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Continuous family of eigenvalues concentrating in a small
neighborhood at the right of the origin for a class of discrete
boundary value problems
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Abstract. In this paper, we prove the existence of a continuous spectrum that lies in a
neighborhood at the right of the origin for some nonlinear difference operators. Our proofs
rely essentially on the Banach fixed point theorem and a minimization technique.
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1. Introduction and main results

This paper is concerned with the study of the existence of solutions for the discrete
boundary value problem

{ −∆(αk−1(∆u(k − 1)) + (m + 1)∆u(k − 1)) = λu(k), k ∈ Z[1, N ]
u(0) = u(N + 1) = 0 (1)

where N ≥ 2 is a positive integer and ∆ denotes the forward difference operator
with step 1, that is ∆u(k) = u(k + 1) − u(k). Here and hereafter, we denote by
Z[a, b] the discrete interval {a, a + 1, . . . , b} where a and b are integers and a < b.
Throughout this paper we assume that αk−1 : R→ R are given functions and for any
k ∈ Z[1, N +1], αk−1 is of the class C1 on R, while λ is a positive constant. Moreover,
we assume that m is a positive constant which satisfies

|αk−1(t)| ≤ m, and |α′k−1(t)| ≤ m, ∀ t ∈ R, ∀ k ∈ Z[1, N + 1].

Remark 1.1. We point out the fact that the functions αk−1(t) = cos t or αk−1(t) =
sin t satisfy the the above assumptions for m = 1. We remark that there exist
also other functions which satisfy those assumptions. An example can be αk−1(t) =
e−|t| sin(ηt) (η > 0) and m = η + 1.

The study of discrete boundary value problems has captured special attention in
the last years. We just refer to the recent results of Agarwal [1], Agarwal et al. [2, 3],
Cai and Yu [5], Yu and Guo [10], Zhang and Liu [12], Mihăilescu-Rădulescu-Tersian
[7] and the references therein. The studies regarding discrete boundary problems are
highly motivated by their applicability in various fields like mathematical physics,
nonlinear partial differential equations (for a comprehensive treatment of this theory
we recommend the new book [8]) and numerical analysis. Finally, we remember that
a problem similar to (1) was recently analyzed by Costea and Mihăilescu [6] in the
continuous case.
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We are interested in finding weak solutions of for problems of type (1). For this
we define the function space

H = {u : Z[0, N + 1] → R; such that u(0) = u(N + 1) = 0}.

Clearly, H is a N -dimensional Hilbert space (see [3]) with respect to the inner product

〈u, v〉 =
N+1∑

k=1

∆u(k − 1)∆v(k − 1), ∀u, v ∈ H,

and the associated norm is defined by

‖u‖ =

(
N+1∑

k=1

|∆u(k − 1)|2
)1/2

.

On the other hand, it useful to introduce other norms on H, namely

|u|p =

(
N∑

k=1

|u(k)|p
)1/p

, ∀u ∈ H and p ≥ 2.

Since H is a N -dimensional Hilbert space, using the fact that any two norms on a
finite dimensional space are equivalent, there exist two positive constants C1 and C2

such that

C1‖u‖ ≤ |u|2 ≤ C2‖u‖, ∀u ∈ H. (2)

Throughout this paper we assume that the constants C1, C2 defined above are sharp,
that is, C1 is the largest and C2 is the smallest constant that satisfy (2).

Definition 1.1. We say that λ > 0 is an eigenvalue of problem (1) if there exists
u ∈ H \ { 0} such that

N+1∑

k=1

[αk−1(∆u(k − 1)) + (m + 1)∆u(k − 1)]∆v(k−1) = λ

N∑

k=1

u(k)v(k), ∀ v ∈ H. (3)

Moreover a function u ∈ H \ { 0} which satisfies (3) for a fixed λ > 0 is called a
weak solution of problem (1).

