Sublinear convection elliptic equations with singular nonlinearity

Irinel Firoiu

Abstract. We present some existence results for the classical solutions to singular elliptic problems of the form

$$
\left\{\begin{array}{cl}
-\Delta u=\lambda \frac{|\nabla u|^{p}}{f(u)}+\beta & \text { in } \Omega \\
u>0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is a smooth bounded domain in \mathbb{R}^{N}, while $p \in(0,1), \lambda>0, \beta \geq 0, f^{\prime}>0$ on $(0, \infty)$ and $f(0)=0$. Our analysis combines monotonicity arguments with elliptic estimates.

2000 Mathematics Subject Classification. 35J60; 58 J 55.
Key words and phrases. Nonlinear elliptic equations, comparison principle, gradient term.

1. Introduction

In a series of recent works have been studied the problems with gradient terms. For example, when trying to find solutions for the model equation

$$
\left\{\begin{array}{cl}
-\Delta_{p} u+g(u)|\nabla u|^{p}=\mu & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

growth at infinity of $g(s)$ and the regular or singular nature of μ play a crucial role. Removable singularity results were proved by H. Brezis and L. Nirenberg in [2] for $p=2$, showing that if $s g(s) \geq \gamma s^{-2}$ with $\gamma>1$, then any compact set of zero capacity (the standard Newtonian capacity) is removable. In [1] it can be found a study of the existence of bounded solutions of boundary value problems of the type

$$
\left\{\begin{array}{cl}
-\operatorname{div}(A(x, u) \nabla u)+\frac{1}{2} A^{\prime}(x, u)|\nabla u|^{2}=f & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $f \in L^{q}(\Omega), q>\frac{N}{2}, A$ is a bounded, smooth function.
Elliptic equations involving a gradient term appear in many fields. For instance, Bellman's dynamic programming principle arising in optimal stochastic control problem, indicates that the Bellman function u which minimizes the cost functional is also a solution of the nonlinear elliptic equation

$$
-\frac{\Delta u}{2}+\frac{|\nabla u|^{p}}{p}+\lambda u=f(u) \quad \text { in } \Omega .
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain, $0<p \leq 2, \lambda>0$ denotes the discount factor and f is a smooth or singular nonlinearity. As remarked by many authors (see Serrin [11], Choquet-Bruhat and Leray [3], Kazdan and Warner [8]), the requirement that
the nonlinearity $|\nabla u|^{p}$ grows at most quadratically is natural in order to apply the maximum principle.

If we consider the well-known example $\Delta \omega=\omega^{p}$ in $\Omega, \omega>0$ in Ω and $\omega=\infty$ on $\partial \Omega$ then the function $\eta=\omega^{-1}$ satisfies

$$
\left\{\begin{array}{cl}
-\Delta \eta=\eta^{2-p}-\frac{2}{\eta}|\nabla \eta|^{2} & \text { in } \Omega \\
\eta>0 & \text { in } \Omega \\
\eta=0 & \text { on } \partial \Omega
\end{array}\right.
$$

The above equation contains both singular nonlinearities (η^{2-p} and $\eta^{-1}, p>2$) and a convection term $\left(|\nabla \eta|^{2}\right)$.

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with smooth boundary. Consider the nonlinear singular problem

$$
\left\{\begin{array}{cl}
-\Delta u= & \lambda|\nabla u|^{p}+u^{-\alpha} \\
& \text { in } \Omega \\
u>0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $\lambda \in \mathbb{R}, p \in(0,1), \alpha>0$. From [4] we have the result that the problem has at least one classical solution for all $\lambda \in \mathbb{R}$.

In this paper we try to answer the below questions :
i) what can be said when the singularity $u^{-\alpha}$ is near $|\nabla u|^{p}$?
ii) what happens if near $|\nabla u|^{p}$ we have other kind of functions than $u^{-\alpha}$?

2. The Main Results

Let $\Omega \subset \mathbb{R}^{N}(N \geq 1)$ be a bounded domain, $p \in(0,1), \lambda>0, \beta \geq 0$ and $f \in C^{0, \gamma}[0, \infty)(0 \leq \gamma \leq 1)$ is a function which satisfies :
(f1) $f(0)=0, f>0$ and $f^{\prime}>0$ on $(0, \infty)$.
(f2) there exists $t_{0}>0$ such that $f(t)>1$ on $\left(t_{0}, \infty\right)$.
We are concerned with the following boundary value problem

$$
\left\{\begin{array}{cl}
-\Delta u=\lambda \frac{|\nabla u|^{p}}{f(u)}+\beta & \text { in } \Omega \tag{1}\\
u>0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is a smooth bounded domain in \mathbb{R}^{N}, while $p \in(0,1), \lambda>0, \beta \geq 0, f(0)=0$ and $f^{\prime}>0$ on $(0, \infty)$.

