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1. Preliminaries

Gr. C. Moisil introduced in 1940 the 3-valued ÃLukasiewicz algebras as alge-
braic models for the 3-valued ÃLukasiewicz logics. In 1941 he defined the n-valued
ÃLukasiewicz algebras. A. Rose showed that ÃLukasiewicz implications cannot be de-
fined in n-valued ÃLukasiewicz algebras for n ≥ 5, so the latter do not correspond to
the n-valued ÃLukasiewicz logics. Thus the structures created by Moisil led to other
logical systems, so called Moisil logics. Now these algebras are known under the name
of ÃLukasiewicz-Moisil algebras ([3]).

This paper represents a part of my P.h. Thesis, Contribution to the study of LMn-
algebras, sustained in January 2007 at the Faculty of Mathematic and Computer
Science, Bucharest (see [7]).

Basic definition and results useful for understanding the subsequent sections are
recalled in Section 2 of this paper, following especially the monograph [3].

In Section 3 I propose a generalization of the variety of LMn-algebras by adding
a binary operator playing the role of similarity. I mention here that I was inspired by
MV -algebras (see [11]) to study the notion of similarity on an LMn-algebra, so that
my results are very close to those of MV -algebras.

In Section 4 I present the same theory as in Section 3 but for another binary
operation called “strong similarity”, starting from another implication that makes an
LMn-algebra to be a Heyting algebra.

Heyting algebras constitute one of the fundamental structures generated by math-
ematical logic. Therefore the problem of investigating the relationships between
ÃLukasiewicz-Moisil algebras and Heyting algebras is a natural one. The fact that
every Moisil algebra is a Heyting algebra was first proved by Moisil [1942], [1963] for
three-valued algebras, then generalized to the n-valued case (Moisil [1965]).

In Section 5 I present a generalization of the theory of similarity and strong
similarity LMn-algebras from the previous sections and also, of similarity MV -algebra
from [11].

2. Definitions. Examples. Basic results

Let n be an integer, n ≥ 2.
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Definition 2.1. ([3]) An n-valued ÃLukasiewicz-Moisil algebra(shortly, LMn-algebra)
is an algebra L = (L,∧,∨, N, 0, 1, {ϕi}1≤i≤n−1) of type (2,2,1,0,0,{1}1≤i≤n−1) satis-
fying the following conditions:
(a1) (L,∧,∨, N, 0, 1) is a De Morgan algebra,
(a2) ϕ1, ..., ϕn−1 : L → L are bounded lattice morphisms such that for every x, y ∈ L:
(a3) ϕi(x) ∨Nϕi(x) = 1 for every i = 1, ..., n− 1,
(a4) ϕi(x) ∧Nϕi(x) = 0 for every i = 1, ..., n− 1,
(a5) ϕiϕj(x) = ϕj(x) for every i, j = 1, ..., n− 1,
(a6) ϕi(Nx) = Nϕj(x) for every i, j = 1, ..., n− 1 with i + j = n,
(a7) ϕ1(x) ≤ ϕ2(x) ≤ ... ≤ ϕn−1(x),
(a8) If ϕi(x) = ϕi(y) for every i = 1, ..., n− 1, then x = y.

The relation (a8) is called the determination principle. The following relations are
consequences of the determination principle:
(c1) If x, y ∈ L, then x ≤ y iff ϕi(x) ≤ ϕi(y) for all i = 1, ..., n− 1,
(c2) ϕ1(x) ≤ x ≤ ϕn−1(x) for all x ∈ L.

An LMn-algebra L = (L,∧,∨, N, 0, 1, {ϕi}1≤i≤n−1) will be denoted in the rest of
this paper by its universe L.

Remark 2.1. The endomorphisms {ϕi}1≤i≤n−1 are called chrysippian endomor −
phisms.

Examples:
E1. Let Ln = {0, 1

n−1 , ..., n−2
n−1 , 1}.We define x ∨ y = max{x, y}, x ∧ y = min{x, y},

Nx = 1− x (N( j
n−1 ) = n−1−j

n−1 ) and ϕi : Ln → Ln, ϕi(
j

n−1 ) = 0 if i + j < n and
1 if i + j ≥ n, for i, j = 1, ..., n− 1.
Then (Ln,∧,∨, N, 0, 1, {ϕi}1≤i≤n−1) is an LMn-algebra.

E2. If (B,∧,∨,′ , 0, 1) is a Boolean algebra, then (B,∧,∨,′ , 0, 1, {ϕi}1≤i≤n−1) is an
LMn-algebra, where ϕi = 1B for every i ∈ {1, ..., n− 1}.

E3. Let (B,∨,∧,′ , 0, 1) a Boolean algebra and D(B) = {(x1, ..., xn−1) ∈ Bn−1 : x1 ≤
... ≤ xn−1}.
We define pointwise the infimum and the supremum, N(x1, ..., xn−1) = (x′n−1,...,x

′
1)

and ϕi(x1, ..., xn−1) = (xi, ..., xi) for all i = 1, ..., n− 1.
Then (D(B),∧,∨, N, 0, 1, {ϕi}1≤i≤n−1) is an LMn-algebra.

The set of all complemented elements of the bounded lattice (L,∧,∨, 0, 1) is denoted
by C(L) and it is called the center of L; it is easy to see that (C(L),∨,∧, N, 0, 1) is
a Boolean algebra.

Lemma 2.1. ([3]) Let L be an LMn-algebra.The following are equivalent:
(i) e ∈ C(L),

(ii) there are i ∈ {1, ..., n− 1} and x ∈ L such that e = ϕi(x),
(iii) there is i ∈ {1, ..., n− 1} such that e = ϕi(e),
(iv) e = ϕi(e) for every i = 1, ..., n− 1,
(v) ϕi(e) = ϕj(e) for every i, j = 1, ..., n− 1.

Remark 2.2. If x ∈ L, then ϕi(x) ∈ C(L) for every i = 1, ..., n− 1.

Lemma 2.2. ([3]) Let L be an LMn-algebra. The following are equivalent:
(i) e ∈ C(L),

(ii) N e ∈ C(L),
(iii) e ∧Ne = 0,
(iv) e ∨Ne = 1.
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Lemma 2.3. If L is an LMn-algebra, then for every x ∈ L:
(c3) x ∧ ϕ1(Nx) = x ∧Nϕn−1(x) = 0,
(c4) x ∨Nϕ1(x) = x ∨ ϕn−1(Nx) = 1.

Proof. (c3). For every x ∈ L we have x ≤ ϕn−1(x), so

x ∧ ϕ1(Nx) = x ∧Nϕn−1(x) ≤ ϕn−1(x) ∧Nϕn−1(x) = 0(by a4),

hence x ∧ ϕ1(Nx) = 0.
(c4). We have x ≥ ϕ1(x)(by a7), so x ∨ Nϕ1(x) ≥ ϕ1(x) ∨ Nϕ1(x) = 1, hence

x ∨Nϕ1(x) = 1. ¥

Theorem 2.1. ([1]) For an LMn-algebra L (with 0 6= 1), the following are equivalent:
(i) C(L) = {0, 1},

(ii) L is a chain,
(iii) L is subdirectly irreducible.

Corollary 2.1. ([3]) Every chain which is an LMn-algebra is finite.

Definition 2.2. ([3]) Let L and L
′

be LMn-algebras. A function f : L → L
′

is a
morphism of LMn-algebras iff it satisfies the following conditions, for every x, y ∈ L :
(i) f(x ∨ y) = f(x) ∨ f(y),

(ii) f(x ∧ y) = f(x) ∧ f(y),
(iii) f(0) = 0, f(1) = 1,
(iv) f(ϕi(x)) = ϕi(f(x)) for every i = 1, ..., n− 1.

Remark 2.3. It follows from (a6) and (a8) that

f(Nx) = Nf(x)

for every x ∈ L (see [3], Remark 3.1.29 and the subsequent remark (3.1.52)).

Definition 2.3. ([3]) A nonempty subset F ⊆ L is called an n-filter if F is a lattice
filter of L and if x ∈ F implies ϕ1(x) ∈ F.

Remark 2.4. (i). From (a7) it follows that if F ⊆ L is an n-filter and x ∈ F, then
ϕi(x) ∈ F for every i ∈ {1, ..., n− 1}.

(ii). It is obvious that x ∈ F iff ϕ1(x) ∈ F .

Definition 2.4. A proper n-filter F of L is said to be prime if F is prime as a lattice
filter, i.e. for any x, y ∈ L, the condition x ∨ y ∈ F implies x ∈ F or y ∈ F (see [3],
p.33).

Definition 2.5. By a maximal (minimal) n-filter is meant a maximal (minimal)
element in the family of proper n-filters ordered by set inclusion.

By a maximal (minimal) prime n-filter is meant a maximal (minimal) element in
the family of prime n-filters ordered by set inclusion.

