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Sublinear convection elliptic equations with singular
nonlinearity

Irinel Firoiu

Abstract. We present some existence results for the classical solutions to singular elliptic
problems of the form 




−∆u = λ
|∇u|p
f(u)

+ β in Ω

u > 0 in Ω
u = 0 on ∂Ω

where Ω is a smooth bounded domain in RN , while p ∈ (0, 1), λ > 0, β ≥ 0, f
′

> 0 on (0,∞)
and f(0) = 0. Our analysis combines monotonicity arguments with elliptic estimates.
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1. Introduction

In a series of recent works have been studied the problems with gradient terms.
For example, when trying to find solutions for the model equation{ −∆pu + g(u)|∇u|p = µ in Ω

u = 0 on ∂Ω

growth at infinity of g(s) and the regular or singular nature of µ play a crucial role.
Removable singularity results were proved by H. Brezis and L. Nirenberg in [2] for
p = 2, showing that if sg(s) ≥ γs−2 with γ > 1, then any compact set of zero capacity
(the standard Newtonian capacity) is removable. In [1] it can be found a study of the
existence of bounded solutions of boundary value problems of the type

{
−div(A(x, u)∇u) +

1
2
A
′
(x, u)|∇u|2 = f in Ω

u = 0 on ∂Ω

where f ∈ Lq(Ω), q > N
2 , A is a bounded, smooth function.

Elliptic equations involving a gradient term appear in many fields. For instance,
Bellman’s dynamic programming principle arising in optimal stochastic control prob-
lem, indicates that the Bellman function u which minimizes the cost functional is also
a solution of the nonlinear elliptic equation

−∆u

2
+
|∇u|p

p
+ λu = f(u) in Ω.

where Ω ⊂ RN is a bounded domain, 0 < p ≤ 2, λ > 0 denotes the discount factor
and f is a smooth or singular nonlinearity. As remarked by many authors (see Serrin
[11], Choquet-Bruhat and Leray [3], Kazdan and Warner [8]), the requirement that
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the nonlinearity |∇u|p grows at most quadratically is natural in order to apply the
maximum principle.

If we consider the well-known example ∆ω = ωp in Ω, ω > 0 in Ω and ω = ∞ on
∂Ω then the function η = ω−1 satisfies





−∆η = η2−p − 2
η
|∇η|2 in Ω

η > 0 in Ω
η = 0 on ∂Ω

The above equation contains both singular nonlinearities (η2−p and η−1, p > 2) and
a convection term (|∇η|2).

Let Ω ⊂ RN be a bounded domain with smooth boundary. Consider the nonlinear
singular problem 



−∆u = λ|∇u|p + u−α in Ω

u > 0 in Ω
u = 0 on ∂Ω

where λ ∈ R, p ∈ (0, 1), α > 0. From [4] we have the result that the problem has at
least one classical solution for all λ ∈ R.

In this paper we try to answer the below questions :
i) what can be said when the singularity u−α is near |∇u|p ?
ii) what happens if near |∇u|p we have other kind of functions than u−α ?

2. The Main Results

Let Ω ⊂ RN (N ≥ 1) be a bounded domain, p ∈ (0, 1), λ > 0, β ≥ 0 and
f ∈ C0,γ [0,∞) (0 ≤ γ ≤ 1) is a function which satisfies :

(f1) f(0) = 0, f > 0 and f
′
> 0 on (0,∞).

(f2) there exists t0 > 0 such that f(t) > 1 on (t0,∞).

We are concerned with the following boundary value problem

(1)





−∆u = λ
|∇u|p
f(u)

+ β in Ω

u > 0 in Ω
u = 0 on ∂Ω

where Ω is a smooth bounded domain in RN , while p ∈ (0, 1), λ > 0, β ≥ 0, f(0) = 0
and f

′
> 0 on (0,∞).

