there exists n with $\varphi(x) = \varphi_n(x_n)$.

Hence $\exists x \varphi(x) \to \varphi(e_n) = \exists x_n \varphi_n(x_n) \to \varphi_n(e_n) \in T_{n+1} \subseteq \overline{T}$, where e_n is the first constant in C does not appear in T_n .

We obtain that $\overline{T} \vdash \exists x \varphi(x) \to \varphi(e_n)$ and \overline{T} is a Henkin theory.

5. The semantic of \mathcal{PTL}_3 and the canonical model

This section concerns with the semantic of \mathcal{PTL}_3 . We define the structures corresponding to \mathcal{PTL}_3 and the interpretation of formulas in these structures. This definition combines the Kripke semantics and three-valued semantics.

The contribution of this section is the construction of the canonical model associated with a maximal consistent Henkin theory. The idea of this construction is inspired from [8]. The main result of this section (Theorem 5.1) expresses the satisfiability of formulas in the canonical model by their position w.r.t. the maximal consistent Henkin theories.

A structure of the three-valued temporal predicate calculus has the form: $\mathcal{A} = \langle (K, R), \{\mathcal{A}_k, k \in K\} \rangle$ where K is a nonempty set, R is a binary relation on K and three-valued structure isa of the form \mathcal{A}_k $\begin{array}{l} \mathcal{A}_{k} = \langle A_{k}, \{P^{\mathcal{A}_{k}}\}_{P:predicate}, \{c^{\mathcal{A}_{k}}\}_{c:constant} \rangle \text{ where }: \\ \bullet \ A_{k} \text{ is a nonempty set called the universe of structure;} \end{array}$

- $P^{\mathcal{A}_k}: A_k^n \to L_3$, where n is the arity of P, is the interpretation of the predicate P in \mathcal{A}_k .
- $c^{\mathcal{A}_k} \in A_k$ is the interpretation of c in \mathcal{A}_k .

Let \mathcal{A}_k be a three-valued structure, $\varphi(x_1, ..., x_n)$ be a formula and $a_1, ..., a_n \in \mathcal{A}_k$, $k \in K$. We will define inductively $\|\varphi(a_1, .., a_n)\|_k \in L_3$.

- (a) If $\varphi(x_1,..,x_n) = P(x_1,..,x_n)$ where P is a n-ary predicat, $\|\varphi(a_1,..,a_n)\|_k =$ (a) If $\varphi(a_1, ..., a_n) \|_k = P^{\mathcal{A}_k}(a_1, ..., a_n).$ (b) If $\varphi(x_1, ..., x_n) = \neg \psi(x_1, ..., x_n)$ then $\|\varphi(a_1, ..., a_n)\|_k = \neg \|\psi(a_1, ..., a_n)\|_k = 1 -$
- $\|\psi(a_1,..,a_n)\|_k.$
- (c) If $\varphi(x_1, ..., x_n) = \psi(x_1, ..., x_n) \to \theta(x_1, ..., x_n)$ then $\|\varphi(a_1, ..., a_n)\|_k =$ $= \|\psi(a_1, .., a_n)\|_k \to \|\theta(a_1, .., a_n)\|_k =$ $= \min\{1, 1 - \|\psi(a_1, .., a_n)\|_k + \|\theta(a_1, .., a_n)\|_k\}$
- (d) If $\varphi(x_1, ..., x_n) = \forall x \psi(x, x_1, ..., x_n)$ then $\|\varphi(a_1, ..., a_n)\|_k = \|\forall x \psi(x, a_1, ..., a_n)\|_k = \bigwedge_{a \in A_k} \|\psi(a, a_1, ..., a_n)\|_k$
- (e) If $\varphi(x_1, ..., x_n) = G\psi(x_1, ..., x_n)$ then $\|\varphi(a_1, ..., a_n)\|_k =$ $= \bigwedge \{ \|\psi(a_1, .., a_n)\|_{k'} |kRk'\}$
- (f) If $\varphi(x_1, ..., x_n) = H \psi(x_1, ..., x_n)$ then $\|\varphi(a_1, ..., a_n)\|_k =$ $= \bigwedge \{ \|\psi(a_1, ..., a_n)\|_{k'} |k'Rk\}$