Definition 2.6. ([3]) A congruence of an LMn-algebra L is an equivalence relation
of L compatible with the operations ∧,∨, N, ϕi, for every i = 1, ..., n− 1.

Proposition 2.1. ([3]) For an equivalence relation θ of an LMn-algebra L, the fol-
lowing conditions are equivalent:
(i) θ is a congruence of L,

(ii) θ is compatible with ∧,∨, ϕi, for every i = 1, ..., n− 1.

Theorem 2.2. ([3],p.126) The category of LMn-algebras is an equational class.
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If L is an LMn-algebra and F is an n-filter, I consider the relation:

x mod F y iff there exists f ∈ F such that x ∧ f = y ∧ f.

Remark 2.5. Theorem 5.1.13(p. 251) from [3] proves that mod F is a congruence
on L and Proposition 5.1.31(p. 259), from the same book, shows that

x mod F y iff
n−1∧

i=1

[(Nϕi(x) ∨ ϕi(y)) ∧ (ϕi(x) ∨Nϕi(y))] ∈ F.

In the following I denote by L/F the quotient LMn-algebra L/mod F .

Theorem 2.3. ([3])(Representation theorem of Moisil) Every LMn-algebra can be
embedded in a direct product of copies of the canonical LMn-algebra Ln.

Corollary 2.2. ([3]) Every LMn-algebra is a subdirect product of subalgebras of the
canonical LMn-algebra Ln:

If Specn(L) is the set of all prime n-filters of L, then L is a subdirect product (as
an LMn-algebra) of the family {L/F : F ∈ Specn(L)}, where i : L → ∏

F∈Specn(L)

L/F

is the canonical representation (see [3], Proposition 6.1.5 and Theorem 5.2.3).

Corollary 2.3. Any identity valid in LMn chains holds in every LMn-algebras.

3. Similarity LMn-algebra

Let F be an n-filter of L and ∼F the relation defined on L as follows:

x ∼F y iff there exists f ∈ F such that ϕi(x) ∧ f = ϕi(y) ∧ f , for every i = 1, ..., n− 1.

Definition 3.1. For x, y ∈ L, I consider the implication

x −→ y =
n−1∧

i=1

(Nϕi(x) ∨ ϕi(y)).

Also, I denote

x ←→ y = (x −→ y) ∧ (y −→ x).

So,

x ←→ y =
n−1∧

i=1

[(Nϕi(x) ∨ ϕi(y)) ∧ (ϕi(x) ∨Nϕi(y))],

and it is obvious that x −→ y, x ←→ y ∈ C(L).

Proposition 3.1. ([3], Proposition 5.1.31, p.259) The relation ∼F is a congruence
of L and coincides with mod F .

Remark 3.1. According to Remark 2.5 we have that:

x ∼F y iff x mod F y iff x ←→ y ∈ F.

Proposition 3.2. For every x, y ∈ L we have that x ≤ y iff x −→ y = 1.

Proof. We have:

x ≤ y iff ϕi(x) ≤ ϕi(y) iff Nϕi(y) ≤ Nϕi(x), i = 1, ..., n− 1
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iff
n−1∧

i=1

(Nϕi(x) ∨ ϕi(y)) = 1 iff x −→ y = 1.

¥
Corollary 3.1. In every LMn-algebra L, x = y iff x ←→ y = 1.

Remark 3.2.

(i) If x ≤ y then x ←→ y =
n−1∧
i=1

(ϕi(x) ∨Nϕi(y)),

(ii) If x, y ∈ C(L), then x ←→ y = (Nx∨ y)∧ (x∨Ny) and if x ≤ y then x ←→ y =
x ∨Ny,

(iii) If x, y ∈ {0, 1} then x ←→ y = { 1, x = y
0, x 6= y.

Lemma 3.1. In an LMn-algebra L we have:
(1) 1 −→ x = x ←→ 1 = ϕ1(x),
(2) x ←→ y ≤ (x ←→ z) ←→ (y ←→ z),
(3) x ←→ y ≤ (x ∧ z) ←→ (y ∧ z),
(4) (x −→ y) ∨ (y −→ x) = 1.

Proof. (1) We have that

1 −→ x =
n−1∧

i=1

(Nϕi(1) ∨ ϕi(x)) =
n−1∧

i=1

(0 ∨ ϕi(x)) =
n−1∧

i=1

ϕi(x) = ϕ1(x).

By Proposition 3.2 we have that x −→ 1 = 1, therefore x ←→ 1 = ϕ1(x).

(2) According to Remark 3.2,(ii), the relation is equivalent with

x ←→ y ≤ [(x ←→ z) ∨N(y ←→ z)] ∧ [N(x ←→ z) ∨ (y ←→ z)]

so it is equivalent with the system of two inequalities:

x ←→ y ≤ (x ←→ z) ∨N(y ←→ z)
x ←→ y ≤ N(x ←→ z) ∨ (y ←→ z).

Since the operations ←→ and ∨ are commutative, it suffices to prove the first
inequality. We will use two well-known relations from boolean calculus:

(a ∧Nb) ∨ (Na ∧ b) = (a ∨ b) ∧ (Na ∨Nb) and (x ∧ a) ∨ (Nx ∧ b) ≥ a ∧ b.

So, (x ←→ z) ∨N(y ←→ z) =
n−1∧

i=1

[(Nϕi(x) ∨ ϕi(z)) ∧ (ϕi(x) ∨Nϕi(z))] ∨

∨
n−1∧

j=1

[(ϕj(y) ∧Nϕj(z)) ∨ (Nϕj(y) ∧ ϕj(z))]

≥
n−1∧

i=1

[(Nϕi(x) ∧Nϕi(z)) ∨ (ϕi(x) ∧ ϕi(z)) ∨ (ϕi(y) ∧Nϕi(z)) ∨

∨(Nϕi(y) ∧ ϕi(z))]

=
n−1∧

i=1

[((Nϕi(x) ∨ ϕi(y)) ∧Nϕi(z)) ∨ (ϕi(z) ∧ (ϕi(x) ∨Nϕi(y)))]

≥
n−1∧

i=1

[(Nϕi(x) ∨ ϕi(y)) ∧ (ϕi(x) ∨Nϕi(y))] = x ←→ y.



SIMILARITY LUKASIEWICZ-MOISIL ALGEBRAS 59

To prove (3) it suffices to consider that L is an LMn-chain (according to Corollary
2.3 ).

(3) Without loss of generality, we can suppose x ≤ y. In this case x ∧ z ≤ y ∧ z,
hence:

(x ∧ z) ←→ (y ∧ z) =
n−1∧

i=1

[ϕi(x ∧ z) ∨Nϕi(y ∧ z)] =
n−1∧

i=1

[(ϕi(x) ∧ ϕi(z)) ∨

N(ϕi(y) ∧ ϕi(z))] =
n−1∧

i=1

[(ϕi(x) ∧ ϕi(z)) ∨ (Nϕi(y) ∨Nϕi(z))] =

=
n−1∧

i=1

[(ϕi(x) ∨Nϕi(y) ∨Nϕi(z)) ∧ (ϕi(z) ∨Nϕi(y) ∨Nϕi(z))]

=
n−1∧

i=1

[(ϕi(x) ∨Nϕi(y) ∨Nϕi(z)) ∧ (1 ∨Nϕi(y))]

=
n−1∧

i=1

(ϕi(x) ∨Nϕi(y) ∨Nϕi(z)) ≥
n−1∧

i=1

(ϕi(x) ∨Nϕi(y))

= x ←→ y.

(4) According to Corollary 2.3, it suffices to consider that L is a chain. So x ≤ y
or y ≤ x, hence x −→ y = 1 or y −→ x = 1. Therefore (x −→ y) ∨ (y −→ x) = 1. ¥

Definition 3.2. A similarity LMn-algebra is a pair (L, S) where L is an LMn-algebra
and S : L×L → L is a binary operation on L such that the following properties hold
for every x, y, z ∈ L :
(S1) S(x, x) = 1,
(S2) S(x, y) = S(y, x),
(S3) S(x, y) ∧ S(y, z) ≤ S(x, z),
(S4) x ∧ S(x, y) ≤ ϕn−1(y),
(S5) S(x ←→ y, 1) ≤ S(x, z) ←→ S(y, z).

An operator S which satisfies S1-S5 will be called a similarity operation on L (or,
simply, a similarity on L).

If S and T are two similarities on L, I define

S ≤ T iff S(x, y) ≤ T (x, y) for every x, y ∈ L.

The notions of subalgebra and homomorphism are defined as usual.

Remark 3.3. From (S5) and Lemma 3.1,(1) it follows that

S(x ←→ y, 1) ≤ S(x, y) ←→ S(y, y) = S(x, y) ←→ 1 = ϕ1(S(x, y)) ≤ S(x, y)

for every x, y ∈ L.

