Annals of the University of Craiova, Math. Comp. Sci. Ser. Volume 35(1), 2008, Pages 122–129 ISSN: 1223-6934

Sublinear convection elliptic equations with singular nonlinearity

IRINEL FIROIU

ABSTRACT. We present some existence results for the classical solutions to singular elliptic problems of the form

 $\left\{ \begin{array}{cc} -\Delta u = \lambda \frac{|\nabla u|^p}{f(u)} + \beta & \text{ in } \Omega \\ u > 0 & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{array} \right.$

where Ω is a smooth bounded domain in \mathbb{R}^N , while $p \in (0, 1)$, $\lambda > 0$, $\beta \ge 0$, f' > 0 on $(0, \infty)$ and f(0) = 0. Our analysis combines monotonicity arguments with elliptic estimates.

2000 Mathematics Subject Classification. 35J60; 58J55. Key words and phrases. Nonlinear elliptic equations, comparison principle, gradient term.

1. Introduction

In a series of recent works have been studied the problems with gradient terms. For example, when trying to find solutions for the model equation

$$\begin{cases} -\Delta_p u + g(u) |\nabla u|^p = \mu & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

growth at infinity of g(s) and the regular or singular nature of μ play a crucial role. Removable singularity results were proved by H. Brezis and L. Nirenberg in [2] for p = 2, showing that if $sg(s) \ge \gamma s^{-2}$ with $\gamma > 1$, then any compact set of zero capacity (the standard Newtonian capacity) is removable. In [1] it can be found a study of the existence of bounded solutions of boundary value problems of the type

$$\begin{cases} -\operatorname{div}(A(x,u)\nabla u) + \frac{1}{2}A^{'}(x,u)|\nabla u|^{2} = f & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$

where $f \in L^q(\Omega), q > \frac{N}{2}, A$ is a bounded, smooth function.

Elliptic equations involving a gradient term appear in many fields. For instance, Bellman's dynamic programming principle arising in optimal stochastic control problem, indicates that the Bellman function u which minimizes the cost functional is also a solution of the nonlinear elliptic equation

$$-\frac{\Delta u}{2} + \frac{|\nabla u|^p}{p} + \lambda u = f(u) \quad \text{in } \Omega.$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain, $0 , <math>\lambda > 0$ denotes the discount factor and f is a smooth or singular nonlinearity. As remarked by many authors (see Serrin [11], Choquet-Bruhat and Leray [3], Kazdan and Warner [8]), the requirement that the nonlinearity $|\nabla u|^p$ grows at most quadratically is natural in order to apply the maximum principle.

If we consider the well-known example $\Delta \omega = \omega^p$ in Ω , $\omega > 0$ in Ω and $\omega = \infty$ on $\partial \Omega$ then the function $\eta = \omega^{-1}$ satisfies

$$\begin{cases} -\Delta \eta = \eta^{2-p} - \frac{2}{\eta} |\nabla \eta|^2 & \text{in } \Omega \\ \eta > 0 & \text{in } \Omega \\ \eta = 0 & \text{on } \partial \Omega \end{cases}$$

The above equation contains both singular nonlinearities $(\eta^{2-p} \text{ and } \eta^{-1}, p > 2)$ and a convection term $(|\nabla \eta|^2)$.

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with smooth boundary. Consider the nonlinear singular problem

$$\begin{cases} -\Delta u = \lambda |\nabla u|^p + u^{-\alpha} & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $\lambda \in \mathbb{R}, p \in (0, 1), \alpha > 0$. From [4] we have the result that the problem has at least one classical solution for all $\lambda \in \mathbb{R}$.

In this paper we try to answer the below questions :

i) what can be said when the singularity $u^{-\alpha}$ is near $|\nabla u|^p$?

ii) what happens if near $|\nabla u|^p$ we have other kind of functions than $u^{-\alpha}$?

2. The Main Results

Let $\Omega \subset \mathbb{R}^N (N \ge 1)$ be a bounded domain, $p \in (0,1), \lambda > 0, \beta \ge 0$ and $f \in C^{0,\gamma}[0,\infty)$ $(0 \le \gamma \le 1)$ is a function which satisfies :

(f1) f(0) = 0, f > 0 and f' > 0 on $(0, \infty)$.

