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On the Darboux Property in the Multivalued Case
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Abstract. In this paper we study the concepts of atom, pseudo-atom, non-atomicity and the
Darboux property for multivalued set functions. We establish the relationships between the
Darboux property and non-atomicity and we point out the differences which appear here from
the case of set functions. We prove that the range of a multimeasure having the Darboux
property is a convex set.
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1. Introduction

Darboux property, non-atomicity, regularity are important problems in the measure
theory. In the last years, the non-additive case received a special attention because
of its applications in mathematical economics, statistics or theory of games.

In this paper we present, for the multivalued case, the relationships between atoms
and pseudo-atoms, between non-atomicity and the Darboux property and we prove
that the range of a multimeasure with the Darboux property is a convex set. Also,
as we shall see, if for set functions, non-atomicity and the Darboux property are
equivalent under some conditions, these results are not valid for the multivalued case.

We recall now some definitions and results used in this paper.

Let T be an abstract nonvoid set and C a ring of subsets of T .
By P(T ) we mean the family of all subsets of T .
By i = 1, n we mean i ∈ {1, . . . , n}, for all n ∈ N∗, where N is the set of all naturals

and N∗ = N\{0}. We also denote R+ = [0, +∞) and R+ = [0, +∞].

Definition 1.1. A set function ν : C → R+, with ν(∅) = 0, is said to be:
(i) a submeasure (in the sense of Drewnowski [4]) if ν is monotone and ν(A∪B) ≤

ν(A) + ν(B), for every A,B ∈ C, with A ∩B = ∅;
(ii) o-continuous if lim

n→∞
ν(An) = 0, for every (An)n∈N∗ ⊆ C, with An ⊇ An+1, for

every n ∈ N∗ and
∞⋂

n=1
An = ∅;

(iii) a Dobrakov submeasure (Dobrakov [3]) if ν is a submeasure and it is also
o-continuous.

Definition 1.2. Let ν : C → R+ be a set function, with ν(∅) = 0.
(i) One says that ν has the Darboux property (DP ) if for every A ∈ C and every

p ∈ (0, 1), there exists a set B ∈ C such that B ⊆ A and ν(B) = pν(A).
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(ii) ν is said to be non-atomic (NA) if for every A ∈ C with ν(A) > 0, there exists
B ∈ C, B ⊆ A, such that ν(B) > 0 and ν(A\B) > 0.

(iii) One says that ν has the Saks property (SP ) if for every A ∈ C and every ε > 0,
there exists a C-partition {Bi}n

i=1 of A such that ν(Bi) < ε, for every i ∈ {1, . . . , n}.
Remark 1.1. I) In what concerns non-atomicity and the Darboux property, we
remarkind now the relationships established in literature for set functions. Suppose
ν : C → R+.

(i) If C is a δ-ring and ν is a measure, then NA ⇔ DP (Dinculeanu [2]).
(ii) If C is a σ-algebra and ν is a Dobrakov submeasure, then NA ⇔ DP ⇔ SP

(Klimkin and Svistula [11]).
(iii) If C is an algebra and ν is bounded, finitely additive, then DP ⇒ SP ⇒ NA

(Rao and Rao [12]).
(iv) If C is a σ-algebra and ν is finitely additive, then DP ⇔ SP (Klimkin and

Svistula [11]).
(v) If C is a σ-algebra and ν is a submeasure, then SP ⇒ DP (Klimkin and Svistula

[11]).

II) Concerning the range of a non-atomic set function, the following results are
known:

(i) If C is a σ-algebra and ν : C → R+ is a non-atomic measure, then the range of
ν is R(ν) = [0, ν(T )] (Dinculeanu [2]).

(ii) If C is a σ-algebra and ν : C → R+ is finitely additive with SP , then R(ν) =
[0, ν(T )] (Klimkin and Svistula [11]).

(iii) If C is a ring and ν : C → X is a vector measure with DP , then R(ν) is convex
(Bandyopadhyay [1]).

In the sequel (X, ‖ · ‖) will be a real normed space, with the distance d induced
by its norm. P0(X) the family of all non-empty subsets of X, Pf (X) the family
of non-empty closed subsets of X, Pbf (X) the family of non-empty bounded closed
subsets of X, Pbfc(X) the family of non-empty bounded closed convex subsets of X
and h defined by:

h(M, N) = max{e(M, N), e(N, M)},
where e(M, N) = sup

x∈M
d(x,N) is the excess of M over N , for every M, N ∈ P0(X)

and d(x,N) is the distance from x to N .
It is known that h is an extended metric on Pf (X) (i.e. a metric which can also take
the value +∞) and it becomes a metric on Pbf (X), named the Hausdorff metric (Hu
and Papageorgiou [10]).