Examples:

1. On every LMn-algebra L, the operation E(x, y) = x ←→ y is a similarity.
Indeed, E(x, x) = 1 and E(x, y) = E(y, x).
For (S3 ) we will use the well-known boolean equality

(x ∨Ny) ∧ (Nx ∨ y) = (x ∧ y) ∨ (Nx ∧Ny).
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So,

(x ←→ y) ∧ (y ←→ z) =
n−1∧

i=1

[(Nϕi(x) ∨ ϕi(y)) ∧ (ϕi(x) ∨Nϕi(y)) ∧

∧(Nϕi(y) ∨ ϕi(z)) ∧ (ϕi(y) ∨Nϕi(z))] =

=
n−1∧

i=1

[(Nϕi(y) ∨ (ϕi(x) ∧ ϕi(z))) ∧ (ϕi(y) ∨ (Nϕi(x) ∧Nϕi(z))]

=
n−1∧

i=1

[(Nϕi(x) ∧Nϕi(y) ∧Nϕi(z))) ∨ (ϕi(x) ∧ ϕi(y) ∧ ϕi(z))]

≤
n−1∧

i=1

[(Nϕi(x) ∧Nϕi(z)) ∨ (ϕi(x) ∧ ϕi(z))] = x ←→ z.

Since E(x, y) ≤ Nϕn−1(x) ∨ ϕn−1(y), it follows that

x ∧ E(x, y) ≤ x ∧ [Nϕn−1(x) ∨ ϕn−1(y)] = [x ∧Nϕn−1(x)] ∨ [x ∧ ϕn−1(y)]
= 0 ∨ [x ∧ ϕn−1(y)] ≤ ϕn−1(y).

From Lemma 3.1, (1), it follows that

E(x ←→ y, 1) = (x ←→ y) ←→ 1 = ϕ1(x ←→ y) = x ←→ y,

hence E(x ←→ y, 1) ≤ E(x, z) ←→ E(y, z) (by Lemma 3.1,(2)).
2. On every LMn-algebra L, the operation ∆ : L× L → L defined by

∆(x, y) = { 1, x = y
0, x 6= y

, for any x, y ∈ L,

is also a similarity on L.
It is obvious that ∆(x, x) = 1 and ∆(x, y) = ∆(y, x).

Also, ∆(x, y) ∧∆(y, z) = { 1, x = y = z
0, otherwise ≤ ∆(x, z).

It is easy to see that x ∧∆(x, y) = { x, x = y
0, x 6= y

≤ ϕn−1(y).

For (S5) we have that ∆(x ←→ y, 1) = { 1, x ←→ y = 1
0, x ←→ y 6= 1 .

Therefore, ∆(x ←→ y, 1) = { 1, x = y
0, x 6= y

(according to Corollary 3.1). Also,

∆(x, z) ←→ ∆(y, z) = { 1, ∆(x, z) = ∆(y, z)
0, otherwise

(by Remark 3.2,(iii)).
Therefore ∆(x ←→ y, 1) ≤ ∆(x, z) ←→ ∆(y, z).

Proposition 3.3. For any similarity S on L we have that:
(1) ∆ ≤ S,
(2) E ≤ S iff ϕ1(x) ≤ S(x, 1), for every x ∈ L.

Proof. (1). Obvious.
(2). “ ⇒ ”. We have that ϕ1(x) = x ←→ 1 = E(x, 1) ≤ S(x, 1).
“ ⇐ ”. E(x, y) = x ←→ y = ϕ1(x ←→ y) ≤ S(x ←→ y, 1) ≤ S(x, y)(by Remark

3.3). Therefore E ≤ S. ¥
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Definition 3.3. If (L, S) is a similarity LMn-algebra, then F ⊆ L is an S − filter if
F is an n-filter of L and S(x, y) ∈ F for every x, y ∈ F.

Proposition 3.4. Let (L, S) be a similarity LMn-algebra and F an n-filter. Then F
is an S-filter iff S(x, 1) ∈ F for every x ∈ F.

Proof. “ ⇒ ”. Because 1 ∈ F it follows that S(x, 1) ∈ F for every x ∈ F.
“ ⇐ ”. If x, y ∈ F, then x ←→ y ∈ F (by Remarks 2.4 and 3.1), hence S(x ←→

y, 1) ∈ F.
But, S(x ←→ y, 1) ≤ S(x, y) (by Remark 3.3), hence S(x, y) ∈ F.
Therefore, F is an S-filter. ¥

Proposition 3.5. If (L, S) is a similarity LMn-algebra and F ⊆ L is an S-filter,
then ∼F is a congruence with respect to the similarity LMn-algebra (L, S).

Proof. We only have to prove that ∼F is compatible with S. Suppose that
x1, x2, y1, y2 ∈ L such that x1 ∼F x2 and y1 ∼F y2.

It follows that x1 ←→ x2 ∈ F and y1 ←→ y2 ∈ F. Hence S(x1 ←→ x2, 1) ∈ F and
S(y1 ←→ y2, 1) ∈ F.

But

S(x1 ←→ x2, 1) ≤ S(x1, y1) ←→ S(y1, x2) and
S(y1 ←→ y2, 1) ≤ S(y1, x2) ←→ S(x2, y2),

hence S(x1, y1) ←→ S(y1, x2) ∈ F and S(y1, x2) ←→ S(x2, y2) ∈ F . We have that,
S(x1, y1) ∼F S(y1, x2) and S(y1, x2) ∼F S(x2, y2), hence S(x1, y1) ∼F S(x2, y2). ¥

Because the class of LMn-algebras is equational and any similarity is an algebraic
function, it follows that the similarity LMn-algebras form an equational class, hence:

Remark 3.4. If (L, S) is a similarity LMn-algebra and F ⊆ L is an S-filter of L, if we
denote the quotient LMn-algebra L/ ∼F by L/F , then L/F has a canonical structure
of similarity LMn-algebra, where the similarity SF : L/F × L/F → L/F is defined
by SF (x/F, y/F ) := S(x, y)/F , for every x, y ∈ L, where x/F is the congruence class
of x with respect to ∼F .

The canonical surjection x 7−→ x/F is a similarity LMn-algebra homomorphism.

Definition 3.4. A similarity LMn-algebra is called representable if it is a subdirect
product of similarity LMn-chains.

Lemma 3.2. If x ∨ y = 1 then x −→ y = ϕ1(y) and y −→ x = ϕ1(x).

Proof. If x ∨ y = 1 then ϕi(x) ∨ ϕi(y) = 1 for every i = 1, ..., n − 1. Then, for
i ∈ {1, ..., n− 1} we have:

N ϕi(x) = Nϕi(x) ∧ 1 = N ϕi(x) ∧ ( ϕi(x) ∨ ϕi(y))
= (N ϕi(x) ∧ ϕi(x)) ∨ (N ϕi(x) ∧ ϕi(y)) =
= 0 ∨ (N ϕi(x) ∧ ϕi(y)) = N ϕi(x) ∧ ϕi(y).

Hence N ϕi(x) ≤ ϕi(y) for every i = 1, ..., n − 1, so, x −→ y =
n−1∧
i=1

(N ϕi(x) ∨

ϕi(y)) =
n−1∧
i=1

ϕi(y) = ϕ1(y). Therefore it follows that y −→ x = ϕ1(x). ¥

Theorem 3.1. For a similarity LMn-algebra (L, S), the following are equivalent:
(1) (L, S) is representable,
(2) S(x −→ y, 1) ∨ (y −→ x) = 1 for every x, y ∈ L,
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(3) x ∨ y = 1 implies x ∨ S(y, 1) = 1,
(4) Any prime n-filter is an S-filter.

Proof.(1) ⇒ (2). Because (L, S) is representable, we can consider x ≤ y or y ≤ x.
If x ≤ y then x −→ y = 1, hence S(x −→ y, 1) ∨ (y −→ x) = 1.
If y ≤ x then y −→ x = 1, hence S(x −→ y, 1) ∨ (y −→ x) = 1.
(2) ⇒ (3). By Lemma 3.2 we have that x −→ y = ϕ1(y) and y −→ x = ϕ1(x),

therefore, from (2) we obtain ϕ1(x) ∨ S(ϕ1(y), 1) = 1. But S(ϕ1(y), 1) = S(y ←→
1, 1) ≤ S(y, 1)(by Remark 3.3 ) so, 1 = ϕ1(x) ∨ S(ϕ1(y), 1) ≤ x ∨ S(y, 1), hence
x ∨ S(y, 1) = 1.

(3) ⇒ (4). Let F ⊂ L be a prime n-filter and x ∈ F . Since Nϕ1(x) ∨ x = 1(by
Lemma 2.3,(c4)), from (3) we deduce that Nϕ1(x) ∨ S(x, 1) = 1. If we suppose that
Nϕ1(x) ∈ F , because ϕ1(x) ∈ F we obtain that 0 = Nϕ1(x) ∧ ϕ1(x) ∈ F , which is
impossible because F is prime, hence proper. Since 1 ∈ F and F is prime, it follows
that S(x, 1) ∈ F . By Proposition 3.4 we deduce that F is an S-filter.