(f2) there exists $t_0 > 0$ such that f(t) > 1 on (t_0, ∞) .

We are concerned with the following boundary value problem

(1)
$$\begin{cases} -\Delta u = \lambda \frac{|\nabla u|^p}{f(u)} + \beta & \text{in } \Omega\\ u > 0 & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where Ω is a smooth bounded domain in \mathbb{R}^N , while $p \in (0, 1)$, $\lambda > 0$, $\beta \ge 0$, f(0) = 0and f' > 0 on $(0, \infty)$.

In the particular case $f(u) = u^{\alpha}$ ($\alpha > 0$) we obtain

(2)
$$\begin{cases} -\Delta u = \lambda \ u^{-\alpha} |\nabla u|^p + \beta & \text{in } \Omega \\ u > 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where Ω is a smooth bounded domain in \mathbb{R}^N , while $p \in (0, 1)$, $\lambda > 0$, $\beta \ge 0$, f(0) = 0and f' > 0 on $(0,\infty)$. Notice that the above hypotheses are quite natural. Typical examples are $f(t) = t^{\alpha} \ (\alpha > 0), \ f(t) = t + \ln(t+1), \ f(t) = e^t - 1$ and a counterexample is $f(t) = \frac{t}{t+1}$. The problem (2) for p = 2, was studied by Rădulescu in [10].

We first extend an auxiliary result (we refer to [6, Lemma 2.1] for a complete proof). This proof following an idea given in [7].

Lemma 2.1 Let $0 , <math>\beta \ge 0$, $\lambda > 0$, f satisfies (f1) and (f2). Assume that there exist ω_1 , $\omega_2 \in C^2(\Omega) \cap C(\overline{\Omega})$ such that

(i) $\Delta \omega_2 + \lambda \frac{|\nabla \omega_2|^p}{f(\omega_2)} + \beta \le 0 \le \Delta \omega_1 + \lambda \frac{|\nabla \omega_1|^p}{f(\omega_1)} + \beta$ in Ω .

(ii)
$$\omega_1, \omega_2 > 0$$
 in Ω and $\omega_1 \le \omega_2$ on $\partial \Omega$.

Then $\omega_1 \leq \omega_2$ in Ω .

Proof: Assume by contradiction that $\omega_1 \leq \omega_2$ does not hold throughout Ω and let $\eta = \frac{\omega_1}{\omega_2}$. Because $\eta \leq 1$ on $\partial\Omega$, η achieves its maximum on Ω . Also,

$$\omega_2^2 \eta_{x_i} = \omega_{1x_i} \omega_2 - \omega_{2x_i} \omega_1 \quad \text{for all } i \in \overline{1, N}.$$

Therefore,

$$\nabla \omega_2^2 \nabla \eta + \omega_2^2 \Delta \eta = \omega_2 \Delta \omega_1 - \omega_1 \Delta \omega_2. \qquad (I)$$

Let $x_M \in \Omega$ denote a maximum point of η . Therefore, in particular we have

$$\nabla \eta(x_M) = 0, \qquad -\Delta \eta(x_M) \ge 0.$$

Using (I) we obtain

$$(\omega_1 \Delta \omega_2 - \omega_2 \Delta \omega_1)(x_M) \ge 0 \qquad (II)$$

and

$$(\omega_1 \Delta \omega_2 - \omega_2 \Delta \omega_1)(x_M) + \lambda \frac{\omega_1}{f(\omega_2)} |\nabla \omega_2|^p(x_M) - \lambda \frac{\omega_2}{f(\omega_1)} |\nabla \omega_1|^p(x_M) + \beta(\omega_1(x_M) - \omega_2(x_M)) \le 0.$$

From (II), $\omega_2(x_M) < \omega_1(x_M)$ and the fact that f is increasing (see (f1)) on $(0, \infty)$ we also have

$$\frac{\lambda}{f(\omega_1)} [\omega_1 |\nabla \omega_2|^p - \omega_2 |\nabla \omega_1|^p](x_M) + \beta(\omega_1(x_M) - \omega_2(x_M)) < 0.$$

