About Bernstein polynomials

MIRCEA D. FARCĂȘ

Abstract. In this article we want to determinate a recursive formula for Bernstein polynomials associated to the functions \(e_p(x) = x^p, \ p \in \mathbb{N}, \) and an expresion for the central moments of the Bernstein polynomials.

2000 Mathematics Subject Classification. 41A10; 41A63.

Key words and phrases. Bernstein polynomial, Stirling numbers of first and second kind, central moments.

1. Introduction

In this section we recall some notions and results which we will use in this paper.

In the following, we note by \(\mathbb{N} \) the set of positive integer and \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \). Let \(B_m : C[0,1] \to C[0,1], \ m \in \mathbb{N} \) be the Bernstein operators defined for any function \(f \in C[0,1] \) by

\[
(B_m f)(x) = \sum_{k=0}^{m} p_{m,k}(x) f\left(\frac{k}{m} \right),
\]

where \(p_{m,k}(x) \) are the fundamental polynomials, defined by

\[
p_{m,k}(x) = \binom{m}{k} x^k (1-x)^{m-k}, \quad k \in \{0,1,\ldots,m\}
\]

and \(x \in [0,1] \).

For the bidimensional case, we have

\[
(B_m f)(x,y) = \sum_{k+j\geq 0, k+j\leq m} p_{m,k,j}(x,y) f\left(\frac{k}{m}, \frac{j}{m} \right),
\]

where \(p_{m,k,j}(x,y) \) are the bivariate Bernstein polynomials, defined by

\[
p_{m,k,j}(x,y) = \frac{m!}{k!j!(m-k-j)!} x^k y^j (1-x-y)^{m-k-j}.
\]

The operators \(B_m, m \geq 1 \), are named the Bernstein bivariate polynomials, see [2].

For \(x \in \mathbb{R}, \ k \in \mathbb{N}_0 \), let \(x^{[k]} = x(x-1)\ldots(x-k+1), \ x^{[0]} = 1 \). It is well known that (see [4])

\[
x^k = \sum_{\nu=1}^{k} S(k,\nu)x^{[\nu]}, \quad x \in \mathbb{R}, \ k \in \mathbb{N}^*,
\]

and

\[
x^{[k]} = \sum_{\nu=1}^{k} s(k,\nu)x^{[\nu]}, \quad x \in \mathbb{R}, \ k \in \mathbb{N}^*,
\]
where $S(k, \nu), \nu \in \{1, 2, \ldots, k\}$ are the Stirling numbers of second kind, and $s(k, \nu), \nu \in \{1, 2, \ldots, k\}$ are the Stirling numbers of first kind. These numbers verify the relations

$$S(p, k) = kS(p-1, k) + S(p-1, k-1), \quad S(1, 1) = 1,$$

for $p \in \mathbb{N}, p \geq 3, k \in \{2, 3, \ldots, p-1\}$, and

$$s(p, k) = s(p-1, k-1) - (p-1)s(p-1, k), \quad s(1, 1) = 1,$$

for $p \geq 3, k \in \{2, 3, \ldots, p-1\}$. We note $S(p, k) = 0$ and $s(p, k) = 0$, from definition, if $p, k \in \mathbb{N}, p < k$, or if $k = 0$.

It is not difficult to prove that

Proposition 1.1. If $m, p \in \mathbb{N}, p \geq 3$, then

$$S(p, p-1) = \frac{p(p-1)}{2}, s(p, p - 1) = -\frac{p(p-1)}{2},$$

$$S(p, p - 2) = \frac{(p-2)(p-1)p(3p-5)}{24},$$

$$s(p, p - 2) = \frac{(p-2)(p-1)p(3p-1)}{24}.$$

In the paper [3] we proved that

Proposition 1.2. If $m, p \in \mathbb{N},$ then

$$(B_m e_p)(x) = \frac{1}{m^p} \sum_{k=1}^{p} m^{|k|} S(p, k) x^k,$$

where $e_p(x) = x^p, x \in [0, 1]$

For the bidimensional case, we have that (see [1])

Proposition 1.3. If $m, p, q \in \mathbb{N},$ then

$$(B_m e_{pq})(x, y) = \frac{1}{mp + q} \sum_{i=1}^{p} \sum_{j=1}^{q} m^{i+j} S(p, i) S(q, j)x^i y^j,$$

where $e_{pq}(x, y) = x^p y^q, x, y \in \Delta_2$.

2. Main results

Theorem 2.1. We have the formula

$$(B_m e_{p+1})(x) = x (B_m e_p)(x) + \frac{x(1-x)}{m} (B_m e_p)'(x)$$

for $m, p \in \mathbb{N}, x \in [0, 1]$.