We prove that the above operators possess a continuous family of positive eigen-
values, excepting the case when α0(0) = α1(0) = . . . = αN (0). However, even in that
case we can prove the existence of at least one positive eigenvalue. The main results
of our study are given by the following theorems:

Theorem 1.1. Assume that there exist j, k ∈ Z[0, N ] such that αk(0) 6= αj(0). Then
any λ ∈ (0, 1/C2

2 ) is an eigenvalue of problem (1), where C2 is the positive constant
defined in (2). Moreover, for each λ ∈ (0, 1/C2

2 ) there exist an unique corresponding
weak solution uλ.

Theorem 1.2. Assume that α0(0) = α1(0) = . . . = αN (0) and for each k ∈ Z[1, N+1]
the function αk−1 admits a bounded primitive Γk−1 : R → R. Then there exists at
least one positive eigenvalue λ of problem (1), such that λ ≥ (m + 1)/C2

2 , where C2

is the positive constant defined in (2).
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2. Proof of Theorem 1.1

In order to prove Theorem 1.1 we use a method borrowed from the proof of a
nonlinear version of the Lax-Milgram Theorem (see Zeidler [11], Section 2.15). Our
proof will use as main tool the Banach fixed point theorem (see Zeidler [11], Section
1.6).

First, we define the operators a : H ×H → R by

a(u, v) =
N+1∑

k=1

[αk−1(∆u(k − 1)) + (m + 1)∆u(k − 1)]∆v(k − 1), ∀u, v ∈ H,

and bλ : H ×H → R by

bλ(u, v) = λ

N∑

k=1

u(k)v(k), ∀u, v ∈ H.

It is enough to show that for any λ ∈ (0, 1/C2
2 ) there exists u ∈ H \ { 0} such that

a(u, v) = bλ(u, v), ∀v ∈ H.

We point out certain properties of the operators a respectively bλ.

Proposition 2.1. The operator a satisfies the following properties:
(1) for any u ∈ H the application v 7→ a(u, v) is linear and continuous on H;
(2) a(u, u− v)− a(v, u− v) ≥ ‖u− v‖2, ∀u, v ∈ H;
(3) |a(u,w)− a(v, w)| ≤ (2m + 1)‖u− v‖ · ‖w‖, ∀u, v, w ∈ H.

Proof. (1) We fix u ∈ H. It is clear that the application v 7→ a(u, v) is linear. On the
the other hand,

|a(u, v)| =

∣∣∣∣∣
N+1∑

k=1

[αk−1(∆u(k − 1)) + (m + 1)∆u(k − 1)]∆v(k − 1)

∣∣∣∣∣

≤ (m + 1) |〈u, v〉|+
N+1∑

k=1

|αk−1(∆u(k − 1))| · |∆v(k − 1)|

≤ (m + 1)‖u‖ · ‖v‖+
N+1∑

k=1

m|∆v(k − 1)|

≤ (m + 1)‖u‖ · ‖v‖+ m

(
N+1∑

k=1

12

)1/2 (
N+1∑

k=1

|∆v(k − 1)|2
)1/2

=
[
(m + 1)‖u‖+ m(N + 1)1/2

]
‖v‖.

It follows that v 7→ a(u, v) is continuous.
(2) We have

a(u, u− v)− a(v, u− v) =
N+1∑

k=1

[αk−1(∆u(k − 1))− αk−1(∆v(k − 1))]∆(u− v)(k− 1)

+(m + 1)
N+1∑

k=1

|∆(u− v)(k − 1)|2
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Using the mean value theorem and taking into account that |α′k−1(t)| ≤ m for all
t ∈ R and all k ∈ Z[1, N + 1] we deduce that

a(u, u− v)− a(v, u− v) =
N+1∑

k=1

α′k−1(θ(k − 1))|∆(u− v)(k − 1)|2 + (m + 1)‖u− v‖2

≥ −m‖u− v‖2 + (m + 1)‖u− v‖2 = ‖u− v‖2,
where θ(k− 1) = µ(k− 1)∆u(k− 1) + [1− µ(k − 1)]∆v(k− 1) for all k ∈ Z[1, N + 1],
with µ(k − 1) ∈ [0, 1] for all k ∈ Z[1, N + 1].
(3) Using the same arguments and notations as above we have

|a(u,w)− a(v, w)| ≤
∣∣∣∣∣
N+1∑

k=1

[αk−1(∆u(k − 1))− αk−1(∆v(k − 1))]∆w(k − 1)