(4) ⇒ (1). In the representation of Corollary 2.2, every prime n-filter F is an
S-filter of (L, S), so (L/F, SF ) is a similarity LMn-algebra by Remark 3.4, and the
inclusion mapping i is a morphism of similarity LMn-algebras, therefore it is a repre-
sentation of (L, S) as a subdirect product of the family {(L/F, SF ) : F ∈ Specn(L)}.¥
Remark 3.5. The similarity LMn-algebra (L,E) in Example 1 is representable.

Indeed, E(x −→ y, 1) ∨ (y −→ x) = ((x −→ y) ←→ 1) ∨ (y −→ x) = ϕ1(x −→
y) ∨ (y −→ x) = (x −→ y) ∨ (y −→ x) = 1.

Lemma 3.3. For any LMn-algebra L, the similarity LMn-algebra (L,∆) is repre-
sentable iff L is an LMn-chain.

Proof. “ ⇒ ”. Let x, y ∈ L. If x � y then x −→ y 6= 1, so ∆(x −→ y, 1) = 0.
But (L, ∆) is representable, hence, from Theorem 3.1,(2), it follows that ∆(x −→
y, 1) ∨ (y −→ x) = 1, so y −→ x = 1, hence y ≤ x. Therefore, L is an LMn-chain.

“ ⇐ ”. Now, let L be an LMn-chain and x, y ∈ L. If x ≤ y then x −→ y = 1
and if y ≤ x then y −→ x = 1, hence in both cases, ∆(x −→ y, 1) ∨ (y −→ x) = 1.
Therefore (L, ∆) is a representable similarity LMn-algebra. ¥

Remark 3.6. As a consequence of the previous lemma, there exist similarity LMn-
algebras which are not representable: for example, (L,∆) where L is not an LMn-
chain.

Proposition 3.6. If (L, S) is a representable similarity LMn-algebra, then the fol-
lowing are equivalent:
(1) x ≤ y implies S(x, 1) ≤ S(y, 1),
(2) S(x ∨ y, 1) = S(x, 1) ∨ S(y, 1).

Proof. (1) ⇒ (2). Without loss of generality, we can suppose x ≤ y. Then
S(x, 1) ≤ S(y, 1), hence S(x ∨ y, 1) = S(y, 1) = S(x, 1) ∨ S(y, 1).

(2) ⇒ (1). Obvious. ¥

Definition 3.5. If L is an LMn-algebra and S is a similarity on L, we will say that
S is isotone if

x ≤ y implies S(x, 1) ≤ S(y, 1), for any x, y ∈ L.

Open problem: Find an example of a similarity operation which is not isotone.
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4. Strong similarity LMn-algebra

For every L ∈ LMn I consider the following implication (which is the generalization
of the residuation considered by Moisil [1965]):

x ⇒ y = y ∨Nϕn−1(x) ∨ (ϕn−1(x) ∧Nϕn−2(x) ∧ ϕn−2(y)) ∨ ...

... ∨ (ϕ2(x) ∧Nϕ1(x) ∧ ϕ1(y)) ∨ (ϕ1(x) ∧ ϕ1(y)).

Lemma 4.1. ([3]) In every LMn-algebra:

x ⇒ y = y∨
n−1∧

i=1

(Nϕi(x) ∨ ϕi(y)).

Let x ⇔ y = (x ⇒ y) ∧ (y ⇒ x).

Remark 4.1. By Definition 3.1 we have x ⇒ y = y ∨ (x −→ y), hence x −→ y ≤
x ⇒ y, x ←→ y ≤ x ⇔ y for every x, y ∈ L.

Remark 4.2. For every x, y ∈ L it follows that ϕ1(x ⇒ y) = x −→ y.

Indeed,

ϕ1(x ⇒ y) = ϕ1(y∨
n−1∧

i=1

(Nϕi(x) ∨ ϕi(y))) = ϕ1(y)∨
n−1∧

i=1

(Nϕi(x) ∨ ϕi(y))

=
n−1∧

i=1

(ϕ1(y) ∨Nϕi(x) ∨ ϕi(y)) =
n−1∧

i=1

(Nϕi(x) ∨ ϕi(y)) = x −→ y.

Then ϕ1(x ⇔ y) = x ←→ y.

Definition 4.1. A pair (L,⇒), where L is a lattice with 0 and ⇒ satisfies x∧ y ≤ z
iff y ≤ x ⇒ z is called a Heyting algebra.

Cignoli proved in 1975 that:

Theorem 4.1. If L ∈ LMn then (L,⇒) is a Heyting algebra.

We note that x ⇒ y is a good generalization of the Boolean implication x̄ ∨ y.

Proposition 4.1. ([3]) If L ∈ LMn then
(i) If x ∈ C(L) then x ⇒ y = Nx ∨ y,

(ii) If y ∈ C(L) then x ⇒ y = Nϕn−1(x) ∨ y.

Definition 4.2. A Heyting algebra satisfying the identity

(x ⇒ y) ∨ (y ⇒ x) = 1

is called a linear Heyting algebra .

Proposition 4.2. ([3]) If L ∈ LMn then L is a linear Heyting algebra.

Lemma 4.2. ([1]) In every Heyting algebra we have
(1) x ∧ (x ⇒ y) ≤ y,
(2) y ≤ x ⇒ y,
(3) 1 ⇒ x = x,
(4) x ≤ y iff x ⇒ y = 1 (hence x ⇒ x = x ⇒ 1 = 1 and 0 ⇒ y = 1),

The fact that every LMn-algebra is a linear Heyting algebra has important conse-
quences:
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Proposition 4.3. ([3]) In every LMn-algebra
(5) x ⇒ (y ∨ z) = (x ⇒ y) ∨ (x ⇒ z),
(6) (x ∧ y) ⇒ z = (x ⇒ z) ∨ (y ⇒ z),
(7) x ∨ y = ((x ⇒ y) ⇒ y) ∧ ((y ⇒ x) ⇒ x).

Remark 4.3. (i). We have that x ⇔ y = 1 iff x = y,

(ii). If x, y ∈ {0, 1} then x ⇔ y = { 1, x = y
0, x 6= y.

Lemma 4.3. If L is an LMn-algebra then
(8) 1 ⇒ x = x ⇔ 1 = x,
(9) (x ⇒ y) ∧ (y ⇒ z) ≤ x ⇒ z (hence (x ⇔ y) ∧ (y ⇔ z) ≤ x ⇔ z),

(10) x ⇔ y ≤ (x ∧ z) ⇔ (y ∧ z),
(11) x ⇔ y ≤ (x ⇔ z) ⇔ (y ⇔ z).

Proof. (8). Immediate.
(9). The relation is equivalent with x∧(x ⇒ y)∧(y ⇒ z) ≤ z. But x∧(x ⇒ y) ≤ y,

hence x ∧ (x ⇒ y) ∧ (y ⇒ z) ≤ y ∧ (y ⇒ z) ≤ z (by Lemma 4.2,(1)).
It follows that (z ⇒ y) ∧ (y ⇒ x) ≤ z ⇒ x, hence (x ⇔ y) ∧ (y ⇔ z) ≤ x ⇔ z.
(10) It is sufficient to study the case x ≤ y (by Corollary 2.3). Then x∧ z ≤ y ∧ z,

hence x ⇒ y = 1 and (x ∧ z) ⇒ (y ∧ z) = 1.
We only have to prove that y ⇒ x ≤ (y ∧ z) ⇒ (x ∧ z). This relation is equivalent

with (y∧z)∧(y ⇒ x) ≤ x∧z, which is true because (y∧z)∧(y ⇒ x) ≤ y∧(y ⇒ x) ≤ x
and (y ∧ z) ∧ (y ⇒ x) ≤ z.

(11). By (9) it follows that (x ⇔ y)∧ (y ⇔ z) ≤ x ⇔ z, hence x ⇔ y ≤ (y ⇔ z) ⇒
(x ⇔ z), and similarly (y ⇔ x)∧(x ⇔ z) ≤ y ⇔ z, hence y ⇔ x ≤ (x ⇔ z) ⇒ (y ⇔ z).

Therefore x ⇔ y ≤ (x ⇔ z) ⇔ (y ⇔ z). ¥
Let F be an n-filter of L.
I recall from the previous section the relation

x ∼F y iff x ←→ y ∈ F.

Remark 4.4. By Remark 4.2 we have that ϕ1(x ⇔ y) = x ←→ y, hence

x ∼F y iff x ←→ y ∈ F iff ϕ1(x ⇔ y) ∈ F iff x ⇔ y ∈ F.

