On the integral form of the triangle inequality

Raluca Ciurcea

Abstract. We prove a formula concerning the precision in the triangle inequality.
2000 Mathematics Subject Classification. 26D10; 26D15; 26A24; 26A45.
Key words and phrases. Leibniz-Newton Formula, absolutely continuous function, integrable function.

The discrepancy in the integral form of the triangle inequality can be easily estimated in terms of variance. Precisely, if $f:[a, b] \rightarrow \mathbb{R}$ is a square integrable function, then

$$
\begin{aligned}
0 \leq \frac{1}{b-a} \int_{a}^{b}|f(x)| & d x-\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
& \leq \frac{1}{b-a} \int_{a}^{b}\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| d x \\
& \leq\left(\frac{1}{b-a} \int_{a}^{b}\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right|^{2} d x\right)^{1 / 2}=\sqrt{\operatorname{Var}(f)} .
\end{aligned}
$$

If f is Lipschitz, with Lipschitz constant

$$
\operatorname{Lip}(f)=\sup _{x \neq y}\left|\frac{f(x)-f(y)}{x-y}\right|,
$$

then we may take into account the Ostrowski inequality (cf. [3], p. 63),

$$
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left(\frac{1}{4}+\left(\frac{x-\frac{a+b}{2}}{b-a}\right)^{2}\right)(b-a) \operatorname{Lip}(f)
$$

in order to conclude that

$$
\sqrt{\operatorname{Var}(f)} \leq \sqrt{\frac{7}{60}}(b-a) \operatorname{Lip}(f) \approx 0.34157(b-a) \operatorname{Lip}(f)
$$

The aim of this paper is to show that a better estimate is available.
Theorem 0.1. If $f:[a, b] \rightarrow \mathbb{R}$ is a Lipschitz function, then

$$
\begin{aligned}
0 \leq \frac{1}{b-a} \int_{a}^{b}|f(x)| d x-\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| & \\
& \leq \min \left\{\sqrt{\operatorname{Var}(f)}, \frac{\operatorname{Lip}(f)}{3}(b-a)\right\}
\end{aligned}
$$

Received: 10 November 2008.

In the particular case of continuously differentiable functions we may use the equality $\operatorname{Lip}(f)=\sup _{x \in[a, b]}\left|f^{\prime}(x)\right|$.
Proof. According to the discussion above it suffices to prove that

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b}|f(x)| d x-\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{\operatorname{Lip}(f)}{3}(b-a) \tag{L}
\end{equation*}
$$

For this, notice first that f is an absolutely continuous function whose derivative f^{\prime} belongs to $L^{\infty}([a, b])$. Clearly, $\left\|f^{\prime}\right\|_{L^{\infty}}=\operatorname{Lip}(f)$. By the Leibniz-Newton Formula (for absolutely continuous functions, see [2]) we infer that

$$
(b-a) f(x)=\int_{a}^{b} f(t) d t+\int_{a}^{x}(t-a) f^{\prime}(t) d t-\int_{x}^{b}(b-t) f^{\prime}(t) d t
$$

which yields

$$
\begin{aligned}
(b-a)|f(x)| & \leq\left|\int_{a}^{b} f(t) d t\right|+\int_{a}^{x}(t-a)\left|f^{\prime}(t)\right| d t+\int_{x}^{b}(b-t) f^{\prime}(t) d t \\
& \leq\left|\int_{a}^{b} f(t) d t\right|+\operatorname{Lip}(f) \cdot \frac{(x-a)^{2}+(b-x)^{2}}{2}
\end{aligned}
$$

By integrating against $[a, b]$ we arrive at the inequality (L).
Corollary 0.1. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a differentiable function with Lipschitz derivative. Then

$$
\bigvee_{a}^{b} f \leq\left|\frac{f(b)-f(a)}{b-a}\right|+\frac{\operatorname{Lip}\left(f^{\prime}\right)}{3}(b-a)
$$

Proof. In fact, if $v:[a, b] \rightarrow \mathbb{R}$ is differentiable and its derivative is integrable, then v has bounded variation and

$$
\bigvee_{a}^{b} v=\int_{a}^{b}\left|v^{\prime}(t)\right| d t
$$

See [1], p. 104.

References

[1] R. G. Bartle, A Modern Theory of Integration, Graduate Studies in Mathematics Vol. 32, American Mathematical Society, Providence, Rhode Island, 2001.
[2] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin, 1965.
[3] C. P. Niculescu and L.-E. Persson, Convex functions and their applications. A Contemporary Approach. CMS Books in Mathematics vol. 23, Springer-Verlag, New York, 2006.
(Raluca Ciurcea) Department of Mathematics, University of Craiova,
Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania, Tel. \& Fax: 40-251412673
E-mail address: r.ciurcea@yahoo.com