But we know that

$$|\nabla \omega_2|^p(x_M) = \left(\frac{\omega_2 |\nabla \omega_1|}{\omega_1}\right)^p(x_M).$$

Therefore, we find

$$\frac{\lambda |\nabla \omega_1|^p \omega_2^p}{f(\omega_1)} [\underbrace{\omega_1^{1-p} - \omega_2^{1-p}}_{>0}](x_M) + \beta \underbrace{(\omega_1(x_M) - \omega_2(x_M))}_{>0} < 0$$

which contradicts $\omega_2(x_M) - \omega_1(x_M) < 0$. Therefore we will have $\omega_1 \leq \omega_2$ in Ω .

Our main result is the following.

124

Theorem 2.2 Assume that 0 and conditions (f1)-(f2) are fulfilled. Then $the problem (1) has at least one classical solution for all <math>\lambda > 0$ and $\beta \ge 0$.

Proof: Let us first consider the problem

$$\begin{cases} -\Delta v = \beta & \text{in } \Omega \\ v > 0 & \text{in } \Omega \\ v = 0 & \text{on } \partial \Omega \end{cases}$$

It is easy to see that the unique solution v of the above problem verifies

$$-\Delta v = \beta \le \lambda \frac{|\nabla v|^p}{f(v)} + \beta$$

It follows that $\underline{u} := v$ is a sub-solution of (1).

We now focus on finding a super-solution \overline{u} of (1) such that $\underline{u} \leq \overline{u}$ in Ω . For this purpose, let $\Gamma : [0, 1) \to [0, \infty)$ defined by

$$\Gamma(t) = \int_0^t \frac{1}{\sqrt{2\int_s^1 \frac{1}{f(x)} dx}} ds \qquad 0 \le t < 1$$

From (f1) - (f2), 0 < s < 1 we remark that Γ is well defined. We claim that Γ is bijective. Indeed,

$$\Gamma'(t) = \frac{1}{\sqrt{2\int_t^1 \frac{1}{f(x)} dx}} > 0 \quad \text{therefore } \Gamma \text{ is increasing}$$

 $\Gamma(0) = 0$ and $\Gamma(t) \ge Ct$ with C > 0 from where we obtain $\lim_{t\to\infty} \Gamma(t) = \infty$ and the claim follows.

Set $\ell := \lim_{t \geq 1} \Gamma(t)$ and let $\zeta : [0, \ell) \to [0, 1)$ be the inverse of Γ .

Since ζ is the inverse of Γ we have $\zeta(0) = 0$ and $\zeta \in C^1(0, \ell)$ with $\Gamma(\zeta(t)) = t$ we find

$$\zeta' = \sqrt{2 \int_{\zeta(t)}^{1} \frac{1}{f(x)} dx} \quad \text{for all } 0 < t < \ell.$$

This yields

(S)
$$\begin{cases} -\zeta''(t) = \frac{1}{f(\zeta(t))} & \text{for all } t \in (0, \ell) \\ \zeta(t), \zeta'(t) > 0 & \text{for all } t \in (0, \ell) \\ \zeta(0) = 0 \end{cases}$$

Let φ_1 denote the first eigenfunction of the Laplace operator in $H_0^1(\Omega)$. The existence of a super-solution of (1) is obtained in the following result

Lemma 2.3 There exist two positive constants $M_{\lambda} > 0$ and c > 0 such that $\overline{u} := M_{\lambda} \zeta(c\varphi_1)$ is a super-solution of (1).

Proof: By the strong maximum principle there exist $\omega \subset \Omega$ and $\delta > 0$ such that

$$|\nabla \varphi_1| > \delta$$
 in $\Omega \setminus \omega$ and $\varphi_1 > \delta$ in ω .