In the particular case $f(u)=u^{\alpha}(\alpha>0)$ we obtain

$$
\left\{\begin{array}{cl}
-\Delta u=\lambda u^{-\alpha}|\nabla u|^{p}+\beta & \text { in } \Omega \tag{2}\\
u>0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is a smooth bounded domain in \mathbb{R}^{N}, while $p \in(0,1), \lambda>0, \beta \geq 0, f(0)=0$ and $f^{\prime}>0$ on $(0, \infty)$. Notice that the above hypotheses are quite natural. Typical
examples are $f(t)=t^{\alpha}(\alpha>0), f(t)=t+\ln (t+1), f(t)=e^{t}-1$ and a counterexample is $f(t)=\frac{t}{t+1}$.
The problem (2) for $p=2$, was studied by Rădulescu in [10].
We first extend an auxiliary result (we refer to [6, Lemma 2.1] for a complete proof). This proof following an idea given in [7].

Lemma 2.1 Let $0<p<1, \beta \geq 0, \lambda>0, f$ satisfies $(f 1)$ and ($f 2$). Assume that there exist $\omega_{1}, \omega_{2} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ such that
(i) $\Delta \omega_{2}+\lambda \frac{\left|\nabla \omega_{2}\right|^{p}}{f\left(\omega_{2}\right)}+\beta \leq 0 \leq \Delta \omega_{1}+\lambda \frac{\left|\nabla \omega_{1}\right|^{p}}{f\left(\omega_{1}\right)}+\beta \quad$ in Ω.
(ii) $\omega_{1}, \omega_{2}>0$ in Ω and $\omega_{1} \leq \omega_{2} \quad$ on $\partial \Omega$.

Then $\omega_{1} \leq \omega_{2}$ in Ω.
Proof: Assume by contradiction that $\omega_{1} \leq \omega_{2}$ does not hold throughout Ω and let $\eta=\frac{\omega_{1}}{\omega_{2}}$. Because $\eta \leq 1$ on $\partial \Omega, \eta$ achieves its maximum on Ω. Also,

$$
\omega_{2}^{2} \eta_{x_{i}}=\omega_{1 x_{i}} \omega_{2}-\omega_{2 x_{i}} \omega_{1} \quad \text { for all } \mathrm{i} \in \overline{1, N}
$$

Therefore,

$$
\begin{equation*}
\nabla \omega_{2}^{2} \nabla \eta+\omega_{2}^{2} \Delta \eta=\omega_{2} \Delta \omega_{1}-\omega_{1} \Delta \omega_{2} \tag{I}
\end{equation*}
$$

Let $x_{M} \in \Omega$ denote a maximum point of η. Therefore, in particular we have

$$
\nabla \eta\left(x_{M}\right)=0, \quad-\Delta \eta\left(x_{M}\right) \geq 0
$$

Using (I) we obtain

$$
\begin{equation*}
\left(\omega_{1} \Delta \omega_{2}-\omega_{2} \Delta \omega_{1}\right)\left(x_{M}\right) \geq 0 \tag{II}
\end{equation*}
$$

and

$$
\begin{gathered}
\left(\omega_{1} \Delta \omega_{2}-\omega_{2} \Delta \omega_{1}\right)\left(x_{M}\right)+\lambda \frac{\omega_{1}}{f\left(\omega_{2}\right)}\left|\nabla \omega_{2}\right|^{p}\left(x_{M}\right)-\lambda \frac{\omega_{2}}{f\left(\omega_{1}\right)}\left|\nabla \omega_{1}\right|^{p}\left(x_{M}\right)+ \\
+\beta\left(\omega_{1}\left(x_{M}\right)-\omega_{2}\left(x_{M}\right)\right) \leq 0
\end{gathered}
$$

From (II), $\omega_{2}\left(x_{M}\right)<\omega_{1}\left(x_{M}\right)$ and the fact that f is increasing (see (f1)) on ($0, \infty$) we also have

$$
\frac{\lambda}{f\left(\omega_{1}\right)}\left[\omega_{1}\left|\nabla \omega_{2}\right|^{p}-\omega_{2}\left|\nabla \omega_{1}\right|^{p}\right]\left(x_{M}\right)+\beta\left(\omega_{1}\left(x_{M}\right)-\omega_{2}\left(x_{M}\right)\right)<0 .
$$