∣∣∣∣∣

+(m + 1)

∣∣∣∣∣
N+1∑

k=1

∆(u− v)(k − 1)∆w(k − 1)

∣∣∣∣∣

≤
N+1∑

k=1

|α′k−1(θ(k − 1))| · |∆(u− v)(k − 1)| · |∆w(k − 1)|

+(m + 1)|〈u− v, w〉|

≤ m

N+1∑

k=1

|∆(u− v)(k − 1)||∆w(k − 1)|+ (m + 1)‖u− v‖ · ‖w‖

≤ (2m + 1)‖u− v‖ · ‖w‖.
¤

Proposition 2.2. For any λ ∈ (0, 1/C2
2 ) the operator bλ satisfies the following prop-

erties:
(1) bλ is bilinear and continuous on H ×H;
(2) bλ(u, u) ≥ 0 for all u ∈ H;
(3) |bλ(u,w)− bλ(v, w)| ≤ λC2

2‖u− v‖ · ‖w‖, ∀u, v, w ∈ H;

Proof. (1) It is clear that bλ is a bilinear operator on H ×H. Using (2) we obtain

|bλ(u, v)| = λ

∣∣∣∣∣
N∑

k=1

u(k)v(k)

∣∣∣∣∣ ≤ λ

N∑

k=1

|u(k)| · |v(k)| ≤ λ|u|2 · |v|2 ≤ λC2
2‖u‖ · ‖v‖.

The above argument shows that bλ is continuous.

(2) For any u ∈ H we have bλ(u, u) = λ
N∑

k=1

|u(k)|2 ≥ 0.

(3) For any u, v, w ∈ H we have

|bλ(u,w)− bλ(v, w)| = λ

∣∣∣∣∣
N∑

k=1

(u− v)(k)w(k)

∣∣∣∣∣

≤ λ

N∑

k=1

|(u− v)(k)| · |w(k)|

≤ λ|u− v|2 · |v|2
≤ λC2

2‖u− v‖ · ‖w‖.
The proof of Proposition 2.2 is now complete. ¤
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Proof of Theorem 1.1 Let λ ∈ (0, 1/C2
2 ) be arbitrary but fixed. By Proposition

2.1 (1) and the Riesz theorem (see e.g. Brezis [4], Theorem V.5) we deduce that for
each u ∈ H there exists an element called Au ∈ H such that

a(u, v) = 〈Au, v〉, ∀v ∈ H.

Thus we can define the operator A : H → H. By Proposition 2.1 (2) and (3) it follows
that A satisfies the properties

‖u− v‖2 ≤ 〈Au, u− v〉 − 〈Av, u− v〉, ∀u, v ∈ H (4)
that is, A is strongly monotone, and

|〈Au,w〉 − 〈Av,w〉| ≤ (2m + 1)‖u− v‖ · ‖w‖, ∀u, v, w ∈ H. (5)
Relation (5) implies

‖Au−Av‖ = sup
‖w‖≤1

|〈Au−Av, w〉| ≤ (2m + 1)‖u− v‖, ∀u, v ∈ H. (6)

On the other hand, by Proposition 2.2 (1) and the Riesz theorem we deduce that
for each u ∈ H there exists an element called Bλu ∈ H such that

bλ(u, v) = 〈Bλu, v〉 ∀ v ∈ H.

In this way we can define an operator Bλ : H → H. By Proposition 2.2 it follows
that Bλ is a linear operator which satisfies the properties

〈Bλu, u− v〉 − 〈Bλv, u− v〉 = bλ(u− v, u− v) ≤ λC2
2‖u− v‖2, ∀u, v ∈ H (7)

and

‖Bλu−Bλv‖ = sup
‖w‖≤1

|〈Bλu−Bλv, w〉 (8)

= sup
‖w‖≤1

|bλ(u− v, w)| (9)

≤ λC2
2‖u− v‖, (10)

for all u, v ∈ H.
We define the operator S : H → H by

Su = u− t(Au−Bλu)

where t ∈
(
0,

2(1−λC2
2 )

