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Sublinear convection elliptic equations with singular
nonlinearity

IRINEL FIROIU

ABSTRACT. We present some existence results for the classical solutions to singular elliptic
problems of the form

p
=2V s g
f(w)
u>0 in Q
u=20 on 02

where Q is a smooth bounded domain in RN while p € (0,1), A >0, 3 > 0, f/ > 0 on (0,00)
and f(0) = 0. Our analysis combines monotonicity arguments with elliptic estimates.
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1. Introduction

In a series of recent works have been studied the problems with gradient terms.
For example, when trying to find solutions for the model equation

—Apu+g(uw)|VulP =p in Q
u=0 on 0f)

growth at infinity of g(s) and the regular or singular nature of y play a crucial role.
Removable singularity results were proved by H. Brezis and L. Nirenberg in [2] for
p = 2, showing that if sg(s) > vs~2 with v > 1, then any compact set of zero capacity
(the standard Newtonian capacity) is removable. In [1] it can be found a study of the
existence of bounded solutions of boundary value problems of the type

—div(A(x,u)Vu) + %Al (z,u)|Vu|> = f inQ
u=0 on 0f)

where f € L1(Q),q > %7 A is a bounded, smooth function.

Elliptic equations involving a gradient term appear in many fields. For instance,
Bellman’s dynamic programming principle arising in optimal stochastic control prob-
lem, indicates that the Bellman function u which minimizes the cost functional is also
a solution of the nonlinear elliptic equation

—&—FM—I—)\u:f(u) in Q.
2 p
where Q ¢ RY is a bounded domain, 0 < p < 2, A > 0 denotes the discount factor
and f is a smooth or singular nonlinearity. As remarked by many authors (see Serrin
[11], Choquet-Bruhat and Leray [3], Kazdan and Warner [8]), the requirement that
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the nonlinearity |VulP grows at most quadratically is natural in order to apply the
maximum principle.

If we consider the well-known example Aw = w? in , w > 0 in Q and w = 0o on
Of) then the function n = w™! satisfies

2
—Ap=n*"P - EIWI2 in Q
n>0 in
n=20 on 0f)

The above equation contains both singular nonlinearities (n>~? and n~!,p > 2) and
a convection term (|Vn[?).

Let Q € RY be a bounded domain with smooth boundary. Consider the nonlinear
singular problem
—Au=AVulP +u™* inQ
u>0 in 0
u=0 on 0f)
where A € R,p € (0,1),@ > 0. From [4] we have the result that the problem has at
least one classical solution for all A € R.

In this paper we try to answer the below questions :
i) what can be said when the singularity 4~ is near |VulP ?
ii) what happens if near |Vu|? we have other kind of functions than u=* ?

2. The Main Results

be a bounded domain, p € (0,1), A > 0, 8 > 0 and

Let Q@ ¢ RN(N > 1)
<~ < 1) is a function which satisfies :

>
feC%70,00) (0< vy
(f1) £(0)=0,f>0and f >0 on (0,00).
(f2) there exists to > 0 such that f(¢) > 1 on (¢g, 00).

We are concerned with the following boundary value problem
[Vul?

—Au=A——+L0 in
u>0 in
u=20 on 0f)

where (2 is a smooth bounded domain in RY, while p € (0,1), A >0, 3 >0, f(0) =0
and f > 0 on (0,00).

In the particular case f(u) = u® (a > 0) we obtain
—Au=Au"YVulP+5 inQ
(2) u>0 in
u=20 on 0%

where (2 is a smooth bounded domain in RY, while p € (0,1), A >0, 3 >0, f(0) =0
and f/ > 0 on (0,00). Notice that the above hypotheses are quite natural. Typical
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examples are f(t) =t* (a > 0), f(¢t) =t +In(t+ 1), f(t) = ¢’ — 1 and a counterex-
ample is f(t) = H%
The problem (2) for p = 2, was studied by Rédulescu in [10].

We first extend an auxiliary result (we refer to [6, Lemma 2.1] for a complete
proof). This proof following an idea given in [7].

Lemma 2.1 Let0<p<1, 8>0,A>0,f satisfies (f1) and (f2). Assume that
there exist wy, wa € C?(2) N C(Q) such that

wil” 4 3 in 0.