Also, we have

$$\overline{u}_{x_1} = M_{\lambda} c \zeta'(c \varphi_1) \varphi_{1x_1}$$

IRINEL FIROIU

$$\overline{u}_{x_1x_1} = M_{\lambda}c^2\zeta''(c\varphi_1)\varphi_{1x_1}^2 + M_{\lambda}c\zeta'(c\varphi_1)\varphi_{1x_1x_1}$$

Therefore

$$-\Delta \overline{u} = \frac{M_{\lambda} c^2 |\nabla \varphi_1|^2}{f(\zeta(c\varphi_1))} + M_{\lambda} c\lambda_1 \varphi_1 \zeta'(c\varphi_1)$$

Thus, since (f2), (S), the fact that ζ is concave, $\zeta'(c\varphi_1) > 0$ in $\bar{\omega}, p \in (0,1)$ we can choose $M_{\lambda} > 1$ such that

$$M_{\lambda}c\lambda_{1}\varphi_{1}\zeta^{'}(c\varphi_{1}) \geq \frac{2\lambda(M_{\lambda}c\zeta^{'}(c\varphi_{1})|\nabla\varphi_{1}|)^{p}}{f(M_{\lambda}\zeta(c\varphi_{1}))}$$

Also, we easy to see that

$$M_{\lambda}c\lambda_{1}\varphi_{1}\zeta^{'}(c\varphi_{1}) \geq 2\beta \quad \text{in } \bar{\omega}$$

Thus,

$$M_{\lambda}c\lambda_{1}\varphi_{1}\zeta'(c\varphi_{1}) \geq \frac{|\nabla \overline{u}|^{p}}{f(\overline{u})} + \beta \qquad \text{in } \bar{\omega} \quad (I)$$

Next, from (f1), $p \in (0, 1)$ and $M_{\lambda} > 1$ we find

$$\begin{aligned} \frac{M_{\lambda}c^{2}|\nabla\varphi_{1}|^{2}}{f(\zeta(c\varphi_{1}))} &\geq \frac{M_{\lambda}c^{2}|\nabla\varphi_{1}|^{2}}{f(M_{\lambda}\zeta(c\varphi_{1}))} \geq \frac{M_{\lambda}c^{2}\delta^{2}}{f(M_{\lambda}\zeta(c\varphi_{1}))} \geq \\ &\geq \lambda \frac{(M_{\lambda}c\zeta^{'}(c\varphi_{1})|\nabla\varphi|)^{p}}{f(M_{\lambda}\zeta(c\varphi_{1}))} = \lambda \frac{|\nabla\overline{u}|^{p}}{f(\overline{u})} \quad \text{ in } \Omega \backslash \omega \end{aligned}$$

Therefore, we showed that in $\Omega \backslash \omega$ there holds

$$\frac{M_{\lambda}c^{2}|\nabla\varphi_{1}|^{2}}{f(\zeta(c\varphi_{1}))} \geq \lambda \frac{|\nabla\overline{u}|^{p}}{f(\overline{u})} + \beta.$$
(II)

Finally, from (I) and (II) we derive

$$-\Delta \overline{u} \ge \lambda \frac{|\nabla \overline{u}|^p}{f(\overline{u})} + \beta. \quad \text{in } \Omega$$

This ends the proof.

Let us come back to the proof of Theorem 2.2. So far we have constructed a sub-solution $\underline{u} := v$ and a super-solution $\overline{u} := M_\lambda \zeta(c\varphi_1)$ such that

$$\begin{split} \Delta \overline{u} + \lambda \frac{|\nabla \overline{u}|^p}{f(\overline{u})} + \beta &\leq 0 \leq \Delta \underline{u} + \lambda \frac{|\nabla \underline{u}|^p}{f(\underline{u})} + \beta \qquad \text{in } \Omega\\ \overline{u}, \underline{u} > 0 \qquad \text{in } \Omega\\ M_\lambda \zeta(c\varphi_1) &= \overline{u} > \underline{u} = 0 \qquad \text{on } \partial\Omega. \end{split}$$

By Lemma 2.1 we obtain $\overline{u} \geq \underline{u}$ in Ω . The conclusion follows now by the sub and supersolution method for the pair $(\underline{u}, \overline{u})$.

