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On the integral form of the triangle inequality
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Abstract. We prove a formula concerning the precision in the triangle inequality.

2000 Mathematics Subject Classification. 26D10; 26D15; 26A24; 26A45.

Key words and phrases. Leibniz-Newton Formula, absolutely continuous function, integrable
function.

The discrepancy in the integral form of the triangle inequality can be easily esti-
mated in terms of variance. Precisely, if f : [a, b] → R is a square integrable function,
then
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If f is Lipschitz, with Lipschitz constant

Lip(f) = sup
x 6=y
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then we may take into account the Ostrowski inequality (cf. [3], p. 63),
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in order to conclude that
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60

(b− a) Lip(f) ≈ 0.341 57(b− a) Lip(f).

The aim of this paper is to show that a better estimate is available.

Theorem 0.1. If f : [a, b] → R is a Lipschitz function, then
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In the particular case of continuously differentiable functions we may use the equal-
ity Lip(f) = supx∈[a,b] |f ′(x)| .
Proof. According to the discussion above it suffices to prove that
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For this, notice first that f is an absolutely continuous function whose derivative
f ′ belongs to L∞ ([a, b]) . Clearly, ‖f ′‖L∞ = Lip(f). By the Leibniz-Newton Formula
(for absolutely continuous functions, see [2]) we infer that
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By integrating against [a, b] we arrive at the inequality (L).

Corollary 0.1. Suppose that f : [a, b] → R is a differentiable function with Lipschitz
derivative. Then ∨b
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Proof. In fact, if v : [a, b] → R is differentiable and its derivative is integrable, then v
has bounded variation and ∨b

a
v =

∫ b
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|v′(t)| dt.

See [1], p. 104.
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