I recall that in the previous section by L/F I denoted the LMn-algebra L/ ∼F

and by x/F the congruence class of x with respect to ∼F (we have that x/F = 1/F
iff x ∼F 1 iff x ⇔ 1 ∈ F iff x ∈ F ).

Remark 4.5. The quotient LMn-algebra L/F is also a Heyting algebra, hence x/F ≤
y/F iff x/F ⇒ y/F = 1/F iff x ⇒ y ∈ F .

Definition 4.3. A strong similarity LMn-algebra is a pair (L, S) where L is an
LMn-algebra and S : L × L → L is a binary operation on L such that the following
properties hold for every x, y, z ∈ L :
(S1) S(x, x) = 1,
(S2) S(x, y) = S(y, x),
(S3) S(x, y) ∧ S(y, z) ≤ S(x, z),
(S′4) x ∧ S(x, y) ≤ y,
(S′5) S(x ⇔ y, 1) ≤ S(x, z) ⇔ S(y, z).

An operator S which satisfies S1-S3, S
′
4, S

′
5 will be called a strong similarity oper-

ation on L (or, simply, a strong similarity on L).
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The relation “ ≤ ” between two strong similarities is defined as in the case of
similarities (see Section 3).

The notions of subalgebra and homomorphism are also defined as usual.

Remark 4.6. From S′5 and Lemma 4.3,(11) we deduce that

S(x ⇔ y, 1) ≤ S(x, y) ⇔ S(y, y) = S(x, y) ⇔ 1 = S(x, y) for every x, y ∈ L.

Examples:
1. On every LMn-algebra L, the operation E(x, y) = x ⇔ y is a strong similarity.
Indeed, E(x, x) = 1 and E(x, y) = E(y, x).
The condition S3 results from Lemma 4.3,(9).
For S′4 we have that x ∧ (x ⇒ y) ≤ y (by Lemma 4.2,(1)), hence x ∧ (x ⇔ y) ≤

x ∧ (x ⇒ y) ≤ y.
The condition S′5 results from Lemma 4.3,(8) and (11):
E(x ⇔ y, 1) = (x ⇔ y) ⇔ 1 = x ⇔ y ≤ (x ⇔ z) ⇔ (y ⇔ z).
2. The operation ∆ : L× L → L defined in Example 2 of Section 3 is a strong

similarity.
The conditions S1-S3 were proved in Section 3.

It is obvious that x ∧∆(x, y) = { x, x = y
0, x 6= y

≤ y.

For S′5 just replace ←→ by ⇔ in the proof of S5 in Example 2 of the previous
section and use Remark 4.3, (ii).

Therefore, ∆(x ⇔ y, 1) = { 1, x = y
0, x 6= y

(by Remark 4.3,(i)).

Also, ∆(x, z) ⇔ ∆(y, z) = { 1, ∆(x, z) = ∆(y, z)
0, otherwise (by Remark 4.3,(ii)).

Therefore ∆(x ⇔ y, 1) ≤ ∆(x, z) ⇔ ∆(y, z).

Remark 4.7. For any strong similarity S on L we have that ∆ ≤ S ≤ E.

Indeed, the condition ∆ ≤ S is obvious and from S′4 we deduce that S(x, y) ≤ x ⇒
y, hence, with S2, S(x, y) ≤ x ⇔ y.

Proposition 4.4. For any strong similarity S on L the following conditions are
equivalent:
(i) S = E,

(ii) S(x, 1) = x, for every x ∈ L.

Proof. (i) ⇒ (ii). By Lemma 4.3,(8).
(ii) ⇒ (i). We only have to prove that x ⇔ y ≤ S(x, y). But x ⇔ y = S(x ⇔

y, 1) ≤ S(x, y) (by Remark 4.6). Therefore E ≤ S. ¥
The notion of S-filter is defined as in Section 3 (see Definition 3.3).

Proposition 4.5. Let (L, S) be a strong similarity LMn-algebra and F an n-filter.
Then F is an S-filter iff S(x, 1) ∈ F for every x ∈ F.

Proof. “ ⇒ ”. Because 1 ∈ F we have that S(x, 1) ∈ F for every x ∈ F.
“ ⇐ ”. If x, y ∈ F, then x ←→ y ∈ F (by Remark 2.4). Since x ←→ y ≤ x ⇔ y

(by Remark 4.1) it follows that x ⇔ y ∈ F , hence S(x ⇔ y, 1) ∈ F.
But, S(x ⇔ y, 1) ≤ S(x, y) (by Remark 4.6), hence S(x, y) ∈ F.
Therefore, F is an S-filter. ¥

Proposition 4.6. If (L, S) is a strong similarity LMn-algebra and F ⊆ L is an
S-filter, then ∼F is a congruence with respect to the strong similarity LMn-algebra
(L, S).
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Proof. As in Proposition 3.5 we only have to prove that ∼F is compatible with
S. Suppose that x1, x2, y1, y2 ∈ L such that x1 ∼F x2 and y1 ∼F y2.

Hence x1 ⇔ x2 ∈ F and y1 ⇔ y2 ∈ F , so S(x1 ⇔ x2, 1) ∈ F and S(y1 ⇔ y2, 1) ∈ F.
But

S(x1 ⇔ x2, 1) ≤ S(x1, y1) ⇔ S(y1, x2) and
S(y1 ⇔ y2, 1) ≤ S(y1, x2) ⇔ S(x2, y2),

hence S(x1, y1) ⇔ S(y1, x2) ∈ F and S(y1, x2) ⇔ S(x2, y2) ∈ F . So, S(x1, y1) ∼F

S(y1, x2) and S(y1, x2) ∼F S(x2, y2), hence S(x1, y1) ∼F S(x2, y2). ¥
As I said in the previous section for the class of similarity LMn-algebras, the class

of strong similarity LMn-algebras is also equational, hence:

Remark 4.8. If (L, S) is a strong similarity LMn-algebra and F ⊆ L is an S-filter of
L, then the quotient LMn-algebra L/F has a canonical structure of strong similarity
LMn-algebra, where the strong similarity SF : L/F × L/F → L/F is defined by
SF (x/F, y/F ) := S(x, y)/F , for every x, y ∈ L.

The canonical surjection x 7−→ x/F is a strong similarity LMn-algebra homomor-
phism.

Definition 4.4. A strong similarity LMn-algebra is called representable if it is a
subdirect product of strong similarity LMn-chains.

Lemma 4.4. If x ∨ y = 1 then x ⇒ y = y and y ⇒ x = x.

Proof. If x∨y = 1 then N ϕi(x) ≤ ϕi(y) for every i = 1, ..., n−1 (see the proof of

Lemma 3.2). Then x ⇒ y = y∨
n−1∧
i=1

(N ϕi(x)∨ ϕi(y)) = y∨
n−1∧
i=1

ϕi(y) = y∨ϕ1(y) = y.

Therefore we obtain that y ⇒ x = x. ¥
Theorem 4.2. For a strong similarity LMn-algebra (L, S), the following are equiv-
alent:
(1) (L, S) is representable,
(2) S(x ⇒ y, 1) ∨ (y ⇒ x) = 1 for every x, y ∈ L,
(3) x ∨ y = 1 implies x ∨ S(y, 1) = 1,
(4) Any prime n-filter is an S-filter.

Proof. (1) ⇒ (2). Because (L, S) is representable, we can consider x ≤ y or y ≤ x.
If x ≤ y then x ⇒ y = 1, hence S(x ⇒ y, 1) ∨ (y ⇒ x) = 1.
If y ≤ x then y ⇒ x = 1, hence S(x ⇒ y, 1) ∨ (y ⇒ x) = 1.
(2) ⇒ (3). From (2) and Lemma 4.4 it follows that x ∨ S(y, 1) = 1.
(3) ⇒ (4) and (4) ⇒ (1) follow in the same way as in the Theorem 3.1, but using

Proposition 4.5. ¥
Remark 4.9. The strong similarity LMn-algebra (L,E) in Example 1 is repre-
sentable.

Indeed, E(x ⇒ y, 1)∨(y ⇒ x) = ((x ⇒ y) ⇔ 1)∨(y ⇒ x) = (x ⇒ y)∨(y ⇒ x) = 1
(by Proposition 4.2).

Lemma 4.5. For any LMn-algebra L, the strong similarity LMn-algebra (L,∆) is
representable iff L is an LMn-chain.

Proof. As for Lemma 3.3, but using Theorem 4.2. ¥
Remark 4.10. From the previous lemma it follows that there exist strong similarity
LMn-algebras which are not representable: (L, ∆) where L is not an LMn-chain.



SIMILARITY LUKASIEWICZ-MOISIL ALGEBRAS 67

Proposition 4.7. If (L, S) is a representable strong similarity LMn-algebra, then
the following are equivalent:
(1) x ≤ y implies S(x, 1) ≤ S(y, 1),
(2) S(x ∨ y, 1) = S(x, 1) ∨ S(y, 1).