But we know that

$$
\left|\nabla \omega_{2}\right|^{p}\left(x_{M}\right)=\left(\frac{\omega_{2}\left|\nabla \omega_{1}\right|}{\omega_{1}}\right)^{p}\left(x_{M}\right)
$$

Therefore, we find

$$
\frac{\lambda\left|\nabla \omega_{1}\right|^{p} \omega_{2}^{p}}{f\left(\omega_{1}\right)}[\underbrace{\omega_{1}^{1-p}-\omega_{2}^{1-p}}_{>0}]\left(x_{M}\right)+\beta \underbrace{\left(\omega_{1}\left(x_{M}\right)-\omega_{2}\left(x_{M}\right)\right)}_{>0}<0 .
$$

which contradicts $\omega_{2}\left(x_{M}\right)-\omega_{1}\left(x_{M}\right)<0$. Therefore we will have $\omega_{1} \leq \omega_{2}$ in Ω.

Our main result is the following.

Theorem 2.2 Assume that $0<p<1$ and conditions (f1)-(f2) are fulfilled. Then the problem (1) has at least one classical solution for all $\lambda>0$ and $\beta \geq 0$.

Proof: Let us first consider the problem

$$
\left\{\begin{array}{cl}
-\Delta v=\beta & \text { in } \Omega \\
v>0 & \text { in } \Omega \\
v=0 & \text { on } \partial \Omega
\end{array}\right.
$$

It is easy to see that the unique solution v of the above problem verifies

$$
-\Delta v=\beta \leq \lambda \frac{|\nabla v|^{p}}{f(v)}+\beta
$$

It follows that $\underline{u}:=v$ is a sub-solution of (1).
We now focus on finding a super-solution \bar{u} of (1) such that $\underline{u} \leq \bar{u}$ in Ω.
For this purpose, let $\Gamma:[0,1) \rightarrow[0, \infty)$ defined by

$$
\Gamma(t)=\int_{0}^{t} \frac{1}{\sqrt{2 \int_{s}^{1} \frac{1}{f(x)} d x}} d s \quad 0 \leq t<1
$$

From $(f 1)-(f 2), 0<s<1$ we remark that Γ is well defined.
We claim that Γ is bijective. Indeed,

$$
\Gamma^{\prime}(t)=\frac{1}{\sqrt{2 \int_{t}^{1} \frac{1}{f(x)} d x}}>0 \quad \text { therefore } \Gamma \text { is increasing }
$$

,$\Gamma(0)=0$ and $\Gamma(t) \geq C t$ with $C>0$ from where we obtain $\lim _{t \rightarrow \infty} \Gamma(t)=\infty$ and the claim follows.
Set $\ell:=\lim _{t \nearrow 1} \Gamma(t)$ and let $\zeta:[0, \ell) \rightarrow[0,1)$ be the inverse of Γ.
Since ζ is the inverse of Γ we have $\zeta(0)=0$ and $\zeta \in C^{1}(0, \ell)$ with $\Gamma(\zeta(t))=t$ we find

$$
\zeta^{\prime}=\sqrt{2 \int_{\zeta(t)}^{1} \frac{1}{f(x)} d x} \quad \text { for all } 0<t<\ell
$$

This yields

$$
\left\{\begin{array}{cc}
-\zeta^{\prime \prime}(t)=\frac{1}{f(\zeta(t))} & \text { for all } \mathrm{t} \in(0, \ell) \tag{S}\\
\zeta(t), \zeta^{\prime}(t)>0 & \text { for all } \mathrm{t} \in(0, \ell) \\
\zeta(0)=0 &
\end{array}\right.
$$

Let φ_{1} denote the first eigenfunction of the Laplace operator in $H_{0}^{1}(\Omega)$. The existence of a super-solution of (1) is obtained in the following result

Lemma 2.3 There exist two positive constants $M_{\lambda}>0$ and $c>0$ such that $\bar{u}:=M_{\lambda} \zeta\left(c \varphi_{1}\right)$ is a super-solution of (1).