; [Vws P 4
(1) Aw2+)\Tw22)+BSOSAW1+)\ Flw1)

(ii) w1,ws > 01in Q and wy < wo on 0f).
Then wy < wg in Q.

Proof: Assume by contradiction that w; < ws does not hold throughout 2 and
let n = £L. Because n < 1 on 012, n achieves its maximum on . Also,
w%nwi = Wig, W2 — Wag, W1 forallie 1, N.

Therefore,
VwiVn 4+ wiAn = weAwi — wiAws. (I)

Let xp; € Q denote a maximum point of 7. Therefore, in particular we have
VU(SE}W) =0, 7A77(:L'M) > 0.
Using (I) we obtain
(wlsz — ngwl)(wM) Z 0 (II)
and
(W1 Awy — waAwr ) (mar) + )\L\Vwﬂp(xM) - A
flw2)
+B(wr(xar) — wa(zar)) <O0.
From (IT), wo(zpr) < wi(xar) and the fact that f is increasing (see (f1)) on (0, 00) we
also have

w2

flwr)

|Vwr|P(xar)+

A
m[a}ﬂvwﬂp — wo | Vw1 |P(zar) + B(wi(war) — wa(zar)) < 0.
But we know that o
Ve |?(zar) = (%fﬂ)p(@w).

Therefore, we find
AlVwi [Pwh

flwr)

[wi ™ —wy P)(xa) + B (wi(zn) —wa(zar)) <O.
— ———

>0 >0

which contradicts wa(zpr) — wi(2ar) < 0. Therefore we will have wy < ws in Q.

Our main result is the following.
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Theorem 2.2 Assume that 0 < p < 1 and conditions (f1)-(f2) are fulfilled. Then
the problem (1) has at least one classical solution for all A >0 and 8 > 0.

Proof: Let us first consider the problem

—Av=p0 inQ
v >0 in
v=20 on 0f)

It is easy to see that the unique solution v of the above problem verifies

Vp
Vol | 5

“AVE IS AT

It follows that u := v is a sub-solution of (1).

We now focus on finding a super-solution @ of (1) such that u <@ in Q.
For this purpose, let I' : [0,1) — [0, 00) defined by

t
1
F(t):/ —ds
1 1
0 \/2 . Ty de

From (f1) — (f2), 0 < s < 1 we remark that I' is well defined.
We claim that I is bijective. Indeed,

’ 1

M=t
1
V2 rade

,(0) = 0 and I'(t) > Ct with C' > 0 from where we obtain lim;_,., I'(t) = co and the
claim follows.
Set £ :=limy ~ I'(¢) and let ¢ : [0,¢) — [0, 1) be the inverse of I'.

0<t<1

> 0 therefore I' is increasing

Since ( is the inverse of I' we have ((0) = 0 and ¢ € C*(0,¢) with T'({(t)) =t we
find

1

! 1

¢ = 2/ ——dr forall0<t< /.
cwy f(@)

This yields

() = m for all t € (0, )
(5) C(t),C'(t)>0  forallt € (0,0)
¢(0)=0

Let 1 denote the first eigenfunction of the Laplace operator in H} (). The existence
of a super-solution of (1) is obtained in the following result

Lemma 2.3 There exist two positive constants My > 0 and ¢ > 0 such that
= My((cp1) is a super-solution of (1).
Proof: By the strong maximum principle there exist w CC € and § > 0 such that
V1| > 6 in Q\w and 1 > § in w.

Also, we have
Uz, = MeC (0901)90111
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Ugyzq = MACQC”(CSW)SD%M + MACCI(CSﬁl)Salmm
Therefore

M>\C2|V<,O1‘2
f(¢(epr))

Thus, since (f2), (S), the fact that ¢ is concave, ¢ (cp1) > 01in @, p € (0,1) we can
choose M) > 1 such that

+ MyehipiC (epr)

2A(Mic (e1)[Vepr )P
F(M((epr))

MychipiC (ep1) >

Also, we easy to see that
MAC/\1<p1§/(cg01) >2(3 ink

Thus,

MAc)qgolC (cp1) > JY()Jrﬁ inw (1)

Next, from (f1), p € (0,1) and M, > 1 we find
M|V |? < My\c?| Vs |2 < Myc?52 <
f(Clewr)) ™ F(MxC(ewr)) — f(MaC(epr)) —

(Mrc¢ (co)[ V)P |[vaP
> A =\A\—= in Q\w
=T M (epn)) @) \
Therefore, we showed that in Q\w there holds
2 2 —ip
Myc? |V S >\|Vu| 5. ()

fllep)) = f@)
Finally, from (I) and (II) we derive
[Val?

