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On the integral form of the triangle inequality
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ABSTRACT. We prove a formula concerning the precision in the triangle inequality.
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The discrepancy in the integral form of the triangle inequality can be easily esti-
mated in terms of variance. Precisely, if f : [a,b] — R is a square integrable function,

then
0<—/ ) do— |- /f

1
<
“b—al/,

1 /b
<

b—a/,

If f is Lipschitz, with Lipschitz constant

dzr

——/f )t

b 2
f@) - [ s

1/2

dz =4/ Var(f).

. flz) = fy

Lip(f) = sup @) ~ 1)
TH#y r—y

then we may take into account the Ostrowski inequality (cf. [3], p. 63),
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in order to conclude that

v Var(f) < \/g(b —a)Lip(f) = 0.34157(b — a) Lip(f).

The aim of this paper is to show that a better estimate is available.
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Theorem 0.1. If f : [a,b] — R is a Lipschitz function, then
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In the particular case of continuously differentiable functions we may use the equal-
ity Llp(f) = Supze[a,b] |fl(x)| :

Proof. According to the discussion above it suffices to prove that
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For this, notice first that f is an absolutely continuous function whose derivative
[’ belongs to L* ([a,b]). Clearly, || f'|| .« = Lip(f). By the Leibniz-Newton Formula
(for absolutely continuous functions, see [2]) we infer that

< g, (L)
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which yields
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By integrating against [a, b] we arrive at the inequality (L). I

Corollary 0.1. Suppose that f : [a,b] — R is a differentiable function with Lipschitz
derivative. Then o
Lip(f’)

+ 3 (b—a).

b f(b) — f(a)
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Proof. In fact, if v : [a,b] — R is differentiable and its derivative is integrable, then v
has bounded variation and ,
b
\V ov= / W' (¢)| dt.
See [1], p. 104. I
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