We denote |M | = h(M, {0}), for every M ∈ P0(X), where 0 is the origin of X.
Obviously, |M | = sup

x∈M
‖x‖, for every M ∈ P0(X).

On P0(X) we introduce the Minkowski addition ”
•
+ ”, defined by:

M
•
+ N = M + N, for every M,N ∈ P0(X).

where M + N = {x + y| x ∈ M, y ∈ N} and M + N is the closure of M + N.

Definition 1.3. (Gavriluţ [5], [6]) If µ : C → P0(X) is a multivalued set function,
then µ is said to be:

(i) monotone if µ(A) ⊆ µ(B), for every A,B ∈ C, with A ⊆ B;
(ii) a multisubmeasure if it is monotone, µ(∅) = {0} and
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µ(A ∪B) ⊆ µ(A) + µ(B), for every A,B ∈ C, with A ∩B = ∅
(or, equivalently, for every A,B ∈ C);
(iii) a multimeasure if µ(∅) = {0} and µ(A∪B) = µ(A)+µ(B), for every A,B ∈ C,

with A ∩B = ∅;
(iv) exhaustive (with respect to h) if lim

n→∞
|µ(An)| = 0, for every sequence of mutual

disjoint sets (An)n∈N∗ ⊆ C;
(v) order continuous (shortly, o-continuous) (with respect to h) if

lim
n→∞

|µ(An)| = 0, for every (An)n∈N∗ ⊆ C, with An ↘ ∅ (i.e. An+1 ⊆ An, for every

n ∈ N∗ and
∞⋂

n=1
An = ∅).

Remark 1.2. If µ is Pf (X)-valued, then in Definition 1.3-(ii) and (iii) it usually

appears “
•
+” instead of “+”, because the sum of two closed sets is not always closed.

Example 1.1. Let ν : C → R+ and µ : C → Pf (R), defined by µ(A) = [0, ν(A)],
for every A ∈ C. If ν is a submeasure (finitely additive, respectively), then µ is a
multisubmeasure (monotone multimeasure, respectively).

µ is called the multisubmeasure (multimeasure, respectively) induced by ν.

Definition 1.4. For a multivalued set function µ : C → P0(X), with µ(∅) = {0}, we
consider the following set functions:

(i) µ : P(T ) → R+, called the variation of µ, defined for every A ∈ P(T ) by:

µ(A) = sup
{

n∑
i=1

|µ(Ai)|; Ai ⊆ A, Ai ∈ C, ∀i = 1, n, Ai ∩Aj = ∅, for i 6= j

}
and

(ii) |µ| : C → R+, defined by |µ|(A) = |µ(A)|, for every A ∈ C.
Remark 1.3. Let µ : C → P0(X) be a multivalued set function, with µ(∅) = {0}.
Then:

I) |µ(A)| ≤ µ(A), for every A ∈ C. So, µ(A) = 0 implies |µ(A)| = 0.
II) µ is a monotone set function.
III) If µ is monotone, then |µ| is also monotone.
IV) If µ is a multisubmeasure, then µ is finitely additive and |µ| is a submeasure.
V) Let A ∈ C. Then:
(a) µ(A) = {0} if and only if |µ(A)| = 0.
(b) If µ is monotone, then µ(A) = {0} if and only if µ(A) = 0.

2. Atoms and pseudo-atoms for multivalued set functions

In this section we establish some properties of atoms, pseudo-atoms and non-
atomicity for multivalued set functions.

Definition 2.1. (Gavriluţ [7], Gavriluţ and Croitoru [8]) Let µ : C → P0(X) be a
multivalued set function, with µ(∅) = {0}.

(i) A set A ∈ C is said to be an atom of µ if µ(A) ) {0} and for every B ∈ C, with
B ⊆ A, we have µ(B) = {0} or µ(A\B) = {0}.

(ii) If µ is monotone, then µ is said to be non-atomic (NA) if it has no atoms (that
is, for every A ∈ C, with µ(A) ) {0}, there exists B ∈ C, with B ⊆ A, µ(B) ) {0}
and µ(A\B) ) {0}).