(λC2
2+2m+1)2

)
. The relations (4) and (6-10) show that for each u, v ∈ H

the following inequalities hold true

‖Su− Sv‖2 = 〈Su− Sv, Su− Sv〉
= ‖u− v‖2 − 2t〈Au−Av, u− v〉+ 2t〈Bλu−Bλv, u− v〉

+t2‖Au−Av‖2 − 2t2〈Au−Av, Bλu−Bλv〉+ t2‖Bλu−Bλv‖2
≤ ‖u− v‖2 − 2t‖u− v‖2 + 2tλC2

2‖u− v‖2 + t2(2m + 1)2‖u− v‖2
+2t2‖Au−Av‖ · ‖Bλu−Bλv‖+ t2(λC2

2 )2‖u− v‖2
≤ [

1− 2t
(
1− λC2

2

)
+ 2(2m + 1)λC2

2 t2 + (2m + 1)2t2
] ‖u− v‖2

+(λC2
2 )2t2‖u− v‖2

= β‖u− v‖2
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where β = 1 − 2
(
1− λC2

2

)
t + (λC2

2 + 2m + 1)2t2 ≥ 0. If t = 0 or t = 2(1−λC2
2 )

(λC2
2+2m+1)2

then β = 1. This implies that
√

β < 1 for all t ∈
(
0,

2(1−λC2
2 )

(λC2
2+2m+1)2

)
. Therefore,

‖Su− Sv‖ ≤
√

β‖u− v‖, ∀u, v ∈ H

that is, S is
√

β-contractive with
√

β < 1. By the Banach fixed point theorem (see
Zeidler [11], Section 1.6) it follows that the problem

u = Su

has an unique solution uλ ∈ H, that is, the problem

Auλ = Bλuλ

has an unique solution uλ ∈ H. It follows that

〈Auλ, v〉 = 〈Bλuλ, v〉, ∀ v ∈ H,

that is,
N+1∑

k=1

[αk−1(∆uλ(k − 1)) + (m + 1)∆uλ(k − 1)] ∆v(k − 1) = λ

N∑

k=1

uλ(k)v(k), ∀ v ∈ H.

(11)
Finally we have to prove that uλ is non-trivial. Arguing by contradiction, we assume
that uλ(k) = 0,∀ k ∈ Z[1, N ]. We obtain that

N+1∑

k=1

αk−1(0)∆v(k − 1) = 0, ∀ v ∈ H. (12)

Taking vi ∈ H such that vi(j) = δij for i ∈ Z[1, N ] and using (12) we deduce that
α0(0) = . . . = αN (0) which is a contradiction.

Thus we have proved that any λ ∈ (0, 1/C2
2 ) is an eigenvalue of problem (1).

3. Proof of Theorem 1.2

First we point out the fact that under the hypotheses of Theorem 1.2 the conclusion
of Theorem 1.1 does not hold. Indeed, in that case we have α0(0) = . . . = αN (0)
and thus the non-triviality of the solution obtained by applying the Banach fixed
point theorem cannot be stated. However, we can prove the existence of a positive
eigenvalue of problem (1) under the hypotheses of Theorem 1.2 using a minimization
technique. Such techniques are usually used in finding principal eigenvalues (see e.g.
Szulkin-Willem [9]).

Since every function αk−1 admits a bounded primitive Γk−1, we can assume that
there exist M > 0 such that for any k ∈ Z[1, N + 1] we have

|Γk−1(t)| ≤ M ∀ t ∈ R.

We define the functional I : H → R,

I(u) =
N+1∑

k=1

Γk−1(∆u(k − 1)) +
m + 1

2
(∆u(k − 1))2.

Standard arguments assure that I ∈ C1(H,R) and

〈I ′(u), v〉 =
N+1∑

k=1

[αk−1(∆u(k − 1)) + (m + 1)∆u(k − 1)]∆v(k − 1).
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We consider the minimization problem
(P) minimize I(u) under conditions u ∈ H and

∑N
k=1 |u(k)|2 = 1.