Proof: By the strong maximum principle there exist $\omega \subset \subset \Omega$ and $\delta>0$ such that

$$
\left|\nabla \varphi_{1}\right|>\delta \quad \text { in } \Omega \backslash \omega \text { and } \varphi_{1}>\delta \text { in } \omega .
$$

Also, we have

$$
\bar{u}_{x_{1}}=M_{\lambda} c \zeta^{\prime}\left(c \varphi_{1}\right) \varphi_{1 x_{1}}
$$

$$
\bar{u}_{x_{1} x_{1}}=M_{\lambda} c^{2} \zeta^{\prime \prime}\left(c \varphi_{1}\right) \varphi_{1 x_{1}}^{2}+M_{\lambda} c \zeta^{\prime}\left(c \varphi_{1}\right) \varphi_{1 x_{1} x_{1}}
$$

Therefore

$$
-\Delta \bar{u}=\frac{M_{\lambda} c^{2}\left|\nabla \varphi_{1}\right|^{2}}{f\left(\zeta\left(c \varphi_{1}\right)\right)}+M_{\lambda} c \lambda_{1} \varphi_{1} \zeta^{\prime}\left(c \varphi_{1}\right)
$$

Thus, since (f2), (S), the fact that ζ is concave, $\zeta^{\prime}\left(c \varphi_{1}\right)>0$ in $\bar{\omega}, p \in(0,1)$ we can choose $M_{\lambda}>1$ such that

$$
M_{\lambda} c \lambda_{1} \varphi_{1} \zeta^{\prime}\left(c \varphi_{1}\right) \geq \frac{2 \lambda\left(M_{\lambda} c \zeta^{\prime}\left(c \varphi_{1}\right)\left|\nabla \varphi_{1}\right|\right)^{p}}{f\left(M_{\lambda} \zeta\left(c \varphi_{1}\right)\right)}
$$

Also, we easy to see that

$$
M_{\lambda} c \lambda_{1} \varphi_{1} \zeta^{\prime}\left(c \varphi_{1}\right) \geq 2 \beta \quad \text { in } \bar{\omega}
$$

Thus,

$$
M_{\lambda} c \lambda_{1} \varphi_{1} \zeta^{\prime}\left(c \varphi_{1}\right) \geq \frac{|\nabla \bar{u}|^{p}}{f(\bar{u})}+\beta \quad \text { in } \bar{\omega} \quad(I)
$$

Next, from (f1), $p \in(0,1)$ and $M_{\lambda}>1$ we find

$$
\begin{aligned}
& \frac{M_{\lambda} c^{2}\left|\nabla \varphi_{1}\right|^{2}}{f\left(\zeta\left(c \varphi_{1}\right)\right)} \geq \frac{M_{\lambda} c^{2}\left|\nabla \varphi_{1}\right|^{2}}{f\left(M_{\lambda} \zeta\left(c \varphi_{1}\right)\right)} \geq \frac{M_{\lambda} c^{2} \delta^{2}}{f\left(M_{\lambda} \zeta\left(c \varphi_{1}\right)\right)} \geq \\
& \geq \lambda \frac{\left(M_{\lambda} c \zeta^{\prime}\left(c \varphi_{1}\right)|\nabla \varphi|\right)^{p}}{f\left(M_{\lambda} \zeta\left(c \varphi_{1}\right)\right)}=\lambda \frac{|\nabla \bar{u}|^{p}}{f(\bar{u})} \quad \text { in } \Omega \backslash \omega
\end{aligned}
$$

Therefore, we showed that in $\Omega \backslash \omega$ there holds

$$
\begin{equation*}
\frac{M_{\lambda} c^{2}\left|\nabla \varphi_{1}\right|^{2}}{f\left(\zeta\left(c \varphi_{1}\right)\right)} \geq \lambda \frac{|\nabla \bar{u}|^{p}}{f(\bar{u})}+\beta \tag{II}
\end{equation*}
$$

Finally, from (I) and (II) we derive

$$
-\Delta \bar{u} \geq \lambda \frac{|\nabla \bar{u}|^{p}}{f(\bar{u})}+\beta . \quad \text { in } \Omega
$$

This ends the proof.

Let us come back to the proof of Theorem 2.2. So far we have constructed a sub-solution $\underline{u}:=v$ and a super-solution $\bar{u}:=M_{\lambda} \zeta\left(c \varphi_{1}\right)$ such that

$$
\begin{gathered}
\Delta \bar{u}+\lambda \frac{|\nabla \bar{u}|^{p}}{f(\bar{u})}+\beta \leq 0 \leq \Delta \underline{u}+\lambda \frac{|\nabla \underline{u}|^{p}}{f(\underline{u})}+\beta \quad \text { in } \Omega \\
\bar{u}, \underline{u}>0 \quad \text { in } \Omega \\
M_{\lambda} \zeta\left(c \varphi_{1}\right)=\bar{u}>\underline{u}=0 \quad \text { on } \partial \Omega .
\end{gathered}
$$

By Lemma 2.1 we obtain $\bar{u} \geq \underline{u}$ in Ω. The conclusion follows now by the sub and supersolution method for the pair (\underline{u}, \bar{u}).