Definition 5.1. If $\mathcal{A} = \langle (K, R), \{\mathcal{A}_k, k \in K\} \rangle$ is a stucture, $k \in K$ and $a_1, ..., a_n \in A_k$ we will denote:

$$\mathcal{A} \models_k \varphi(a_1, ..., a_n) \iff \|\varphi(a_1, ..., a_n)\|_k = 1$$

Let C be a set of new constants with the same cardinal number as the language \mathcal{PTL}_3 and Σ be a maximal consistent Henkin theory in the language $\mathcal{PTL}_3(C)$. In what follows we shall define a structure nammed the *canonical model* of Σ . Let $C_1, C_2, ...,$ a denumerable sequence of sets of new constants such that

- $C \cap C_i = \emptyset$, for all i;
- $C_i \cap C_j = \emptyset$, for all $i \neq j$.

For any natural number $n \geq 1$, $\mathcal{PTL}_3(C \cup C_1 \cup ... \cup C_n)$ is the language obtained from \mathcal{PTL}_3 by adding the constants of $C \cup C_1 \cup ... \cup C_n$.

Let us denote by \mathcal{K} the family of the sets Δ having the following properties:

- (i) there exists a natural number $n \geq 1$ such that Δ is a maximal consistent Henkin theory of $\mathcal{PTL}_3(C \cup C_1 \cup ... \cup C_n)$.
- (ii) $\Sigma \subseteq \Delta$.

We consider $A_{\Delta} = C \cup C_1 \cup ... \cup C_n$ where *n* is the smallest natural number with $\Delta \subseteq \mathcal{PTL}_3(C \cup C_1 \cup ... \cup C_n)$ and $\Delta \in \mathcal{K}$. We will organize each A_{Δ} , $\Delta \in \mathcal{K}$ like a three-valued structure for the language \mathcal{PTL}_3 with the following properties:

- If R is a three-valued predicate then the n-ary relation $R^{\mathcal{A}_{\Delta}}$ on A_{Δ} is defined: $R^{\mathcal{A}_{\Delta}}: A^{n}_{\Delta} \longrightarrow L_{3},$

$$R_{\Delta}^{\mathcal{A}} = \begin{cases} 1, & \text{if } R(c_1, ..., c_n) \in \Delta \\ 0, & \text{if } \neg R(c_1, ..., c_n) \in \Delta \\ \frac{1}{2}, & \text{otherwise} \end{cases}$$

- If c is a constant simbol then its interpretation in \mathcal{A}_{Δ} is $c^{\mathcal{A}_{\Delta}} = c$. We will define the binary relation \prec on \mathcal{K} : if Δ , $\Gamma \in \mathcal{K}$ then we say that $\Gamma \prec \Delta$ if the conditions of the Lemma 4.2 hold.

We have defined a structure, $\mathcal{A} = \langle (\mathcal{K}, \prec), \{\mathcal{A}_{\Delta}, \Delta \in \mathcal{K}\} \rangle$ for the language \mathcal{PTL}_3 .

Theorem 5.1. For every formula $\varphi(x_1, ..., x_n)$ of \mathcal{PTL}_3 , for every $\Delta \in \mathcal{K}$ and for all $c_1, ..., c_n \in A_\Delta$ we have the equivalence:

$$\mathcal{A}\models_{\Delta}\varphi(c_1,..,c_n)\iff\varphi(c_1,..,c_n)\in\Delta$$

Proof. We will prove by induction of $\varphi(x_1, ..., x_n)$.