(iii) A set A ∈ C is called a pseudo-atom of µ if µ(A) ) {0} and for every B ∈ C,
with B ⊆ A, we have µ(B) = {0} or µ(B) = µ(A).
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(iv) If µ is monotone, then µ is said to be non-pseudo-atomic (NPA) if it has no
pseudo-atoms (that is, for every A ∈ C, with µ(A) ! {0}, there exists B ∈ C, with
B ⊆ A, µ(B) ! {0} and µ(B)  µ(A)).

Remark 2.1. Let µ : C → P0(X) be a set multifunction, with µ(∅) = {0} and let
A ∈ C. Then the following statements hold:

I) A is an atom of µ if and only if A is an atom of |µ|.
II) If µ is monotone, then A is an atom of µ if and only if A is an atom of µ.
III) If A is a pseudo-atom of µ, then A is a pseudo-atom of |µ|. The converse is not

always valid. For example, let T = {x, y, z}, C = P(T ) and µ : C → P0(R) defined by

µ(A) =





[0, 3], A = T

{1, 2, 3}, A ∈ P(T )\{T, ∅}
{0}, A = ∅

, for every A ∈ C.

Then |µ|(A) =

{
3, A 6= ∅
0, A = ∅ , for every A ∈ C. It follows that T is a pseudo-atom

of |µ|, but T is not a pseudo-atom of µ.
IV) Let ν : C → R+ be a set function and let µ : C → P0(R) defined by µ(E) =

[0, ν(E)], for every E ∈ C. If A ∈ C is a pseudo-atom of |µ|, then A is also a pseudo-
atom of µ. Moreover, if ν is finitely additive, then A is a pseudo-atom of µ if and
only if it is a pseudo-atom of µ.

Remark 2.2. I) Let µ : C → Pf (X) be a multisubmeasure and let A,B ∈ C, with
B ⊆ A. Then µ(A\B) = {0} implies µ(B) = µ(A). Indeed, we have µ(B) ⊂ µ(A) ⊂
µ(B)

•
+µ(A\B) = µ(B). So µ(B) = µ(A). It follows that every atom of µ is a pseudo-

atom of µ. As we shall see in Example 2.1-I), the converse is not valid. Moreover, if
µ is NPA, then µ is NA.

II) If µ : C → P0(X) is a multimeasure and A, B ∈ C are so that B ⊆ A, then
µ(A\B) = {0} implies µ(B) = µ(A). Indeed, since µ is a multimeasure, it results
µ(A) = µ((A\B) ∪ B) = µ(A\B) + µ(B) = µ(B). It also follows that every atom of
µ is a pseudo-atom of µ.

III) Let µ : C → Pbfc(X) be a multimeasure and let A, B ∈ C, with B ⊆ A. Then
µ(B) = µ(A) implies µ(A\B) = {0}. Indeed, by the cancellation law on Pbfc(X)

(Godet-Thobie [9]), since µ(B) = µ(A) = µ(B ∪ (A\B)) = µ(B)
•
+ µ(A\B), it results

µ(A\B) = {0}. It follows that every pseudo-atom of µ is an atom of µ. Consequently,
A ∈ C is an atom of a multimeasure µ : C → Pbfc(X) if and only if A is a pseudo-atom
of µ. So, µ is NPA if and only if µ is NA.

Example 2.1. I) Let T = {x, y, z}, C = P(T ) and for every A ∈ C, let

µ(A) =

{
[0, 1], if A 6= ∅,
{0}, if A = ∅.

One can easily check that µ : C → P0(R) is a multisubmeasure and it is not a
multimeasure.

Let A = {x, y}. There is B = {x} ⊆ A, such that µ(B) ) {0} and µ(A\B) =
µ({y}) = [0, 1] ) {0}.

So A is not an atom of µ.
Now, for every C ∈ C, with C ⊆ A, we have µ(C) = {0}, for C = ∅ or µ(C) =

[0, 1] = µ(A), for C 6= ∅, which shows that A is a pseudo-atom of µ. So, there are
pseudo-atoms of a multisubmeasure, which are not atoms.
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II) Let T = {x, y} (x 6= y), C = P(T ) and for every A ∈ C, let

µ(A) =





[0, 2] , if A = {x, y}
[0, 1] , if A = {y}
{0}, if A = ∅ or A = {x}

.