The linear case.

In the linear case the problem (1) becomes

$$
\left\{\begin{array}{cl}
-\Delta u=\lambda \frac{|\nabla u|^{p}}{f(u)}+\beta u & \text { in } \Omega \tag{3}\\
u>0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $\lambda>0, \beta>0$. We obtain
Theorem 2.4 Assume that $0<p<1$ and f satisfies $(f 1)-(f 2)$. Then for all $\lambda>0$ and $\beta<\lambda_{1}$ the problem (3) has solutions.

Proof: By Theorem 2.2 there exists $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ a solution of the problem

$$
\left\{\begin{array}{cl}
-\Delta u=\lambda \frac{|\nabla u|^{p}}{f(u)} & \text { in } \Omega \\
u>0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

Obviously $\underline{u}:=u$ is a sub-solution of (3). Now, we consider the problem

$$
\left\{\begin{array}{cl}
-\Delta \omega=\beta \omega+\alpha & \text { in } \Omega \tag{4}\\
\omega>0 & \text { in } \Omega \\
\omega=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where we fix $0<\beta<\lambda_{1}$ and $\alpha \geq 2$. Since $\beta<\lambda_{1}$ we observe that the conditions of the Theorem 1.2.5 from [7] are fulfilled, therefore there exists a solution $\omega \in C^{2}(\bar{\Omega})$ of (4).

Using the fact $0<p<1$, and (f2) we can choose $C_{\lambda}>0$ large enough such that

$$
\begin{gathered}
\quad C_{\lambda}>\lambda\left|C_{\lambda} \nabla \omega\right|^{p}=\lambda\left|\nabla C_{\lambda} \omega\right|^{p} \\
1<f\left(C_{\lambda} \omega\right), \quad C_{\lambda}>\beta \sup u(x) \quad \text { in } \Omega
\end{gathered}
$$

From (4) we obtain

$$
\begin{gathered}
-\Delta C_{\lambda} \omega=\beta C_{\lambda} \omega+\alpha C_{\lambda} \geq C_{\lambda} \beta \omega+2 C_{\lambda} \geq \\
\geq C_{\lambda} \beta \omega+\lambda\left|\nabla\left(C_{\lambda} \omega\right)\right|^{p}+\beta \sup _{\Omega} u(x) \geq \lambda\left|\nabla\left(C_{\lambda} \omega\right)\right|^{p}+\beta\left(C_{\lambda} \omega\right)+ \\
\beta u=\lambda\left|\nabla\left(C_{\lambda} \omega\right)\right|^{p}+\beta\left(u+C_{\lambda} \omega\right) .
\end{gathered}
$$

Now, we claim that $\bar{u}=u+C_{\lambda} \omega$ is a super-solution of (3). Indeed, we have

$$
\begin{aligned}
&-\Delta \bar{u}=-\Delta\left(u+C_{\lambda} \omega\right)=-\Delta u-\Delta C_{\lambda} \omega \geq \lambda\left|\nabla\left(C_{\lambda} \omega\right)\right|^{p}+ \\
& \beta\left(u+C_{\lambda} \omega\right)+\lambda \frac{|\nabla u|^{p}}{f(u)} \\
& \geq \lambda \frac{\left|\nabla\left(C_{\lambda} \omega\right)\right|^{p}}{f\left(C_{\lambda} \omega\right)}+\beta\left(u+C_{\lambda} \omega\right)+\lambda \frac{|\nabla u|^{p}}{f(u)}
\end{aligned}
$$

From $\bar{u}=u+C_{\lambda} \omega>\max \left(u, C_{\lambda} \omega\right)$ we find

$$
\begin{gathered}
\beta\left(u+C_{\lambda} \omega\right)+\frac{\lambda}{f(\bar{u})}\left(\left|\nabla\left(C_{\lambda} \omega\right)\right|^{p}+|\nabla u|^{p}\right) \geq \beta\left(u+C_{\lambda} \omega\right)+\frac{\lambda}{f(\bar{u})}\left(\left|\nabla\left(C_{\lambda} \omega\right)\right|+|\nabla u|\right)^{p} \geq \\
\beta\left(u+C_{\lambda} \omega\right)+\frac{\lambda}{f(\bar{u})}\left(\left|\nabla\left(u+C_{\lambda} \omega\right)\right|\right)^{p}=\lambda \frac{|\nabla \bar{u}|^{p}}{f(\bar{u})}+\beta \bar{u} \quad \text { in } \Omega .
\end{gathered}
$$