(a) φ is an atomic formula, i.e $\varphi(x_1, ..., x_n) = P(x_1, ..., x_n)$ where P is a three-valued predicate. We have the equivalence:

 $\mathcal{A} \models_{\Delta} P(c_1, ..., c_n) \iff \|P(c_1, ..., c_n)\|_{\Delta} = 1 \text{ (from Definition 5.1) } \iff P^{\mathcal{A}_{\Delta}}(c_1, ..., c_n) = 1 \iff P(c_1, ..., c_n) \in \Delta \iff \varphi(c_1, ..., c_n) \in \Delta.$

- (b) $\varphi(x_1, ..., x_n) = \neg \psi(x_1, ..., x_n)$, where for ψ the hypothesis is satisfied: $\mathcal{A} \models_{\Delta} \psi(c_1, ..., c_n) \iff \psi(c_1, ..., c_n) \in \Delta$. We have: $\mathcal{A} \models_{\Delta} \varphi(c_1, ..., c_n) \iff \mathcal{A} \models_{\Delta} \neg \psi(c_1, ..., c_n) \iff \|\neg \psi(c_1, ..., c_n)\|_{\Delta} = 1 \iff \|\psi(c_1, ..., c_n)\|_{\Delta} = 0 \iff \mathcal{A} \not\models_{\Delta} \psi(c_1, ..., c_n) \iff \psi(c_1, ..., c_n) \notin \Delta \iff \neg \psi(c_1, ..., c_n) \in \Delta$ (from the fact that Δ is maximal consistent), i.e $\varphi(c_1, ..., c_n) \in \Delta$.
- (c) $\varphi(x_1, ..., x_n) = \psi(x_1, ..., x_n) \rightarrow \theta(x_1, ..., x_n).$ (\Rightarrow) Assume that $\mathcal{A} \models_{\Delta} \varphi(c_1, ..., c_n).$ We have : $\mathcal{A} \models_{\Delta} (\psi(c_1, ..., c_n) \rightarrow \theta(c_1, ..., c_n)) \iff \|\psi(c_1, ..., c_n)\|_{\Delta} \rightarrow \|\theta(c_1, ..., c_n)\|_{\Delta} = 1$ $1 \iff min\{1, 1-\|\psi(c_1, ..., c_n)\|_{\Delta} + \|\theta(c_1, ..., c_n)\|_{\Delta}\} = 1 \iff \|\psi(c_1, ..., c_n)\|_{\Delta} \le 1$

 $\|\theta(c_1,..,c_n)\|_{\Delta}.$

We consider the following cases:

- (1) Let $\|\psi(c_1,..,c_n)\|_{\Delta} = 0$. This implies that $\mathcal{A} \not\models_{\Delta} \psi(c_1,..,c_n) \iff$ $\psi(c_1,..,c_n) \notin \Delta$ (by inductive hypothesis) $\iff \neg \psi(c_1,..,c_n) \in \Delta$ (from Δ -maximal consistent). Using (t6) and Proposition 4.2 ((i) and (viii)) we obtain $\psi(c_1, ..., c_n) \to \theta(c_1, ..., c_n) \in \Delta$ hence $\varphi(c_1, ..., c_n) \in \Delta$. (2) Let $\|\psi(c_1, .., c_n)\|_{\Delta} = 1.$
 - Then it is necessary that $\|\theta(c_1,..,c_n)\|_{\Delta} = 1$. From this we have: $\mathcal{A} \models_{\Delta} \psi(c_1, .., c_n)$ and $\mathcal{A} \models_{\Delta} \theta(c_1, .., c_n)$ and by inductive hypothesis we obtain $\psi(c_1, ..., c_n) \in \Delta$ and $\theta(c_1, ..., c_n) \in \Delta$. Using (t1) and Proposition 4.2 ((i) and (viii)) we obtain that $\psi(c_1, .., c_n) \to \theta(c_1, .., c_n) \in \Delta$, hence $\varphi(c_1, .., c_n) \in \Delta$.
- (3) Let $\|\psi(c_1, .., c_n)\|_{\Delta} = \frac{1}{2}$. Hence $\|\theta(c_1, .., c_n)\|_{\Delta} \in \{\frac{1}{2}, 1\}$.
 - (a) If $\|\theta(c_1,..,c_n)\|_{\Delta} = \frac{1}{2}$ then we have: $\mathcal{A} \not\models_{\Delta} \psi(c_1,..,c_n)$ and $\mathcal{A} \not\models_{\Delta}$ $\theta(c_1, ..., c_n)$ and by inductive hypothesis $\psi(c_1,..,c_n) \notin \Delta$ and $\theta(c_1,..,c_n) \notin \Delta$, so from the fact that Δ is maximal consistent we obtain $\neg \psi(c_1, .., c_n) \in \Delta$ and $\neg \theta(c_1, .., c_n) \in$ Δ . Using (t1),(t4) and Proposition 4.2 ((i) and (viii)) it follows $\psi(c_1,..,c_n) \to \theta(c_1,..,c_n) \in \Delta$, so $\varphi(c_1,..,c_n) \in \Delta$.
 - (b) If $\|\theta(c_1,..,c_n)\|_{\Delta} = 1$ then the Definition 5.1 we obtain $\mathcal{A} \models_{\Delta}$ $\theta(c_1,..,c_n)$ and by inductive hypothesis $\theta(c_1,..,c_n) \in \Delta$. Using (t1) and Proposition 4.2 ((i) and (viii)) we have $\psi(c_1,..,c_n) \rightarrow$ $\theta(c_1,..,c_n) \in \Delta$, hence $\varphi(c_1,..,c_n) \in \Delta$.
- (\Leftarrow) Assume that $\varphi(c_1, .., c_n) \in \Delta$.

This is equivalent to $\psi(c_1,...,c_n) \to \theta(c_1,...,c_n) \in \Delta$. We consider the following cases:

- (a) Assume that $\psi(c_1, ..., c_n) \in \Delta$. Using Proposition 4.2(viii) we obtain $\theta(c_1, .., c_n) \in \Delta$. By the inductive hypothesis about ψ and θ it follows that $\mathcal{A} \models_{\Delta} \psi(c_1, .., c_n)$ and $\mathcal{A} \models_{\Delta} \theta(c_1, .., c_n)$, and using Definition 5.1 we have $\|\psi(c_1, .., c_n)\|_{\Delta} = 1$ and $\|\theta(c_1, .., c_n)\|_{\Delta} = 1$. Thus $\|\varphi(c_1,..,c_n)\|_{\Delta} = 1$, so $\mathcal{A} \models_{\Delta} \varphi(c_1,..,c_n)$.
- (b) Assume that $\psi(c_1, .., c_n) \notin \Delta$. Because Δ is maximal consistent, it results that $\neg \psi(c_1, .., c_n) \in \Delta$ and by inductive hypothesis $\mathcal{A} \models_{\Delta}$ $\neg \psi(c_1, ..., c_n)$. By Definition 5.1 we have $\|\psi(c_1, ..., c_n)\|_{\Delta} = 0$. It follows that $\|\psi(c_1, .., c_n)\|_{\Delta} \to \|\theta(c_1, .., c_n)\|_{\Delta} = 1$, so $\|\varphi(c_1, .., c_n)\|_{\Delta} = 1$, hence $\mathcal{A} \models_{\Delta} \varphi(c_1, .., c_n)$.
- (d) $\varphi(x_1, ..., x_n) = G\psi(x_1, ..., x_n)$, where for ψ the hypothesis of induction is satisfied , i.e
 - $\mathcal{A} \models_{\Delta} \psi(c_1, .., c_n) \iff \psi(c_1, .., c_n) \in \Delta.$
 - (⇐) Assume $\varphi(c_1, ..., c_n) \in \Delta$, i.e $G\psi(c_1, ..., c_n) \in \Delta$. Let $\Delta \prec \Delta'$, and by definition of \prec it results that $\psi(c_1, ..., c_n) \in \Delta'$. By inductive hypothesis we obtain $\mathcal{A} \models_{\Delta'} \psi(c_1, .., c_n)$. So, $\mathcal{A} \models_{\Delta'} \psi(c_1, .., c_n)$ for all Δ' with $\Delta \prec \Delta'$ and we get $\mathcal{A} \models_{\Delta} G\psi(c_1, .., c_n).$
 - (⇒) Assume $G\psi(c_1, ..., c_n) \notin \Delta$, so $\neg G\psi(c_1, ..., c_n) \in \Delta$. Hence $F \neg \psi(c_1, .., c_n) = \neg G \psi(c_1, .., c_n) \in \Delta$. By Lemma 4.3 and from $F \neg \psi(c_1, .., c_n) \in \Delta$ it follows that there exists $\Delta' \in K, \Delta \prec \Delta' \text{ and } \neg \psi(c_1, .., c_n) \in \Delta'.$