In the particular case f(u) = uα (α > 0) we obtain

(2)




−∆u = λ u−α|∇u|p + β in Ω

u > 0 in Ω
u = 0 on ∂Ω

where Ω is a smooth bounded domain in RN , while p ∈ (0, 1), λ > 0, β ≥ 0, f(0) = 0
and f

′
> 0 on (0,∞). Notice that the above hypotheses are quite natural. Typical
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examples are f(t) = tα (α > 0), f(t) = t + ln(t + 1), f(t) = et − 1 and a counterex-
ample is f(t) = t

t+1 .
The problem (2) for p = 2, was studied by Rădulescu in [10].

We first extend an auxiliary result (we refer to [6, Lemma 2.1] for a complete
proof). This proof following an idea given in [7].

Lemma 2.1 Let 0 < p < 1, β ≥ 0, λ > 0, f satisfies (f1) and (f2). Assume that
there exist ω1, ω2 ∈ C2(Ω) ∩ C(Ω̄) such that

(i) ∆ω2 + λ |∇ω2|p
f(ω2)

+ β ≤ 0 ≤ ∆ω1 + λ |∇ω1|p
f(ω1)

+ β in Ω.

(ii) ω1, ω2 > 0 in Ω and ω1 ≤ ω2 on ∂Ω.

Then ω1 ≤ ω2 in Ω.

Proof: Assume by contradiction that ω1 ≤ ω2 does not hold throughout Ω and
let η = ω1

ω2
. Because η ≤ 1 on ∂Ω, η achieves its maximum on Ω. Also,

ω2
2ηxi = ω1xiω2 − ω2xiω1 for all i ∈ 1, N.

Therefore,
∇ω2

2∇η + ω2
2∆η = ω2∆ω1 − ω1∆ω2. (I)

Let xM ∈ Ω denote a maximum point of η. Therefore, in particular we have

∇η(xM ) = 0, −∆η(xM ) ≥ 0.

Using (I) we obtain

(ω1∆ω2 − ω2∆ω1)(xM ) ≥ 0 (II)

and

(ω1∆ω2 − ω2∆ω1)(xM ) + λ
ω1

f(ω2)
|∇ω2|p(xM )− λ

ω2

f(ω1)
|∇ω1|p(xM )+

+β(ω1(xM )− ω2(xM )) ≤ 0.
From (II), ω2(xM ) < ω1(xM ) and the fact that f is increasing (see (f1)) on (0,∞) we
also have

λ

f(ω1)
[ω1|∇ω2|p − ω2|∇ω1|p](xM ) + β(ω1(xM )− ω2(xM )) < 0.

But we know that

|∇ω2|p(xM ) = (
ω2|∇ω1|

ω1
)p(xM ).

Therefore, we find

λ|∇ω1|pωp
2

f(ω1)
[ ω1−p

1 − ω1−p
2︸ ︷︷ ︸

>0

](xM ) + β (ω1(xM )− ω2(xM ))︸ ︷︷ ︸
>0

< 0.

which contradicts ω2(xM )− ω1(xM ) < 0. Therefore we will have ω1 ≤ ω2 in Ω.

2

Our main result is the following.
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Theorem 2.2 Assume that 0 < p < 1 and conditions (f1)-(f2) are fulfilled. Then
the problem (1) has at least one classical solution for all λ > 0 and β ≥ 0.

Proof: Let us first consider the problem


−∆v = β in Ω

v > 0 in Ω
v = 0 on ∂Ω

It is easy to see that the unique solution v of the above problem verifies

−∆v = β ≤ λ
|∇v|p
f(v)

+ β

It follows that u := v is a sub-solution of (1).