We point out the fact that problem (P) is well defined. Indeed for all u ∈ H with∑N
k=1 |u(k)|2 = 1 we have

I(u) =
N+1∑

k=1

Γk−1(∆u(k − 1)) +
m + 1

2
‖u‖2

≥ −M(N + 1) +
m + 1
2C2

2

|u|22

= −M(N + 1) +
m + 1
2C2

2

> −∞.

Proposition 3.1. The functional I is continuous on H.

Proof. Let {un} a sequence in H such that un converges to u in H. We observe that
for all k ∈ Z[1, N + 1]

|∆un(k − 1)−∆u(k − 1)| ≤



N+1∑

j=1

|∆un(j − 1)−∆u(j − 1)|2



1/2

= ‖un − n‖ → 0.

The above relation implies that ∆un(k − 1) → ∆u(k − 1) as n → ∞ for all k ∈
Z[1, N + 1]. Using the fact that each Γk−1 is continuous we obtain

|I(un)−I(u)| ≤
N+1∑

k=1

|Γk−1(∆un(k − 1))− Γk−1(∆u(k − 1))|+ m + 1
2

∣∣‖un‖2 − ‖u‖2
∣∣ .

Since the the term on the right-hand side of the above relation converges to 0 as
n →∞, we conclude that I(un) converges to I(u) and the proof of Proposition 3.1 is
now complete. ¤

Proof of Theorem 1.2 Due to the fact that problem (P) is well defined there
exists Λ ∈ R such that

Λ = inf
u∈H, |u|22=1

I(u).

There exists {un} a minimizing sequence in H, that is,

I(un) → Λ

and
∑N

k=1 |un(k)|2 = 1 for all n. We point out that the sequence {un} is bounded in
H. Indeed, the above information shows that

‖un‖2 =
2

m + 1

[
I(un)−

N+1∑

k=1

Γk−1(∆un(k − 1))

]

≤ 2
m + 1

[I(un) + M(N + 1)]

≤ 2
m + 1

[Λ + c + M(N + 1)] , ∀n ≥ 1,

where c is a positive constant.
The fact that {un} is bounded in H and H is a finite dimensional space implies that

there exists a subsequence, still denoted by {un}, that converges to an element u ∈ H.
It can be easily shown that |u|22 = 1. By Proposition 3.1 we have I(un) → I(u) = Λ.
Thus we obtain that u is a solution of problem (P).
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Let v ∈ H be arbitrary but fixed. Then for all ε in a suitable neighborhood of the
origin the function

g(ε) = I

(
u + εv

|u + εv|2

)

is well defined and possess a minimum in ε = 0. Then it is clear that g′(0) = 0. A
simple computation shows that

g′(ε) =
N+1∑

k=1

[
αk−1

(
∆(u + εv)(k − 1))

|u + εv|2

)
+ (m + 1)

∆(u + εv)(k − 1)
|u + εv|2

]

∆v(k − 1)|u + εv|22 −∆(u + εv)(k − 1)
N+1∑
k=1

u(k)v(k) + εv2(k)

|u + εv|32
Since |u|22 = 1 we get

g′(0) =
N+1∑

k=1

[αk−1(∆u(k − 1)) + (m + 1)∆u(k − 1)]∆v(k − 1)

−
N+1∑

k=1

[αk−1(∆u(k − 1)) + (m + 1)∆u(k − 1)]∆u(k − 1)
N∑

k=1

u(k)v(k)

and thus
N+1∑

k=1

[αk−1(∆u(k − 1)) + (m + 1)∆u(k − 1)]∆v(k − 1) = λ

N∑

k=1

u(k)v(k)

where

λ =
N+1∑

k=1

[αk−1(∆u(k − 1)) + (m + 1)∆u(k − 1)]∆u(k − 1)

≥ −m

N+1∑

k=1

∆u(k − 1) + (m + 1)‖u‖2

= (m + 1)‖u‖2 ≥ m + 1
C2

2

|u|22 =
m + 1

C2
2

We conclude that λ ≥ (m + 1)/C2
2 is an eigenvalue for problem (1). The proof of

Theorem 1.2 is complete.
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