Evidently, µ is not a multisubmeasure.
Let A = {x, y}. There exists B = {y} ⊆ A, such that µ(B) = [0, 1] ) {0} and

µ(B) 6= µ(A). So A is not a pseudo-atom of µ.
Now, for every C ∈ C, we have:
(i) if C = ∅, then µ(C) = {0};
(ii) if C = {x}, then µ(C) = {0};
(iii) if C = {y}, then µ(C) = [0, 1] ) {0} and µ(A\C) = µ({x}) = {0};
(iv) if C = {x, y}, then µ(A\C) = µ(∅) = {0}.
Consequently, A is an atom of µ.
So, if µ is not a multisubmeasure, then there are atoms of µ which are not pseudo-

atoms of µ.

III) Let C = {∅, {1}, {2}, {1, 2}} and ν : C → R+, defined for every A ∈ C, by

ν(A) =





0, if A = ∅
1, if A = {1} or A = {2}
3
2 , if A = {1, 2}.

Then {1} and {2} are atoms for the multisubmeasure µ induced by the submeasure
ν: µ(A) = [0, ν(A)], for every A ∈ C.

IV) Suppose T is a countable set. Let C = {A; A ⊆ T , A is finite or cA is finite}
and the multisubmeasure µ : C → Pf (R), defined for every A ∈ C, by

µ(A) =

{
{0}, if A is finite
{0, 1}, if cA is finite.

Then every A ∈ C, such that cA is finite, is an atom of µ.

V) Let C = P(N) and µ : C → Pf (R) defined for every A ∈ C by

µ(A) =

{
{0}, if A = ∅
(A + 1) ∪ {0}, if A 6= ∅ ,

where A + 1 = {x + 1| x ∈ A}.
One can prove that µ is a multisubmeasure. Then every A ∈ C, with card A = 1

is an atom of µ (and a pseudo-atom of µ too, according to Remark 2.2-I) and every
A ∈ C, with card A ≥ 2 is not a pseudo-atom of µ (and not an atom of µ, according
to Remak 2.2-I).

VI) Let T = 2N = {0, 2, 4, . . .}, C = P(T ) and µ : C → Pf (R) defined for every
A ∈ C by

µ(A) =

{
{0}, if A = ∅
1
2A ∪ {0}, if A 6= ∅

where 1
2A = {x

2 | x ∈ A}. One can prove that µ is a multisubmeasure.
If A ∈ C, with card A = 1 and A 6= {0} or A ∈ C, A = {0, 2n}, n ∈ N∗, then A is

an atom of µ (and a pseudo-atom of µ too, according to Remark 2.2-I).
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If A ∈ C, with card A ≥ 2 and there exist a, b ∈ A such that a 6= b and ab 6= 0,
then A is not a pseudo-atom of µ (and not an atom of µ, according to Remark 2.2-I).

VII) Let C = P(N) and µ : C → Pf (R) defined for every A ∈ C by

µ(A) =

{
{0}, if A is finite
{0} ∪ [nA, +∞), if A is infinite and nA = min A.

Then µ is monotone and NPA.

Remark 2.3. Let µ : C → P0(X) be a set multifunction with µ(∅) = {0} and let
A ∈ C. By the definitions, we obtain:

I) If A is a pseudo-atom of µ and B ∈ C, B ⊆ A so that µ(B) ) {0}, then B is a
pseudo-atom of µ and µ(B) = µ(A).

II) Suppose µ is monotone. If A is an atom of µ and B ∈ C, B ⊆ A so that
µ(B) ) {0}, then B is an atom of µ and µ(A\B) = {0}.
Remark 2.4. Let µ : C → P0(X) be monotone, with µ(∅) = {0}. According to
Remark 1.3-I, we have |µ(A)| ≤ µ(A), for every A ∈ C.

Moreover, if A ∈ C is an atom of µ, then µ(A) ≤ |µ(A)|. Indeed, let {Bi}n
i=1 be a

C-partition of A. Then there is at most one i0 ∈ {1, . . . , n} such that µ(Bi0) ) {0}
and µ(Bi) = {0}, for every i ∈ {1, . . . , n}, i 6= i0. Since µ is monotone, we have
n∑

i=1

|µ(Bi)| ≤ |µ(A)|, which implies µ(A) ≤ |µ(A)|, so µ(A) = |µ(A)|.

Theorem 2.1. Let µ : C → P0(X) be monotone, with µ(∅) = {0} and let A,B ∈ C
be two pseudo-atoms of µ.

I) If µ(A) 6= µ(B), then µ(A ∩B) = {0}.
II) Suppose, moreover, that µ is a multisubmeasure. If µ(A∩B) = {0}, then A\B

and B\A are pseudo-atoms of µ and µ(A\B) = µ(A), µ(B\A) = µ(B).