Therefore we obtained $-\Delta \bar{u} \geq \lambda \frac{|\nabla \bar{u}|^{p}}{f(\bar{u})}+\beta \bar{u} \quad$ in Ω.
Hence, (\underline{u}, \bar{u}) is a pair of sub and super-solution of (3), obviously $\underline{u}<\bar{u}$ and thus the problem (3) has a classical solution u provided $\lambda>0$ and $\beta \in\left(0, \bar{\lambda}_{1}\right)$.

Let us consider the problem

$$
\left\{\begin{array}{cl}
-\Delta \omega=\omega^{-\alpha}+\lambda & \text { in } \Omega \tag{5}\\
\omega>0 & \text { in } \Omega \\
\omega=0 & \text { on } \partial \Omega
\end{array}\right.
$$

By Theorem 1.2.5 from [7] the above problem (for $0<\lambda<\lambda_{1}$) has solution. We can choose $m>1$ large enough such that $1<f(m \omega)$ from where $m>\frac{|\nabla m \omega|^{p}}{f(m \omega)}$. From (5) we find

$$
-\Delta(m \omega)=m \omega^{-\alpha}+\lambda m \geq(m \omega)^{-\alpha}+\lambda \frac{|\nabla(m \omega)|^{p}}{f(m \omega)}
$$

Let $\bar{u}:=m \omega$, we find a super-solution for the below problem, that is $-\Delta \bar{u} \geq \bar{u}^{-\alpha}+$ $\lambda \frac{|\nabla \bar{u}|^{p}}{f(\bar{u})}$.

$$
\left\{\begin{array}{cl}
-\Delta u=\lambda \frac{|\nabla u|^{p}}{f(u)}+u^{-\alpha} & \text { in } \Omega \tag{6}\\
u>0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

Obviously, $\underline{u}=v$ is a sub-solution of the problem (6), where v is the unique solution for the problem

$$
\left\{\begin{array}{cl}
-\Delta v=v^{-\alpha} & \text { in } \Omega \\
v>0 & \text { in } \Omega \\
v=0 & \text { on } \partial \Omega
\end{array}\right.
$$

and $c_{1} \delta(x) \leq v(x) \geq c_{2} \delta(x)$ with $c_{1}, c_{2}>0$. Hence, for all $\lambda \in\left(0, \lambda_{1}\right)$ there exist a solution u for the problem (6).

References

[1] L. Boccardo, F. Murat, J.P. Puel, L^{∞} estimate for some nonlinear elliptic partial differential equations and application to an existence result SIAM J. Math. Anal. 23 1992, 326-333.
[2] H. Brezis, L. Nirenberg, Removable singularities for some nonlinear elliptic equations Topological Methods for Nonlin. Anal. 9 1997, 201 - 219.
[3] Y. Choquet-Bruhat, J. Leray, Sur le problème de Dirichlet quasilineaire d'ordre 2, C. R. Acad. Sci. Paris, Ser. A 87 1972, pp. 81-85.
[4] L. Dupaigne, M. Ghergu, V. Rădulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl. 87 2007, 563-581.
[5] M. Ghergu and V. Rădulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 2003, 520-536.
[6] M. Ghergu, V. Rădulescu, On a class of sublinear singular elliptic problems with convection term, J. Math. Anal. Appl. 311 2005, 635-646.
[7] M. Ghergu, V. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotioc Analysis, Oxford Lecture Notes in Mathematics No. 37, Oxford University Press, 2008.
[8] J. Kazdan, F.W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 1975, 567-597.
[9] V. Rădulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, in Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 4 (Michel Chipot, Editor), North-Holland Elsevier Science, Amsterdam, 2007, pp. 483-591
[10] V. Rădulescu, Combined effects in nonlinear singular elliptic problems with convection, Revue Roumaine de Mathématiques Pures et Appliquées 53 (2008), No. 5
[11] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 1964, 247-302.
(Irinel Firoiu) Department of Mathematics, University of Craiova,
Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania, Tel. 0721635343
E-mail address: firoiu_irinel@yahoo.co.uk