We now focus on finding a super-solution u of (1) such that u ≤ u in Ω.
For this purpose, let Γ : [0, 1) → [0,∞) defined by

Γ(t) =
∫ t

0

1√
2

∫ 1

s
1

f(x)dx
ds 0 ≤ t < 1

From (f1)− (f2), 0 < s < 1 we remark that Γ is well defined.
We claim that Γ is bijective. Indeed,

Γ
′
(t) =

1√
2

∫ 1

t
1

f(x)dx
> 0 therefore Γ is increasing

,Γ(0) = 0 and Γ(t) ≥ Ct with C > 0 from where we obtain limt→∞ Γ(t) = ∞ and the
claim follows.
Set ` := limt↗1 Γ(t) and let ζ : [0, `) → [0, 1) be the inverse of Γ.

Since ζ is the inverse of Γ we have ζ(0) = 0 and ζ ∈ C1(0, `) with Γ(ζ(t)) = t we
find

ζ
′
=

√
2

∫ 1

ζ(t)

1
f(x)

dx for all 0 < t < `.

This yields

(S)





−ζ
′′
(t) =

1
f(ζ(t))

for all t ∈ (0, `)

ζ(t), ζ
′
(t) > 0 for all t ∈ (0, `)

ζ(0) = 0

Let ϕ1 denote the first eigenfunction of the Laplace operator in H1
0 (Ω). The existence

of a super-solution of (1) is obtained in the following result

Lemma 2.3 There exist two positive constants Mλ > 0 and c > 0 such that
u := Mλζ(cϕ1) is a super-solution of (1).

Proof: By the strong maximum principle there exist ω ⊂⊂ Ω and δ > 0 such that

|∇ϕ1| > δ in Ω\ω and ϕ1 > δ in ω.

Also, we have
ux1 = Mλcζ

′
(cϕ1)ϕ1x1
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ux1x1 = Mλc2ζ
′′
(cϕ1)ϕ2

1x1
+ Mλcζ

′
(cϕ1)ϕ1x1x1

Therefore

−∆u =
Mλc2|∇ϕ1|2
f(ζ(cϕ1))

+ Mλcλ1ϕ1ζ
′
(cϕ1)

Thus, since (f2), (S), the fact that ζ is concave, ζ
′
(cϕ1) > 0 in ω̄, p ∈ (0, 1) we can

choose Mλ > 1 such that

Mλcλ1ϕ1ζ
′
(cϕ1) ≥ 2λ(Mλcζ

′
(cϕ1)|∇ϕ1|)p

f(Mλζ(cϕ1))
Also, we easy to see that

Mλcλ1ϕ1ζ
′
(cϕ1) ≥ 2β in ω̄

Thus,

Mλcλ1ϕ1ζ
′
(cϕ1) ≥ |∇u|p

f(u)
+ β in ω̄ (I)

Next, from (f1), p ∈ (0, 1) and Mλ > 1 we find

Mλc2|∇ϕ1|2
f(ζ(cϕ1))

≥ Mλc2|∇ϕ1|2
f(Mλζ(cϕ1))

≥ Mλc2δ2

f(Mλζ(cϕ1))
≥

≥ λ
(Mλcζ

′
(cϕ1)|∇ϕ|)p

f(Mλζ(cϕ1))
= λ

|∇u|p
f(u)

in Ω\ω
Therefore, we showed that in Ω\ω there holds

Mλc2|∇ϕ1|2
f(ζ(cϕ1))

≥ λ
|∇u|p
f(u)

+ β. (II)

Finally, from (I) and (II) we derive

−∆u ≥ λ
|∇u|p
f(u)

+ β. in Ω

This ends the proof.

2

Let us come back to the proof of Theorem 2.2. So far we have constructed a
sub-solution u := v and a super-solution u := Mλζ(cϕ1) such that

∆u + λ
|∇u|p
f(u)

+ β ≤ 0 ≤ ∆u + λ
|∇u|p
f(u)

+ β in Ω

u, u > 0 in Ω
Mλζ(cϕ1) = u > u = 0 on ∂Ω.

By Lemma 2.1 we obtain u ≥ u in Ω. The conclusion follows now by the sub and
supersolution method for the pair (u, u).