Proof. I. If µ(A∩B) ) {0}, it results from Remark 2.3-I that A∩B is a pseudo-atom
of µ and µ(A ∩B) = µ(A) = µ(B), which is false.

II. We prove that µ(A\B) ) {0}. Suppose on the contrary that µ(A\B) = {0}.
Since µ is a multisubmeasure, we get that

µ(A) = µ((A\B) ∪ (A ∩B)) ⊆ µ(A\B)
•
+ µ(A ∩B) = {0},

which is false because A is a pseudo-atom of µ. So, µ(A\B) ) {0}. By Remark 2.3-I,
it follows that A\B is a pseudo-atom of µ and µ(A\B) = µ(A).

Analogously, B\A is a pseudo-atom of µ and µ(B\A) = µ(B). ¤

Theorem 2.2. Let µ : C → P0(X) be a multisubmeasure and let A,B ∈ C be pseudo-
atoms of µ. Then there exist mutual disjoint sets C1, C2, C3 ∈ C, with A ∪ B =
C1 ∪ C2 ∪ C3, such that, for every i ∈ {1, 2, 3}, either Ci is a pseudo-atom of µ, or
µ(Ci) = {0}.
Proof. Let C1 = A ∩B, C2 = A\B,C3 = B\A. We have the following cases:

(i) µ(C1) = {0}. According to Theoremark 2.1-II, C2 and C3 are pseudo-atoms of
µ and µ(C2) = µ(A), µ(C3) = µ(B).

(ii) µ(C1) ) {0}, µ(C2) ) {0}, µ(C3) ) {0}. According to Remark 2.3-I, C1 is a
pseudo-atom of µ and µ(C1) = µ(A) = µ(B). Now we prove that C2 is a pseudo-atom.

Let D ∈ C, D ⊆ C2, with µ(D) ) {0}. Then D ⊆ C2 ⊆ A and, since A is a
pseudo-atom of µ, we have µ(D) = µ(C2) = µ(A). So C2 is a pseudo-atom of µ.
Analogously, C3 is a pseudo-atom of µ, too.
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(iii) µ(C1) ) {0}, µ(C2) = {0}, µ(C3) ) {0}. From Remark 2.3-I, it results that
C1 is a pseudo-atom of µ and µ(C1) = µ(A) = µ(B). As in (ii), we obtain that C3 is
a pseudo-atom of µ and µ(C3) = µ(B).

The last two cases are similar to (iii).
(iv) µ(C1) ) {0}, µ(C2) ) {0}, µ(C3) = {0}.
(v) µ(C1) ) {0}, µ(C2) = µ(C3) = {0}. ¤

Corollary 2.1. Let µ : C → P0(X) be a multisubmeasure and let A,B ∈ C be pseudo-
atoms of µ. If µ(A∩B) ) {0}, µ(A\B) = µ(B\A) = {0}, then A∩B is a pseudo-atom
of µ and µ(A4B) = {0}.

3. Darboux property for set multifunctions

In this section we present some relationships between non-atomicity, the Darboux
property and the Saks property for µ, |µ| and µ and prove that the range of a multi-
measure having the Darboux property is a convex set.

Definition 3.1. Let µ : C → P0(X) be a multivalued set function, with µ(∅) = {0}.
We say that µ has the Darboux property (DP ) if for every A ∈ C, with µ(A) ) {0}
and every p ∈ (0, 1), there exists a set B ∈ C such that B ⊆ A and µ(B) = p µ(A).

Remark 3.1. Let ν : C → R+ be a submeasure and µ be the multisubmeasure
induced by ν. Then µ has the Darboux property if and only if ν has the Darboux
property.

Proposition 3.1. If µ : C → P0(X) is a multisubmeasure and if |µ| : C → R+ has
the Saks property, then µ is bounded (that is, there exists M > 0 so that |µ(A)| ≤ M ,
for every A ∈ C).
Proof. By the Saks property, for ε = 1, there exists a C-partition (Bi)N

i=1 of T such
that |µ(Bi)| < 1, for every i ∈ {1, . . . , N}. Then, for every A ∈ C, we have:

|µ(A)| ≤ |µ(T )| = |µ(
N⋃

i=1

Bi)| ≤
N∑

i=1

|µ(Bi)| < N,

so µ is bounded. ¤

In what follows, we establish that the range of a multimeasure with the Darboux
property, is a convex set:

Theorem 3.1. If a multimeasure µ : C → Pf (X) has the Darboux property, then the
following properties hold:

(i) for every Z1, Z2 ∈ R(µ) = {µ(A)|A ∈ C} and every α ∈ (0, 1), we have
αZ1 + (1− α)Z2 ∈ R(µ);

(ii) R(µ) =
⋃

A∈A
µ(A) is convex.