Proof. From the relation (10), we can write:

$$B_m e_{p+1})(x) = \frac{1}{m^{p+1}} \sum_{k=1}^{p+1} m^{|k|} S(p+1, k) x^k = \frac{1}{m^{p+1}} \left(\sum_{k=1}^{p} km^{|k|} S(p, k) x^k + \sum_{k=1}^{p} S(p, k) \cdot m^{|k|}(m-k)x^{k+1} \right) .$$

For $m, p \in \mathbb{N}, x \in [0, 1]$.

Proof. From the relation (10), we can write:

$$B_m e_{p+1})(x) = \frac{1}{m^{p+1}} \sum_{k=1}^{p+1} m^{|k|} S(p+1, k) x^k = \frac{1}{m^{p+1}} \left(\sum_{k=1}^{p} km^{|k|} S(p, k) x^k + \sum_{k=1}^{p} S(p, k) \cdot m^{|k|}(m-k)x^{k+1} \right) .$$
\[\cdot \frac{\partial}{\partial x} (B_m e_p p \cdot x^k) = \frac{x(1 - x)}{m} \sum_{k=1}^{m} \frac{km^{[k]} S(p, k) x^{k-1}}{m^{p+1}} + \frac{m x}{m^{p+1}} \sum_{k=1}^{p} m^{[k]} S(p, k) x^k = \]
\[= \frac{x(1 - x)}{m} (B_m e_p p \cdot x) + x(B_m e_p p) (x). \]

For the bidimensional case, we have

Theorem 2.2. If \(m, p, q \in \mathbb{N} \) and \((x, y) \in \Delta_2\), then
\[(B_m e_p p \cdot 1_q \cdot (x, y)) = \frac{1}{m^{p+q+1}} \sum_{i=1}^{p+q} \sum_{j=1}^{q} m^{[i+j]} S(p+1, i) S(q, j) x^{i} y^{j} = \frac{1}{m^{p+q+1}} \cdot \]
\[\sum_{i=1}^{p+q} \sum_{j=1}^{q} m^{[i+j]} i S(p, i) S(q, j) x^{i-1} y^{j} + \frac{1}{m^{p+q+1}} \sum_{i=1}^{p+q} \sum_{j=1}^{q} m^{[i+j]} S(p, i-1) S(q, j) x^{i} y^{j} = \]
\[= \frac{x}{m} \cdot \frac{1}{m^{p+q+1}} \sum_{i=1}^{p} \sum_{j=1}^{q} m^{[i+j]} i S(p, i) S(q, j) x^{i-1} y^{j} + \frac{1}{m^{p+q+1}} \sum_{i=1}^{p+q} \sum_{j=1}^{q} m^{[i+j]} (m - (i - 1) - j) S(p, i-1) S(q, j) x^{i} y^{j} = \]
\[\cdot x^{i} y^{j} - \frac{1}{m^{p+q+1}} \left(x \sum_{i=1}^{p} \sum_{j=1}^{q} m^{[i+j]} S(p, i) S(q, j) i x^{i-1} y^{j} + y \sum_{i=1}^{q} \sum_{j=1}^{q} m^{[i+j]} S(p, i) S(q, j) x^{i} y^{j} \right) \cdot \]
\[\cdot x^{i} y^{j} - \frac{1}{m^{p+q+1}} \left(x \sum_{i=1}^{p} \sum_{j=1}^{q} m^{[i+j]} S(p, i) S(q, j) i x^{i-1} y^{j} + y \sum_{i=1}^{q} \sum_{j=1}^{q} m^{[i+j]} S(p, i) S(q, j) x^{i} y^{j} \right) \cdot \]
\[\cdot y^{j-1} = \frac{x}{m} \frac{\partial}{\partial x} (B_m e_p p \cdot x, y) + x B_m e_p p \cdot x, y) - \frac{x^2}{m} \frac{\partial}{\partial x} (B_m e_p p \cdot (x, y) - \frac{xy}{m} \cdot \frac{\partial}{\partial y} (B_m e_p p \cdot (x, y). \]

We can prove the equality (2.3) analogously.

In the sequel, we will find an expression for the central moments of the Bernstein polynomials.