Proof. (1) ⇒ (2). Without loss of generality we can suppose x ≤ y. Then S(x, 1) ≤
S(y, 1), hence S(x ∨ y, 1) = S(x, 1) ∨ S(y, 1).

(2) ⇒ (1). Obvious. ¥
As in the previous section, an open problem appears: to find a strong similarity

which is not isotone.

5. A general theory of similarity

Let (L,≤) be a bounded lattice and ~ a commutative binary operation on L such
that the following relations are verified:
(l1) x ~ 1 = x,
(l2) x ~ 0 = 0,
(l3) x ~ y ≤ x ∧ y.

Also, I consider two functions ϕ,Φ : L → L such that ϕ(x) ≤ x and x ≤ Φ(x) for
every x ∈ L (it follows that ϕ(0) = 0 and Φ(1) = 1).

Let ”−→ ” be another binary operation on L such that
(l4) 1 −→ x = ϕ(x) for all x ∈ L or 1 −→ x = x for all x ∈ L,
(l5) (x ∧ y) −→ y = 1.

Definition 5.1. By an L-algebra we understand a bounded lattice (L,≤) with all
the operations and properties mentioned above. If the relation ≤ is total, L will be
called an L-chain.

In the following, by L we will understand an L-algebra.

Remark 5.1. Since inequalities can be written as equalities in any (semi)lattice,
the class of L-algebras is the union of two equational classes, defined by identities
1 −→ x = ϕ(x) and 1 −→ x = x, respectively.

Now let us consider the following axioms:
(l
′
3) x ~ y = 1 iff x = y = 1,

(l
′
5) If x ≤ y then x −→ y = 1.

Remark 5.2. The axiom (l3) implies the axiom (l
′
3) and the axioms (l5) and (l

′
5) are

equivalent.

Indeed, let us consider that x ~ y ≤ x ∧ y. If x ~ y = 1 then x ∧ y = 1, hence
x = y = 1 and if x = y = 1 then x ~ y = 1 (by (l1)). For the second affirmation, if
x ≤ y, then (l5) induces x −→ y = 1 and conversely, we have that x ∧ y ≤ y, hence
(l
′
5) implies (x ∧ y) −→ y = 1.
In the following we will use (l

′
3) and (l

′
5) frequently. Thus e.g.:

Remark 5.3. We have that x −→ x = 1 and x −→ 1 = 1.

For x, y ∈ L I define

(l6) x ←→ y = (x −→ y) ~ (y −→ x).

Remark 5.4. It follows that
(i) x ←→ y = 1 iff x −→ y = y −→ x = 1 (hence x ←→ x = 1),
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(ii) x ←→ 1 = (x −→ 1) ~ (1 −→ x) = 1 ~ (1 −→ x) = 1 −→ x, hence, by (l4), we
have x ←→ 1 = ϕ(x) or x ←→ 1 = x.

Definition 5.2. A similarity L-algebra is a pair (L, S) where L is an L-algebra and
S : L× L → L is a binary operation on L such that the following properties hold for
every x, y, z ∈ L :
(S1) S(x, x) = 1,
(S2) S(x, y) = S(y, x),
(S3) S(x, y) ~ S(y, z) ≤ S(x, z),
(S4) x ~ S(x, y) ≤ Φ(y),
(S5) S(x ←→ y, 1) ≤ S(x, z) ←→ S(y, z).

The operation S will be called, simply, a similarity on L.
Example. Let’s consider the binary operation ∆ : L× L → L defined by

∆(x, y) = { 1, x = y
0, x 6= y

, for any x, y ∈ L.

Then, this operation satisfies the condition (S1)− (S4) from the above definition.
Indeed:
(S1) ∆(x, x) = 1 and
(S2)∆(x, y) = ∆(y, x) are obvious.

(S3) ∆(x, y) ~ ∆(y, z) = { 1 ~ ∆(y, z), x = y
0 ~ ∆(y, z), x 6= y

= { 1, x = y = z
0, otherwise ≤ ∆(x, z).

(S4) x ~ ∆(x, y) = { x ~ 1, x = y
x ~ 0, x 6= y

= { x, x = y
0, x 6= y

≤ Φ(y).

If moreover,
(l
′′
5 ) x −→ y = 1 implies x ≤ y,

which in view of (l
′
5), (l

′
3) and (l6) is equivalent to

(l
′′′
5 ) x ←→ y = 1 iff x = y,

then condition (S5) holds as well.

Indeed, we have that ∆(x ←→ y, 1) = { 1, x ←→ y = 1
0, x ←→ y 6= 1 = { 1, x = y

0, x 6= y
.

Also, ∆(x, z) ←→ ∆(y, z) = { 1, ∆(x, z) = ∆(y, z)
0, otherwise .

Therefore ∆(x ←→ y, 1) ≤ ∆(x, z) ←→ ∆(y, z).

Remark 5.5. From (S5) and Remark 5.4,(ii) we obtain that:

S(x ←→ y, 1) ≤ S(x, y) ←→ S(y, y) = S(x, y) ←→ 1 = ϕ(S(x, y)) or S(x, y),

but in both cases we obtain that S(x ←→ y, 1) ≤ S(x, y).

Definition 5.3. A nonempty subset F of L is called an L-filter if it verifies the
following conditions:
(f1) x ∈ F and x ≤ y implies y ∈ F,
(f2) x, y ∈ F implies x ~ y ∈ F,
(f3) x ∈ F implies ϕ(x) ∈ F.

Remark 5.6. It is obvious that for any L-filter F of an L-algebra condition (f1)
shows that 1 ∈ F (because F 6= ∅ and x ≤ 1 for every x ∈ F ).

Definition 5.4. An L-filter F of L is called an S-filter if S(x, y) ∈ F for every
x, y ∈ F.
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Proposition 5.1. Let (L, S) be a similarity L-algebra. Then an L-filter F is an
S-filter iff S(x, 1) ∈ F for every x ∈ F.

Proof. ”⇒”. Because 1 ∈ F we have that S(x, 1) ∈ F for every x ∈ F.
”⇐”. If x, y ∈ F, then S(x, 1), S(y, 1) ∈ F , hence S(x, 1) ~ S(y, 1) ∈ F.
But S(x, 1) ~ S(y, 1) ≤ S(x, y) (by (S2) and (S3)), then S(x, y) ∈ F.
Therefore, F is an S-filter. ¥
For an L-filter F I consider the relation

x ∼F y iff x ←→ y ∈ F

and the following axiom

(P1) ∼F is a congruence on L.

In view of Remark 5.1, if L satisfies the axiom (P1), then the quotient algebra
L/ ∼F is an L-algebra, denoted simply by L/F (by x/F we denote the congruence
class of x ∈ L relative to ∼F ).

Proposition 5.2. If L satisfies the axiom (P1), S is a similarity on L and F is an
S-filter, then ∼F is a congruence on the similarity L-algebra (L, S).

Proof. We have only to study the compatibility of ∼F with S. Suppose that
x1, x2, y1, y2 ∈ L such that x1 ∼F x2 and y1 ∼F y2.

It follows that x1 ←→ x2, y1 ←→ y2 ∈ F. Hence S(x1 ←→ x2, 1), S(y1 ←→ y2, 1) ∈
F.

But

S(x1 ←→ x2, 1) ≤ S(x1, y1) ←→ S(y1, x2) and
S(y1 ←→ y2, 1) ≤ S(y1, x2) ←→ S(x2, y2),

hence S(x1, y1) ←→ S(y1, x2), S(y1, x2) ←→ S(x2, y2) ∈ F . So, S(x1, y1) ∼F S(y1, x2)
and S(y1, x2) ∼F S(x2, y2), hence S(x1, y1) ∼F S(x2, y2). ¥
Remark 5.7. In this case, the corresponding similarity on the quotient algebra L/F

SF : L/F × L/F → L/F is defined by SF (x/F, y/F ) = S(x, y)/F,

and (L/F, SF ) is a similarity L-algebra.

Definition 5.5. A proper L-filter F is called prime if x ∨ y ∈ F implies x ∈ F or
y ∈ F.

Definition 5.6. By a maximal (minimal) L-filter is meant a maximal (minimal)
element in the family of proper L-filters ordered by set inclusion.

By a maximal (minimal) prime L-filter is meant a maximal (minimal) element in
the family of prime L-filters ordered by set inclusion.

I consider now the following four axioms:
(P2) If F is a prime L-filter then L/F is an L-chain;
(P3) If x ∨ y = 1 then either x −→ y = ϕ(y) and y −→ x = ϕ(x), or x −→ y = y

and y −→ x = x;
(P4) If F is a minimal prime L-filter and x ∈ F then there is y ∈ L\F such that

x ∨ y = 1;
(P5) There is a family F of prime L-filters of L such that L is the subdirect product

(as an L-algebra) of the family {L/F :F ∈ F}.
Definition 5.7. A similarity L-algebra (L, S) is called representable if it is a subdirect
product of similarity L-chains.
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Theorem 5.1. If (L, S) is a similarity L-algebra and L satisfies the axioms (P1) −
(P5), then the following conditions are equivalent:
(1) (L, S) is representable,
(2) S(x −→ y, 1) ∨ (y −→ x) = 1 for every x, y ∈ L,
(3) x ∨ y = 1 implies x ∨ S(y, 1) = 1,
(4) Any minimal prime L-filter is an S-filter.