 $\psi(c_1, .., c_n)$. We proved that there exists $\Delta \prec \Delta'$ with $\mathcal{A} \not\models_{\Delta'} \psi(c_1, .., c_n)$, hence $\mathcal{A} \not\models_{\Delta} G \psi(c_1, .., c_n)$.

- (e) $\varphi(x_1, ..., x_n) = \forall x \psi(x, x_1, ..., x_n).$
 - (⇒) Suppose that A ⊨_Δ φ(c₁,..,c_n), i.e A ⊨_Δ ∀xψ(x,c₁,..,c_n) and by Definition 5.1 we get ||∀xψ(x,c₁,..,c_n)||_Δ = 1 ⇔
 ∧ ||ψ(a,c₁,..,c_n)||_Δ = 1. It follows that for all a ∈ A_Δ
 ||ψ(a,c₁,..,c_n)||_Δ = 1 ⇔ for all a ∈ A_Δ, A ⊨_Δ ψ(a,c₁,..,c_n). By the inductive hypothesis we obtain: for all a ∈ A_Δ, ψ(a,c₁,..,c_n) ∈ Δ and using Lemma 4.6 it follows that ∀xψ(x,c₁,..,c_n) ∈ Δ, so φ(c₁,..,c_n) ∈ Δ.
 (⇐) Suppose that φ(c₁,..,c_n) ∈ Δ. We have : ∀xψ(x,c₁,..,c_n) ∈ Δ ⇔ for all a ∈ A_Δ, ψ(a,c₁,..,c_n) ∈ Δ. By the inductive hypothesis we get for all a ∈ A_Δ, A ⊨_Δ ψ(a,c₁,..,c_n), endersity we have for all a ∈ A_Δ, ψ(a,c₁,..,c_n) ∈ Δ.

Remark 5.1. Since $\Sigma \subseteq \Delta$, for each $\Sigma \subseteq \Delta$, it follows that $\mathcal{A} \models_{\Delta} \varphi(c_1, ..., c_n)$ for all $\Delta \in \mathcal{K}$, $\varphi(x_1, ..., x_n)$ in \mathcal{PTL}_3 and $c_1, ..., c_n \in A_{\Delta}$.

6. Completeness theorem

This section contains the main result of this paper: the strong completeness theorem for \mathcal{PTL}_3 . The proof of the completeness theorem is based on Theorem 5.1.