Lemma 2.1. We have
\[(B_m e_p p) (x) = \frac{a_{p,0} (x) + a_{p,1} (x) m + \ldots + a_{p,p-1} (x) m^{p-1}}{m^{p-1}}, \]
where
\[a_{p,k} (x) = \sum_{j=k+1}^{p} S(p, j) s(j, k+1) x^j, \]
for \(k \in \{0, 1, \ldots, p - 1\}. \)
Proof. We have

\[(B_m e_p)(x) = \frac{1}{mp^{-1}} \sum_{j=1}^{p} m[j]S(p, j)x^j = \frac{1}{mp^{-1}} \sum_{j=1}^{p} \left(\sum_{k=1}^{j} s(j, k) m^k \right) S(p, j)x^j = \]

\[= \frac{1}{mp^{-1}} \sum_{k=0}^{p-1} \left(\sum_{j=k+1}^{p} S(p, j)s(j, k + 1)x^j \right) m^k. \]

\[\square\]

Theorem 2.3. The central moments of the Bernstein polynomials admit the representation

\[(B_m(* - x)^p)(x) = b_{p,0}(x) + b_{p,1}(x)m + \ldots + b_{p,p-1}(x)m^{p-1} \] (17)

where

\[b_{p,k}(x) = \sum_{j=0}^{k} (-1)^j \left(\begin{array}{c} p \vspace{1mm} \\ j \end{array} \right) x^j a_{p-j,k-j}(x), \] (18)

\[k \in \{0, 1, \ldots, p - 2\} \] and

\[b_{p,p-1}(x) = \sum_{j=0}^{p-1} (-1)^j \left(\begin{array}{c} p \vspace{1mm} \\ j \end{array} \right) x^j a_{p-j,p-j-1}(x) \] + \((-1)^p x^p, \) from where the conclusion results.

\[\square\]

Lemma 2.2. We have \(b_{p,p-1} = 0, p \geq 1, b_{p,p-2} = 0, p \geq 3, b_{p,p-3} = 0, p \geq 5.\)

Proof. From the relation (18), we have that

\[b_{p,p-1}(x) = \sum_{j=0}^{p-1} (-1)^j \left(\begin{array}{c} p \vspace{1mm} \\ j \end{array} \right) x^j a_{p-j,p-j-1}(x) + (-1)^p x^p, \]

\[b_{p,p-2}(x) = \sum_{j=0}^{p-2} (-1)^j \left(\begin{array}{c} p \vspace{1mm} \\ j \end{array} \right) x^j a_{p-j,p-j-1}(x) \]

and after (16) and (9) we can write

\[a_{p-j,p-j-1}(x) = S(p-j, p-j)s(p-j, p-j)x^{p-j} = x^{p-j}, \]

\[a_{p-j,p-j-2}(x) = \frac{(p-j)(p-j-1)}{2} x^{p-j-1} - \frac{(p-j)(p-j-2)}{2} x^{p-j} \]

\[= - \frac{(p-j)(p-j-1)}{2} x^{p-j-1}, \quad a_{p-j,p-j-3}(x) = \sum_{\nu=p-j-2}^{p-j} S(p-j, \nu)s(\nu, p-j-2)x^{p-j-1} = \quad \frac{(p-j)(p-j-1)(p-j-2)}{24} x^{p-j-1} \]

\[+ \frac{(p-j-2)(p-j-1)(p-j)(3p-3j-1)}{24} x^{p-j-1} = \frac{(p-j)(p-j-1)(p-j)(3p-3j-1)}{24} x^{p-j-1}. \]
\begin{equation}
(3p-3j-5)x^{p-j-2}-6(p-j-1)x^{p-j-1}+(3p-3j-1)x^{p-j}) \text{, so that, using the relation}
\end{equation}
\begin{equation}
\sum_{k=1}^{n} (-1)^k k^m \binom{n}{k} = 0, m, n \in \mathbb{N}, 0 \leq m < n, \text{ we have}
\end{equation}
\begin{equation}
b_{p,p-1}(x) = \sum_{j=0}^{p} (-1)^j \binom{p}{j} x^j = 0,
\end{equation}
\begin{equation}
b_{p,p-2}(x) = \sum_{j=0}^{p-2} (-1)^j \binom{p}{j} x^j = \frac{(p-j)(p-j-1)}{2} \left(x^{p-j} - x^{p-j-1}\right) = \frac{x^p - x^{p-1}}{2},
\end{equation}
\begin{equation}
b_{p,p-3}(x) = \sum_{j=0}^{p-3} (-1)^j \binom{p}{j} \frac{(p-j)(p-j-1)(p-j-2)}{24} \left(x^{p-j} - x^{p-j-1}\right) = 0.
\end{equation}

Theorem 2.4. We have
\begin{equation}
\lim_{m \to \infty} (B_m(\ast - x)^p)(x) = 0, p \geq 1
\end{equation}
\begin{equation}
\lim_{m \to \infty} m (B_m(\ast - x)^p)(x) = 0, p \geq 3
\end{equation}
and
\begin{equation}
\lim_{m \to \infty} m^2 (B_m(\ast - x)^p)(x) = 0, p \geq 4
\end{equation}

Proof. The proof follows immediately from the Lemma 2.2.

References

Mircea D. Farcăş
National College "Mihai Eminescu"
5 Mihai Eminescu Street
Satu Mare 440014, Romania
E-mail address: mirceafarca2005@yahoo.com