126

The linear case.

In the linear case the problem (1) becomes

(3)
$$\begin{cases} -\Delta u = \lambda \frac{|\nabla u|^p}{f(u)} + \beta u & \text{in } \Omega\\ u > 0 & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $\lambda > 0, \, \beta > 0$. We obtain

Theorem 2.4 Assume that 0 and <math>f satisfies (f1) - (f2). Then for all $\lambda > 0$ and $\beta < \lambda_1$ the problem (3) has solutions.

Proof: By Theorem 2.2 there exists $u \in C^2(\Omega) \cap C(\overline{\Omega})$ a solution of the problem

$$\begin{cases} -\Delta u = \lambda \frac{|\nabla u|^p}{f(u)} & \text{in } \Omega\\ u > 0 & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$

Obviously $\underline{u} := u$ is a sub-solution of (3). Now, we consider the problem

(4)
$$\begin{cases} -\Delta\omega = \beta\omega + \alpha & \text{in } \Omega\\ \omega > 0 & \text{in } \Omega\\ \omega = 0 & \text{on } \partial\Omega \end{cases}$$

where we fix $0 < \beta < \lambda_1$ and $\alpha \ge 2$. Since $\beta < \lambda_1$ we observe that the conditions of the Theorem 1.2.5 from [7] are fulfilled, therefore there exists a solution $\omega \in C^2(\overline{\Omega})$ of (4).

Using the fact $0 , and (f2) we can choose <math>C_{\lambda} > 0$ large enough such that $C_{\lambda} > \lambda |C_{\lambda} \nabla \omega|^p = \lambda |\nabla C_{\lambda} \omega|^p$

$$1 < f(C_{\lambda}\omega), \quad C_{\lambda} > \beta \sup u(x) \quad \text{in } \Omega$$

From (4) we obtain

$$-\Delta C_{\lambda}\omega = \beta C_{\lambda}\omega + \alpha C_{\lambda} \ge C_{\lambda}\beta\omega + 2C_{\lambda} \ge$$
$$\ge C_{\lambda}\beta\omega + \lambda |\nabla(C_{\lambda}\omega)|^{p} + \beta \sup_{\Omega} u(x) \ge \lambda |\nabla(C_{\lambda}\omega)|^{p} + \beta(C_{\lambda}\omega) +$$
$$\beta u = \lambda |\nabla(C_{\lambda}\omega)|^{p} + \beta(u + C_{\lambda}\omega).$$

Now, we claim that $\overline{u} = u + C_{\lambda}\omega$ is a super-solution of (3). Indeed, we have

$$-\Delta \overline{u} = -\Delta (u + C_{\lambda}\omega) = -\Delta u - \Delta C_{\lambda}\omega \ge \lambda |\nabla(C_{\lambda}\omega)|^{p}$$
$$\beta(u + C_{\lambda}\omega) + \lambda \frac{|\nabla u|^{p}}{f(u)}$$
$$\ge \lambda \frac{|\nabla(C_{\lambda}\omega)|^{p}}{f(C_{\lambda}\omega)} + \beta(u + C_{\lambda}\omega) + \lambda \frac{|\nabla u|^{p}}{f(u)}.$$

+

From $\overline{u} = u + C_{\lambda}\omega > \max(u, C_{\lambda}\omega)$ we find

$$\beta(u+C_{\lambda}\omega) + \frac{\lambda}{f(\overline{u})}(|\nabla(C_{\lambda}\omega)|^{p} + |\nabla u|^{p}) \ge \beta(u+C_{\lambda}\omega) + \frac{\lambda}{f(\overline{u})}(|\nabla(C_{\lambda}\omega)| + |\nabla u|)^{p} \ge \beta(u+C_{\lambda}\omega) + \frac{\lambda}{f(\overline{u})}(|\nabla(u+C_{\lambda}\omega)|)^{p} = \lambda \frac{|\nabla \overline{u}|^{p}}{f(\overline{u})} + \beta \overline{u} \quad \text{in } \Omega.$$

IRINEL FIROIU

 $\text{Therefore we obtained } -\Delta \overline{u} \geq \lambda \tfrac{|\nabla \overline{u}|^p}{f(\overline{u})} + \beta \overline{u} \quad \text{in } \Omega.$

Hence, $(\underline{u}, \overline{u})$ is a pair of sub and super-solution of (3), obviously $\underline{u} < \overline{u}$ and thus the problem (3) has a classical solution u provided $\lambda > 0$ and $\beta \in (0, \lambda_1)$.