Theorem 6.1. If Γ is a set of formulas of \mathcal{PTL}_3 and φ is a formula of \mathcal{PTL}_3 then we have the following equivalence:

$$\Gamma \vdash \varphi \iff \Gamma \models \varphi$$

- *Proof.* (\Leftarrow) Assume that $\Gamma \not\vDash \varphi$. We get $\Gamma \cup \{\neg \varphi\}$ is consistent and by Theorem 5.1 it follows that there exists a structure \mathcal{A} such that $\mathcal{A} \models \Gamma \cup \{\neg \varphi\}$. It follows that $\mathcal{A} \models \Gamma$ and $\mathcal{A} \not\models \varphi$, hence $\Gamma \not\models \varphi$.
- (\Rightarrow) By the induction on the concept $\Gamma \vdash \varphi$.
 - (1) Suppose that $\varphi \in \Gamma$. Let \mathcal{A} be a model for Γ . Then we have $\mathcal{A} \models \psi$, for all $\psi \in \Gamma$, hence $\mathcal{A} \models \varphi$. Because \mathcal{A} is an arbitrary model for Γ , we obtain that $\Gamma \models \varphi$.
 - (2) Suppose that φ is an axiom. Let \mathcal{A} be a model for Γ .
 - (a) Let $\varphi = G(\theta \to \psi) \to (G\theta \to G\psi)$. We must prove that $\mathcal{A} \models \varphi$, i.e $\mathcal{A} \models_k \varphi$, for all moments k. Suppose that $\mathcal{A} \models_k G(\theta \to \psi)$, and $\mathcal{A} \models_k G\theta$. By the definition of the concept
 - $\mathcal{A} \models_k \mathcal{G}(0^{-j}, \psi)$, and $\mathcal{A} \models_k \mathcal{G}(0^{-j}, \psi)$ by the definition of the concept $\mathcal{A} \models_k \varphi$ we obtain: $\mathcal{A} \models_{k'} \theta \to \psi$, $\mathcal{A} \models_{k'} \theta$ for all kRk', so $\mathcal{A} \models_{k'} \psi$ for all kRk'. It follows that $\mathcal{A} \models_k G\psi$.
 - (b) Let $\varphi = \psi \to GP\psi$. We must prove that $\mathcal{A} \models \psi$ implies $\mathcal{A} \models GP\psi$ i.e for all moments $k, \mathcal{A} \models_k \psi$ implies $\mathcal{A} \models_k GP\psi$.

Proving $\mathcal{A} \models_k GP\psi$ is equivalent to showing that for all $kRk' \mathcal{A} \models_{k'} P\psi$ or to the following : for all kRk' there exists k''Rk' with $\mathcal{A} \models_{k''} \psi$. We assumed that $\mathcal{A} \models_k \psi$, hence, for k'' = k we obtain $\mathcal{A} \models_k GP\psi$ i.e $\mathcal{A} \models_k \psi \to GP\psi$.

In a similar way we can prove the remaining axioms.

(3) (a) Suppose that φ was obtained by the rule $\frac{\Gamma \vdash \psi, \Gamma \vdash \psi \rightarrow \varphi}{\Gamma \vdash \varphi}$ and $\Gamma \models \psi, \Gamma \models \psi \rightarrow \varphi$.

Let \mathcal{A} be a model for Γ . We have: $\mathcal{A} \models \psi$ and $\mathcal{A} \models \psi \rightarrow \varphi$, i.e. $\mathcal{A} \models_k \psi, \mathcal{A} \models_k \psi \rightarrow \varphi$ for all k, so $\mathcal{A} \models_k \varphi$, for all k. It follows that $\mathcal{A} \models \varphi$, i.e. $\Gamma \models \varphi$.