Proof. (i) Let Z1 = µ(A) and Z2 = µ(B), where A,B ∈ C. Since µ has the
Darboux property, there exist C, D ∈ C such that C ⊆ A\B, D ⊆ B\A and
µ(C) = αµ(A\B), µ(D) = (1 − α)µ(B\A). Then, for E = C ∪D ∪ (A ∩ B) ∈ A, it
results αZ1 + (1− α)Z2 = µ(E) ∈ R(µ).

(ii) Let x1, x2 ∈ R(µ) and α ∈ (0, 1). Suppose x1 ∈ µ(A), x2 ∈ µ(B), with
A,B ∈ C. From (i) it follows there is E ∈ C such that αµ(A) + (1− α)µ(B) = µ(E).
So, αx1 + (1− α)x2 ∈ R(µ). ¤



DARBOUX PROPERTY 137

Further we investigate some relationships between non-atomicity and the Darboux
property for µ, |µ| and µ.

Theorem 3.2. Let µ : C → Pf (X) be a multivalued set function, with µ(∅) = {0}
and |µ| : C → R+.

(i) If µ is monotone, then the following statements are equivalent:
(a) µ is NA.
(b) |µ| is NA.
(c) µ is NA.
(ii) If µ is a multisubmeasure with the Darboux property, then µ is non-atomic.
(iii) If C is a σ-algebra and if µ is a multisubmeasure such that |µ| has the Saks

property, then µ is non-atomic.
(iv) If µ has DP , then |µ| has DP.
(v) If C is an algebra, µ is monotone and if µ is bounded, finitely additive and has

the Darboux property, then µ is non-atomic.

Proof. (i) follows immediately.
(ii) Suppose, on the contrary, that µ has an atom A0 ∈ C. Let p ∈ (0, 1). According

to the Darboux property, there is B ∈ C, B ⊆ A0 such that µ(B) = pµ(A0). Since A0

is an atom, it follows µ(B) = {0} or µ(A0\B) = {0}. If µ(B) = {0}, then µ(A0) = {0},
which is false.

If µ(A0\B) = {0}, then µ(A0) = µ(B) = pµ(A0). It results |µ(A0)| = p|µ(A0)|
and so, µ(A0) = {0}, which is false. Consequently, µ is non-atomic.

(iii) Since |µ| is a submeasure with the Saks property on a σ-algebra, then it has
the Darboux property, so we get that |µ| is non-atomic. But this is equivalent to the
non-atomicity of µ.

(iv) We apply the definitions.
(v) Since µ is bounded, finitely additive on an algebra and has the Darboux prop-

erty, then it is non-atomic. But this is equivalent to the non-atomicity of µ. ¤
Remark 3.2. The converses of Theoremark 3.3-(ii) and (iv) are not true.

Indeed, let C be an algebra of subsets of an abstract set T , m : C → R+ a bounded
finitely additive set function with DP and µ : C → Pbf (R) the multivalued set
function, defined for every A ∈ C, by

µ(A) =





[−m(A),m(A)], if m(A) ≤ 1

[−m(A), 1], if m(A) > 1.

Then µ is a multisubmeasure and |µ| = µ = m.
Let us prove that µ has not the Darboux property. Suppose, on the contrary, that

for every A ∈ C, with µ(A) ) {0}, and every p ∈ (0, 1), there exists B ∈ C, B ⊆ A
such that µ(B) = pµ(A). Considering m(A) > 1, we have pµ(A) = [−pm(A), p].

(i) If m(B) ≤ 1, then µ(B) = [−m(B), m(B)] = [−pm(A), p]. It follows m(B) = p
and −p = −pm(A). So, m(A) = 1. False.

(ii) If m(B) > 1, then we have µ(B) = [−m(B), 1] = [−pm(A), p]. So 1 = p, which
is false.

So, µ has not the Darboux property, although |µ| and µ have it.
Since |µ| has DP , then |µ| is non-atomic, hence µ is non-atomic.

Open problems

1. What happens with NA and NPA without monotonicity?
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2. In what general hypothesis we have: µ NA ⇒ |µ| SP?
3. Establishing relationships between NPA and DP.
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