Proof.(1) ⇒ (2). Because (L, S) is representable we can consider x ≤ y or y ≤ x.
If x ≤ y then x −→ y = 1, hence S(x −→ y, 1) ∨ (y −→ x) = 1.
If y ≤ x then y −→ x = 1, hence S(x −→ y, 1) ∨ (y −→ x) = 1.
(2) ⇒ (3). Let x, y ∈ L such that x ∨ y = 1. By (P3) we have two cases:
a) If x −→ y = ϕ(y) and y −→ x = ϕ(x), from (2) we obtain that S(ϕ(y), 1) ∨

ϕ(x) = 1. According to (l4) we have two subcases:
a1) If 1 −→ t = ϕ(t) for every t ∈ L we obtain (via Remark 5.4,(ii)) that

S(ϕ(y), 1) = S(y ←→ 1, 1) ≤ S(y, 1) (by Remark 5.5), then 1 = S(ϕ(y), 1) ∨ ϕ(x) ≤
S(y, 1) ∨ x, hence x ∨ S(y, 1) = 1.

a2) If 1 −→ t = t by Remark 5.3 we obtain that t ←→ 1 = t for all t ∈ L and by
Remark 5.4 we obtain that t ←→ 1 = ϕ(t) for all t ∈ L. Hence ϕ is the identical map.
Therefore this second subcase leads us to the case b):

b) If x −→ y = y and y −→ x = x, from (2) we obtain that S(y, 1) ∨ x = 1.
(3) ⇒ (4). Let F ⊂ L be a minimal prime L-filter and x ∈ F . Since L has the
property (P4), there is y ∈ L\F such that x ∨ y = 1, hence y ∨ S(x, 1) = 1(by (3)).
Because 1 ∈ F, y /∈ F and F is prime, it follows that S(x, 1) ∈ F .

Therefore F is an S-filter (by Proposition 5.1).
(4) ⇒ (1). The axiom (P5) shows that there exists a family F of prime L-filters

such that L is the subdirect product of the family {L/F : F ∈ F}. By condition (4),
Remark 5.7 and axiom (P2) we deduce that L is a subdirect product of the family of
similarity L chains {L/F : F ∈ F}. Therefore (L, S) is representable. ¥
Lemma 5.1. If L is a chain and (L,∆) is a similarity L-algebra, then it is repre-
sentable.

Proof. Let x, y ∈ L. If x ≤ y then x −→ y = 1 and if y ≤ x then y −→ x = 1,
hence in both cases ∆(x −→ y, 1)∨ (y −→ x) = 1. Therefore (L, ∆) is a representable
similarity L-algebra. ¥

Open problem: If (L,∆) is representable then L is a chain?

Proposition 5.3. If (L, S) is a representable similarity L-algebra, then the following
are equivalent:
(1) x ≤ y implies S(x, 1) ≤ S(y, 1),
(2) S(x ∧ y, 1) = S(x, 1) ∨ S(y, 1).

Proof. (1) ⇒ (2). Without loss of generality, we can suppose x ≤ y. Then
S(x, 1) ≤ S(y, 1), hence S(x ∨ y, 1) = S(x, 1) ∨ S(y, 1).

(2) ⇒ (1). Obvious. ¥
Applications

Now we consider three particular situations:
1. If L is an LMn-algebra, we take

~ = ∧, ϕ = ϕ1, Φ = ϕn−1 and x −→ y =
n−1∧

i=1

(Nϕi(x) ∨ ϕi(y))( see Definition 3.1),



SIMILARITY LUKASIEWICZ-MOISIL ALGEBRAS 71

then we obtain the theory of similarity LMn-algebra presented in Section 3.
We know that L is a bounded lattice; this fact, together with Proposition 3.2 (via

Remark 5.2) and Lemma 3.1, proves that L is an L-algebra.
Moreover, axiom (l

′′
5 ) is fulfilled by Proposition 3.2.

The axiom (P1) holds in every LMn-algebra according to Proposition 3.1.
For the axiom (P2) we have that:

Proposition 5.4. If L is an LMn-algebra and F is a prime n-filter then L/F is an
LMn-chain.

Proof. Let x, y ∈ L. We know that (L,⇒) is a linear Heyting algebra (see
Proposition 4.2 from Section 3), hence (x ⇒ y) ∨ (y ⇒ x) = 1. But F is prime and
1 ∈ F , then x ⇒ y ∈ F or y ⇒ x ∈ F . Then (x ⇒ y)/F = 1/F or (y ⇒ x)/F = 1/F ,
hence x/F ⇒ y/F = 1/F or y/F ⇒ x/F = 1/F . Therefore, because L/F is a
Heyting algebra, x/F ≤ y/F or y/F ≤ x/F , that is, L/F is an LMn-chain. ¥

In our case the axiom (P3) becomes

(P3)If x ∨ y = 1 then x −→ y = ϕ1(y) and y −→ x = ϕ1(x),

which is true by Lemma 3.2.

For the axiom (P4) we need an important result from the theory of LMn-algebras,
namely: the minimal prime n-filters coincides with the prime n-filters (see Theorem
4.3 and Remark 4.4 from [4]) and the fact that in any LMn-algebra, x ∨Nϕ1(x) = 1
(see Lemma 2.3, (c4)). If F is a prime n-filter then it is proper, hence x ∈ F implies
ϕ1(x) ∈ F , so Nϕ1(x) /∈ F (otherwise, 0 = ϕ1(x) ∧Nϕ1(x) ∈ F - a contradiction).

The axiom (P5) is nothing else but Corollary 2.2 from Section 2.
In this case, Lemma 3.3 is stronger than Lemma 5.1 because we have an ”iff”

condition, Remark 3.6 gives an answer of the open problem that appeared in the
general case.

2. If L is an LMn-algebra, we take

~ = ∧, ϕ = ϕ1, Φ = 1L

and

x ⇒ y = y ∨Nϕn−1(x) ∨ (ϕn−1(x) ∧Nϕn−2(x) ∧ ϕn−2(y)) ∨ ...

... ∨ (ϕ2(x) ∧Nϕ1(x) ∧ ϕ1(y)) ∨ (ϕ1(x) ∧ ϕ1(y))

= y∨
n−1∧

i=1

(Nϕi(x) ∨ ϕi(y))( see Lemma 4.1),

then we obtain the theory of strong similarity LMn-algebra presented in Section 4.
We have that L is a bounded lattice, hence, by Lemma 4.2, (3) and (4)(via Remark

5.2), we deduce that L is an L-algebra.
Moreover, axiom (l

′′
5 ) is fulfilled by Lemma 4.2, (4).

For an n-filter F we have the relation

x ∼F y iff x ⇔ y ∈ F.

Remark 4.4 shows that x ∼F y is a congruence on L, hence the axiom (P1) is
satisfied.

The axioms (P2), (P4), (P5) are exactly as in the case 1.
The axiom (P3) is different from the case 1 because now we have

(P3) If x ∨ y = 1 then x ⇒ y = y and y ⇒ x = x,

which is true by Lemma 4.4.
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As in the first case, Lemma 4.5 is stronger than Lemma 5.1 because we also have
an ”iff” condition, Remark 3.6 gives an answer of the open problem that appeared in
the general case.

3. Now I consider the case of MV -algebras. Starting from the general aspects
presented above, I obtain the theory of similarity MV -algebra from [11].

In the following, I remind some important definitions and proprieties of MV -
algebras which I’ll use in my presentation.

Definition 5.8. ([5], [10]) An MV -algebra is an algebra L = (L,⊕,∗ , 0) of type
(2, 1, 0) satisfying the following equations:

(mv1) (L,⊕, 0) is a commutative monoid,
(mv2) x∗∗ = x,
(mv3) x⊕ 0∗ = 0∗,
(mv4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

In order to simplify the notation, an MV -algebra L = (L,⊕,∗ , 0) will be denoted by
its support set, L. For an MV -algebra L the constant 1 and the auxiliary operations
¯ are defined as follows :

(mv5) 1 = 0∗,

(mv6) x¯ y = (x∗ ⊕ y∗)∗,

for any x, y ∈ L.

Lemma 5.2. ([10]) For x, y ∈ L, the following conditions are equivalent:
(i) x∗ ⊕ y = 1,

(ii) x¯ y∗ = 0,
(iii) y = x⊕ (y∗ ¯ x),
(iv) There is an element z ∈ A such that x⊕ z = y,
(v) There is an element t ∈ A such that x = y ¯ t.