Let us consider the problem

(5)
$$\begin{cases} -\Delta\omega = \omega^{-\alpha} + \lambda & \text{in } \Omega\\ \omega > 0 & \text{in } \Omega\\ \omega = 0 & \text{on } \partial\Omega \end{cases}$$

By Theorem 1.2.5 from [7] the above problem (for $0 < \lambda < \lambda_1$) has solution. We can choose m > 1 large enough such that $1 < f(m\omega)$ from where $m > \frac{|\nabla m\omega|^p}{f(m\omega)}$. From (5) we find

$$-\Delta(m\omega) = m\omega^{-\alpha} + \lambda m \ge (m\omega)^{-\alpha} + \lambda \frac{|\nabla(m\omega)|^p}{f(m\omega)}$$

Let $\overline{u} := m\omega$, we find a super-solution for the below problem, that is $-\Delta \overline{u} \ge \overline{u}^{-\alpha} + \lambda \frac{|\nabla \overline{u}|^p}{f(\overline{u})}$.

(6)
$$\begin{cases} -\Delta u = \lambda \frac{|\nabla u|^p}{f(u)} + u^{-\alpha} & \text{in } \Omega\\ u > 0 & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Obviously, $\underline{u} = v$ is a sub-solution of the problem (6), where v is the unique solution for the problem

$$\left\{ \begin{array}{ll} -\Delta v = v^{-\alpha} & \text{in } \Omega \\ v > 0 & \text{in } \Omega \\ v = 0 & \text{on } \partial \Omega \end{array} \right.$$

and $c_1\delta(x) \leq v(x) \geq c_2\delta(x)$ with $c_1, c_2 > 0$. Hence, for all $\lambda \in (0, \lambda_1)$ there exist a solution u for the problem (6).

References

- L. Boccardo, F. Murat, J.P. Puel, L[∞] estimate for some nonlinear elliptic partial differential equations and application to an existence result SIAM J. Math. Anal. 23 1992, 326–333.
- H. Brezis, L. Nirenberg, Removable singularities for some nonlinear elliptic equations Topological Methods for Nonlin. Anal. 9 1997, 201 - 219.
- [3] Y. Choquet-Bruhat, J. Leray, Sur le problème de Dirichlet quasilineaire d'ordre 2, C. R. Acad. Sci. Paris, Ser. A 87 1972, pp. 81-85.
- [4] L. Dupaigne, M. Ghergu, V. Rădulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl. 87 2007, 563–581.
- [5] M. Ghergu and V. Rădulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 2003, 520–536.
- [6] M. Ghergu, V. Rădulescu, On a class of sublinear singular elliptic problems with convection term, J. Math. Anal. Appl. 311 2005, 635–646.
- [7] M. Ghergu, V. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Notes in Mathematics No. 37, Oxford University Press, 2008.
- [8] J. Kazdan, F.W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 1975, 567-597.
- [9] V. Rădulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, in *Handbook of Differential Equations: Stationary Partial Differential Equations*, Vol. 4 (Michel Chipot, Editor), North-Holland Elsevier Science, Amsterdam, 2007, pp. 483-591

128

- [10] V. Rădulescu, Combined effects in nonlinear singular elliptic problems with convection, Revue Roumaine de Mathématiques Pures et Appliquées 53 (2008), No. 5
- [11] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 1964, 247-302.

(Irinel Firoiu) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRAIOVA, AL.I. CUZA STREET, NO. 13, CRAIOVA RO-200585, ROMANIA, TEL. 0721 635343 *E-mail address:* firoiu_irinel@yahoo.co.uk