2
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The linear case.

In the linear case the problem (1) becomes

(3)





−∆u = λ
|∇u|p
f(u)

+ βu in Ω

u > 0 in Ω
u = 0 on ∂Ω

where λ > 0, β > 0. We obtain

Theorem 2.4 Assume that 0 < p < 1 and f satisfies (f1) − (f2). Then for all
λ > 0 and β < λ1 the problem (3) has solutions.

Proof: By Theorem 2.2 there exists u ∈ C2(Ω) ∩ C(Ω̄) a solution of the problem



−∆u = λ
|∇u|p
f(u)

in Ω

u > 0 in Ω
u = 0 on ∂Ω

Obviously u := u is a sub-solution of (3). Now, we consider the problem

(4)




−∆ω = βω + α in Ω

ω > 0 in Ω
ω = 0 on ∂Ω

where we fix 0 < β < λ1 and α ≥ 2. Since β < λ1 we observe that the conditions of
the Theorem 1.2.5 from [7] are fulfilled, therefore there exists a solution ω ∈ C2(Ω̄)
of (4).

Using the fact 0 < p < 1, and (f2) we can choose Cλ > 0 large enough such that

Cλ > λ|Cλ∇ω|p = λ|∇Cλω|p
1 < f(Cλω), Cλ > β sup u(x) in Ω

From (4) we obtain

−∆Cλω = βCλω + αCλ ≥ Cλβω + 2Cλ ≥
≥ Cλβω + λ|∇(Cλω)|p + β sup

Ω
u(x) ≥ λ|∇(Cλω)|p + β(Cλω)+

βu = λ|∇(Cλω)|p + β(u + Cλω).
Now, we claim that u = u + Cλω is a super-solution of (3). Indeed, we have

−∆u = −∆(u + Cλω) = −∆u−∆Cλω ≥ λ|∇(Cλω)|p+

β(u + Cλω) + λ
|∇u|p
f(u)

≥ λ
|∇(Cλω)|p
f(Cλω)

+ β(u + Cλω) + λ
|∇u|p
f(u)

.

From u = u + Cλω > max(u,Cλω) we find

β(u + Cλω) +
λ

f(u)
(|∇(Cλω)|p + |∇u|p) ≥ β(u + Cλω) +

λ

f(u)
(|∇(Cλω)|+ |∇u|)p ≥

β(u + Cλω) +
λ

f(u)
(|∇(u + Cλω)|)p = λ

|∇u|p
f(u)

+ βu in Ω.
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Therefore we obtained −∆u ≥ λ |∇u|p
f(u) + βu in Ω.

Hence, (u, u) is a pair of sub and super-solution of (3), obviously u < u and thus
the problem (3) has a classical solution u provided λ > 0 and β ∈ (0, λ1).

2

Let us consider the problem

(5)




−∆ω = ω−α + λ in Ω

ω > 0 in Ω
ω = 0 on ∂Ω

By Theorem 1.2.5 from [7] the above problem (for 0 < λ < λ1) has solution. We
can choose m > 1 large enough such that 1 < f(mω) from where m > |∇mω|p

f(mω) . From
(5) we find

−∆(mω) = mω−α + λm ≥ (mω)−α + λ
|∇(mω)|p
f(mω)

Let u := mω, we find a super-solution for the below problem, that is −∆u ≥ u−α +
λ |∇u|p

f(u) .

(6)





−∆u = λ
|∇u|p
f(u)

+ u−α in Ω

u > 0 in Ω
u = 0 on ∂Ω

Obviously, u = v is a sub-solution of the problem (6), where v is the unique solution
for the problem 



−∆v = v−α in Ω

v > 0 in Ω
v = 0 on ∂Ω

and c1δ(x) ≤ v(x) ≥ c2δ(x) with c1, c2 > 0. Hence, for all λ ∈ (0, λ1) there exist a
solution u for the problem (6).
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