- (b) Suppose that $\varphi(x_1, ..., x_n) = \forall x \psi(x, x_1, ..., x_n)$, obtained by the rule $\frac{\Gamma \vdash \psi}{\Gamma \vdash \forall x \psi}$ and $\Gamma \models \psi$. We want to prove that $\Gamma \models \varphi$. Let \mathcal{A} be a model for Γ . It follows that $\mathcal{A} \models \psi$, i.e. $\mathcal{A} \models_k \psi$, for all moments k. This is equivalent with $\mathcal{A} \models_k \psi(a, a_1, ..., a_n)$ for all $a \in \mathcal{A}_k$ and we have $\mathcal{A} \models_k \varphi$.
- (c) Assume that $\varphi = G\psi$, obtained by the rule $\frac{\Gamma \vdash \psi}{\Gamma \vdash G\psi}$, and $\Gamma \models \psi$. We must prove that $\Gamma \models \varphi$, i.e. $\Gamma \models G\psi$. Let \mathcal{A} be a model for Γ . Then $\mathcal{A} \models \psi \iff \mathcal{A} \models_k \psi$, for all k, so, we have $\mathcal{A} \models_{k'} \psi$ for all kRk', i.e. $\mathcal{A} \models_k G\psi$.

Theorem 6.2 (The completeness theorem). For any formula φ of \mathcal{PTL}_3 the following equivalence holds:

$$\vdash \varphi \iff \models \varphi$$

Proof. By Theorem 6.1, with $\Gamma = \emptyset$.

References

- V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, *Lukasiewicz-Moisil algebras*, North-Holland, 1991.
- [2] J. P. Burgess, Basic tense logic, In: Dov Gabbay and F. Guenthner, Eds., Handbook of philosophical logic, chapter II.2, 89-134. Reidel, 1984.
- [3] D. Buşneag, Categories of algebraic logic, Ed. Academiei Române, 2006.
- [4] B. F. Chellas, Modal logic: An Introduction, Cambridge University Press, 1980.
- [5] C. Chiriţă, Three-valued Temporal Logic, Annals of the Bucharest University, LIV, 2005, 75-90.
 [6] R. Cignoli, I. M. L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-valued Rea-
- soning, Kluwer, 2000. [7] D. Diaconescu, G. Georgescu, TenseoperatorsMV-algebras onand Lukasiewicz-Moisil algebras. Fundamenta Informaticae XX (2007),1 - 30.
- [8] H. Goldberg, H. Leblanc and G. Weaver, A strong completeness theorem for 3-valued logic, Notre Dame Journal of Formal Logic, 15, 325-332, 1974.
- [9] R. Goldblatt, Logics of Time and Computation, CSLI Lecture Notes No. 7, 1992.
- [10] P.Hajek, Metamathematics of fuzzy logic, Kluwer Acad.Publ., Dordrecht, 1998
- [11] G. E. Hughes and M. J. Cresswell, An Introduction to Modal Logic, Methuen, London, 2 edition, 1968.
- [12] S. Kripke, Semantical analysis of modal logic I: normal modal propositional calculi, Zeitschrift fur math. Logik und Grundlagen der Math, 9, 67-96, 1963.
- [13] L. Leuştean, Canonical Models and Filtrations in Three-valued Propositional Modal Logic, Multi. Val. Logic, 8(5-6), 577-590, 2002.
- [14] J. Lukasiewicz, On three-valued logic (Polish), Ruch Filozoficzny, 5, 160-171.
- [15] Gr.C.Moisil, Recherches sur les logiques non-chrysippiennes, Ann.Sci.Univ.Jassy, 26(1940) 431-466,
- [16] Gr.C.Moisil, Essais sur les logiques non-chrysippiennes, Ed.Academiei, Bucarest, 1972
- [17] P. Ostermann, Many-valued propositional calculi, Zeitschrift fur math. Logik und Grundlagen der Math., 34, 345-354, 1988.

52

[18] H. Rasiowa, An algebraic approach to non-classical logics, North-Holland Publ., Amsterdam, Polish Scientific Publ., Warszawa, 1974.

(Carmen Chiriță) UNIVERSITY OF BUCHAREST FACULTY OF MATHEMATICS AND COMPUTER SCIENCE ACADEMIEI 14, RO 010014, BUCHAREST, ROMANIA *E-mail address:* stama@funinf.cs.unibuc.ro