—Au >/\f(u)

+ 3. in
This ends the proof.

O

Let us come back to the proof of Theorem 2.2. So far we have constructed a
sub-solution u := v and a super-solution @ := M,((cp1) such that
[VulP [Vuf?
f(@) f(u)

w,u >0 in 2

Myl(cpr)=u>u=0 on 0f).
By Lemma 2.1 we obtain w > u in 2. The conclusion follows now by the sub and
supersolution method for the pair (u,@).

AU+ A—+ <0< AU+ I\—-+f in Q

O



SUBLINEAR CONVECTION ELLIPTIC EQUATIONS ... 127
The linear case.

In the linear case the problem (1) becomes
[Vul?

—Au =\ +fBu in Q
(3) f(u)
u >0 in Q
u=20 on 0f

where A > 0, 3 > 0. We obtain

Theorem 2.4 Assume that 0 < p < 1 and f satisfies (f1) — (f2). Then for all
A >0 and B < Ay the problem (3) has solutions.

Proof: By Theorem 2.2 there exists u € C?(Q2) N C(2) a solution of the problem

p
Aw= Y g
f(uw)
u >0 in Q
u=20 on 0f2

Obviously u := w is a sub-solution of (3). Now, we consider the problem

—Aw=0Fw+a inQ
(4) w>0 in
w=20 on 0f)

where we fix 0 < 8 < A1 and « > 2. Since 8 < A1 we observe that the conditions pf
the Theorem 1.2.5 from [7] are fulfilled, therefore there exists a solution w € C?(Q)

of (4).
Using the fact 0 < p < 1, and (f2) we can choose C > 0 large enough such that
Cy > )\|C'>\Vw\p = >\|VC’)\w|p
1< f(Chw), Cx>fFsupu(z) in
From (4) we obtain
—AC\w = fC\w + aCy > Cyfw + 2C >
> Chfw + A|V(Chw)|P + Bsupu(z) > MV (Cow) P + B(Chw)+
Q

,B’U, = )\|V(C>\w)|p + ﬂ(u + C)\w).

Now, we claim that @ = u + C\w is a super-solution of (3). Indeed, we have

—AT = —-A(u+ Cw) = —Au— AC\w > A\|[V(Chw) [P+

|Vul?

Blu+ Chrw) + A )
IV(Cow)P [VulP
2N f(Cyw) PP O

From @ = u + Chw > max(u, Chw) we find

Blu+ Chw) + féL)(W(CM)P + [Vul?) > B(u+ Chw) + f(Au)(V(OWﬂ + |Vu|)? >

L U w)|)? = Val u in
B+ Co) + o (Vut Ol = AT 4 g n
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Therefore we obtained —Aw > A ly(ﬁﬂl)p + fu in €.

Hence, (u,@) is a pair of sub and super-solution of (3), obviously u < @ and thus
the problem (3) has a classical solution u provided A > 0 and 3 € (0, A\1).

O

Let us consider the problem

“Aw=w ¥+ inQ
(5) w>0 in Q
w=0 on 0f)

By Theorem 1.2.5 from [7] the above problem (for 0 < A < A1) has solution. We
can choose m > 1 large enough such that 1 < f(mw) from where m > |JY(”T:::JU|; . From
(5) we find

- - |V (mw)|?
—A(mw) =mw™* 4+ Am > (mw)™* + \———+—
() (ms) ™™ + AT
Let @ := mw, we find a super-solution for the below problem, that is —Au > 7~ +
[Val”
A
P
—Au = )\ﬂ +u™% inQ
(6) f(w)
u>0 in
u=20 on 0f)

Obviously, u = v is a sub-solution of the problem (6), where v is the unique solution
for the problem
—Av=0v"% inQ
v >0 in Q
v=20 on 0f)

and c¢10(x) < v(xz) > ea6(x) with ¢1,co > 0. Hence, for all A € (0, A1) there exist a
solution u for the problem (6).
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