For any two elements x, y ∈ L we write x ≤ y iff x and y satisfy one of the
equivalent conditions (i)-(v) from the above lemma and we have that ≤ is an order
relation on L (which is called the natural order on L).

We will say that L is an MV -chain if it is linearly ordered relative to natural order.

Proposition 5.5. ([10], Proposition 1.1.5, p.10) The natural order determines on L
a structure of bounded distributive lattice, namely, the join x ∨ y and the meet x ∧ y
of the elements x and y are given by:

x ∨ y = x¯ y∗ ⊕ y = y ¯ x∗ ⊕ x,

x ∧ y = (x∗ ∨ y∗)∗ = x¯ (x∗ ⊕ y) = y ¯ (y∗ ⊕ x).

Clearly, x¯ y ≤ x ∧ y ≤ x, y ≤ x ∨ y ≤ x⊕ y and x ∧ x∗ ≤ y ∨ y∗.

Remark 5.8. ([5], p.468) It is clear that as in the case of Boolean algebras, there is
a duality involving elements 0 and 1, the operations ⊕ and ¯, and the operations ∨
and ∧. Thus any theorem will have its dual as a consequence from the axioms.

Lemma 5.3. ([10], p.8 and Lemma 1.1.4, p.10) If x, y, z ∈ L then we have:
(1) 1∗ = 0, 0∗ = 1
(2) x⊕ y = (x∗ ¯ y∗)∗,
(3) x⊕ 1 = 1, x¯ 1 = x,
(4) x¯ 0 = 0,
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(5) x⊕ x∗ = 1, x¯ x∗ = 0,
(6) x ≤ y iff y∗ ≤ x∗,
(7) x¯ z ≤ y iff z ≤ x∗ ⊕ y,
(8) x¯ (y ¯ z) = (x¯ y)¯ z.

Proposition 5.6. ([10], Proposition 1.1.6, p.11) The following equations hold in
every MV -algebra:
(9) x¯ (y ∨ z) = (x¯ y) ∨ (x¯ z),

(10) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z).

Remark 5.9. We have that x¯ y = 1 iff x = y = 1.

Indeed, it is clear that if x = y = 1 then x¯ y = 1. Conversely, if x¯ y = 1 then
x∗ ⊕ y∗ = 0, so x = x⊕ 0 = x⊕ (x∗ ⊕ y∗) = (x⊕ x∗)⊕ y∗ = 1⊕ y∗ = 1 and similarly,
y = 1.

Theorem 5.2. ([16], Theorem 3.2, [5],Theorem 3.3, [2], Theorem 1) In every MV -
algebra we have:
(i) x⊕ y = (x ∨ y)⊕ (x ∧ y),

(ii) x¯ y = (x ∨ y)¯ (x ∧ y),
(iii) (x∗ ¯ y) ∧ (y∗ ¯ x) = 0,
(iv) (x∗ ⊕ y) ∨ (y∗ ⊕ x) = 1.

Remark 5.10. By Theorem 5.2 we deduce that

(x∗ ¯ y)⊕ (y∗ ¯ x) = (x∗ ¯ y) ∨ (y∗ ¯ x) and
(x∗ ⊕ y)¯ (y∗ ⊕ x) = (x∗ ⊕ y) ∧ (y∗ ⊕ x).

Also, for an MV -algebra one defines the operations −→ and ←→ by

(mv7) x −→ y = x∗ ⊕ y

and

(mv8) x ←→ y = (x −→ y)¯ (y −→ x) = (x∗ ⊕ y) ∧ (y∗ ⊕ x)(by Remark 5.10).

Remark 5.11. It is easy to see that:
(i) 1 −→ x = x and x ←→ 1 = x,

(ii) By Lemma 5.2, we have that x ≤ y iff x −→ y = 1 ( hence, x −→ x = 1 and
x −→ 1 = 1). Therefore x ←→ y = 1 iff x = y.

Remark 5.12. By Lemma 5.3,(7) we have that x¯ y ≤ z iff x ≤ y −→ z.

Definition 5.9. ([10]) An MV -filter of L is a nonempty subset F ⊆ L which verifies
the following conditions:
(f1) x ∈ F and x ≤ y implies y ∈ F,
(f2) x, y ∈ F implies x¯ y ∈ F.

Remark 5.13. Every MV -filter contains the element 1.

Definition 5.10. ([10]) An MV -ideal of L is a nonempty subset I ⊆ L which verifies
the following conditions:
(i1) x ∈ I and y ≤ x implies y ∈ I,
(i2) x, y ∈ I implies x⊕ y ∈ I.

Proposition 5.7. ([10], Proposition 1.2.6, p.15) Let I be an ideal of the MV -algebra
L. Then the binary relation

x ∼I y iff (x∗ ¯ y)⊕ (y∗ ¯ x) ∈ I

is a congruence relation on L.
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Remark 5.14. According to Remark 5.10 we have that

x ∼I y iff (x∗ ¯ y) ∨ (y∗ ¯ x) ∈ I.

Dually (by Remark 5.8), for an MV -filter F we have the congruence relation on L

x ∼F y iff (x∗ ⊕ y) ∧ (y∗ ⊕ x) ∈ F,

that is (by (mv8)),

x ∼F y iff x ←→ y ∈ F.

A prime filter in an MV -algebra is defined as in Definition 5.5.

Definition 5.11. ([10]) A proper MV-ideal I of L is called prime if x∧y ∈ I implies
x ∈ I or y ∈ I.

Proposition 5.8. ([6]) For an MV -ideal I of an MV -algebra L the following are
equivalent:
(i) I is prime,

(ii) L/I is a non-trivial MV -chain.

Lemma 5.4. If x ∨ y = 1 then x −→ y = y and y −→ x = x.

Proof. By Proposition 5.6,(10), we have

x = x⊕ 0 = x⊕ (x ∨ y)∗ = x⊕ (x∗ ∧ y∗) = (x⊕ x∗) ∧ (x⊕ y∗)
= 1 ∧ (x⊕ y∗) = x⊕ y∗ = y −→ x

and similarly, x −→ y = y. ¥
Proposition 5.9. ([10], Theorem 6.1.5, p.114) If I is a minimal prime ideal and
x ∈ I then there is y ∈ L\I such that x ∧ y = 0.

The following representation theorem, due to Chang, is well known:

Theorem 5.3. ([10]) Every nontrivial MV -algebra L is a subdirect product of MV -
chains (arising as quotient MV -algebras over prime ideals).

Definition 5.12. ([11]) A similarity MV-algebra is a pair (L, S) where L is an MV -
algebra and S : L × L → L is a binary operation on L such that the following
properties hold for every x, y, z ∈ L :
(S1) S(x, x) = 1,
(S2) S(x, y) = S(y, x),
(S3) S(x, y)¯ S(y, z) ≤ S(x, z),
(S4) x¯ S(x, y) ≤ y,
(S5) S(x ←→ y, 1) ≤ S(x, z) ←→ S(y, z).

The operation S will be called, as usual, a similarity on L.
We take: ~ = ¯,Φ = ϕ = 1L, x −→ y = x∗ ⊕ y.
Because the operation ⊕ is commutative, from relation (mv6) it follows that ¯ is

commutative.
By Proposition 5.5, Lemma 5.3,(3) and (4) and Remark 5.11 (via Remark 5.2), the

axioms (l1) − (l5) are satisfied, so every MV -algebra is an L-algebra which satisfies
(l
′′
5 ).
The axiom (P1) results by Remark 5.14.
By the dual of Proposition 5.8, the axiom (P2) is satisfied in every MV -algebra.
The axiom (P3) is in this case

(P3) If x ∨ y = 1 then x −→ y = y and y −→ x = x,
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which is true by Lemma 5.4.
The axiom (P4) is obtained by the dual of Proposition 5.9.
By the dual of Theorem 5.3 we get that every nontrivial MV -algebra L is a sub-

direct product of MV -chains (arising as quotient MV -algebras over prime filters).
Hence the axiom (P5) is satisfied (so, every nontrivial MV -algebra is representable).
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[7] F. Chirteş: Contribution to the study of LMn-algebras, P.H. Thesis, Faculty of Mathematic and
Computer Science, Bucharest, 2007.

[8] R. Cignoli: Algebras de Moisil, Notas de Logica Matematica, 27, Instituto de Matematica,
Universidad del Sur, Bahia Blanca, 1970.

[9] R. Cignoli: An algebraic approch to elementary theory based on n-valued Lukasiewicz logics, Z.
Math Logic u. Grund. Math. 30, 87-96, (1984).

[10] R. Cignoli, I.M.L. D’Ottaviano, D. Mundici, Algebraic Foundations of many-valued Reasoning,
Trends in Logic-Studia Logica Library 7, Dordrecht: Kluwer Academic Publishers (2000).
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