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A Mobile Agent Virtual Reality Modeling of Searching Robots

Claudiu Popirlan and Mihai Dupac

Abstract. This paper presents a mobile agents approach for multiple searching robots in a
virtual reality environment. The robots are programmed to perform objects searching in a
real house starting from a base point. A robot is defined as an autonomous ground vehicle
and is equipped with software (mobile agent) and sensors. When a robot found the required
object, the mobile agent announce the end of the searching, and the robots return to the base.
The equations of motion (kinematics and dynamics) were presented, and the motion planning
with obstacle avoidance (collision free) implemented. The efficacy of algorithms are evaluated
based on mobile agents communication.
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1. Introduction

The concept of mobile agent is defined in [1], [2], [5]. They are autonomous objects
that can migrate from node to node on behalf of the user who have executed them
and make use of the databases or computation resources from clients connected by
the network. In order for a mobile agent to be able to migrate, there must be a
virtual place, the so-called mobile agent system, that supports mobility. To facilitate
effective communication ([3], [4]), the agents has to include information about the
possible states of knowledge, abilities and preferences of the other agent(s) present in
the environment.

Research on robots has attracted attention in the last years since [14]. Most of
the research have been directed to the use of kinematic models of the mobile robots
to achieve and accomplished the motion control [9, 8, 11]. Later on, the research
has been focused on robots with additional sensory system to develop autonomous
guidance path planning systems [12]. Sophisticated sensory systems has been used in
[13], helping the software to learn about the operating environment and to evaluate
path constraints for a good path planning programming.

Path planning consists of determining a route joining two input configurations,
i.e., from one coordinate location to another location. Path planning algorithms are
determinant for the mobile agent behavior, including collision avoidance. Modelling
and simulation of a group of mobile robots, the controllability issue and path planning
was studied in [15]. Different other approaches including rigid formations, potential
field methods, and neural have been studied in [14]. The motion planning for mobile
robots when using a dynamic environment and moving obstacles was studied in [16].

The computational geometry algorithms for path planning use a polygonal descrip-
tion of the scene and operate on the vertices visibility graph of the obstacles (for more
details see [17]). For the work presented here this type of planning has been adopted.
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Figure 1. The Virtual Reality Defined Scene (Real House) with
Five Searching Robots

In this paper searching robots defined as an autonomous ground car like vehicles
and equipped with software (mobile agent) and sensors, in a virtual reality envi-
ronment is presented (see Fig 1). The robots are programmed to perform objects
searching in a defined scene (real house) starting from a base point, and to return to
the base when the required object is found. The return to the base signal is estab-
lished by the mobile agent announcement. The equations of motion (kinematics and
dynamics) are presented, and the motion planning with obstacle avoidance (collision
free) described. The efficacy of algorithms are evaluated based on the vehicle design,
sensors performance, and the artificial intelligence of the associated mobile agents.

2. Mathematical Model

2.1. Kinematics. To study the robot kinematics one can consider x and y the x-
coordinate and y-coordinate of the robot center of the mass (relative to the origin)
in a Cartesian reference frame xOy, and α(t) the robot orientation, i.e., the angle
between the robot direction and the Ox axis. The robot velocity in the x direction
(longitudinal speed) is given by its first derivative u = ẋ, the robot velocity in the y
direction (lateral speed) is given by v = ẏ, and the angular speed ω is given by α̇.

The longitudinal speed u, the lateral speed v and the angular speeds α̇ can be
determined using the angular speeds on the left and right drive wheels of the robot
(it is considered that the left angular speed and the right angular speed of the wheels
are the same). Let consider ωleft the angular speed of the left drive wheel and ωright
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Figure 2. The Autonomous Ground Car like Searching Robot

the angular speed of the right drive wheel. One can write,

w =
r(ωleft + ωright)

2

α̇ =
r(ωleft − ωright)

d
(1)

where r is the wheel radius and d is the distance between the wells as shown in Fig 2.
The longitudinal speed u = ẋ and the lateral speed v = ẏ, can be calculated using

ẋ = w cos(α)
ẏ = w sin(α) (2)

From Eqs. (1) and (2) one can write

ẋ =
r cos(α)(ωleft + ωright)

2

ẏ =
r sin(α)(ωleft + ωright)

2

α̇ =
r(ωleft − ωright)

d

or equivalent

u =
r cos(α)(ωleft + ωright)

2

v =
r sin(α)(ωleft + ωright)

2

ω =
r(ωleft − ωright)

d
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If the motion is nonholonomic, the non slip condition can be written as,

ẋ sin(α) = ẏ cos(α)

2.2. Dynamics. One can write the nonholonomic equations of motion for the mobile
robot based on the Euler Lagrange formulation. In a matrix form one can write




m 0 0
0 m 0
0 0 I







ẍ
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α̈


 =

1
r




cos(α) cos(α)
sin(α) sin(α)
−d d
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]
+




sin(α)
cos(α)

0


 λ

(3)

where τl is the torque of the left wheel, τr is the torque of the right wheel, m is the
mass of the motor, I is the robot mass and inertia, and λ the Lagrange multipliers
of constrained forces. The friction force acting on a wheel is F . Two DC motors are
assumed to propel the robot. Each DC motor is connected to the drive wheel on each
side and generate torque. For the sake of briefness, the discussion of the DC motor
model is thus ommitted here, eventhough the model is included in the simulation.
Considering are τlinear and τangular the linear and angular torques, one can write,

τlinear =
τl + τr

r

τangular =
d(τl + τr)

r
From the previous two equations one can deduce

ẍ =
τlinear

m
cos(α) +

λ

m
sin(α)

ÿ =
τlinear

m
sin(α)− λ

m
cos(α)

α̈ =
τangular

I
(4)

Applying the second derivative to the Eq. (2) one can obtain

ẍ = −wα̇ sin(α) + ẇ cos(α)
ÿ = −wα̇ cos(α) + w sin(α)
α̈ = ω̇ (5)

Finally, from Eqs. (4) and (5) one can deduce
τlinear

m
cos(α) +

λ

m
sin(α) = −wα̇ sin(α) + ẇ cos(α)

τlinear

m
sin(α)− λ

m
cos(α) = −wα̇ cos(α) + w sin(α)

τangular

I
= ω̇

2.3. Obstacle Avoidance and Sensors. Obstacle avoidance was integrated on the
mobile agent software. The software adjust the direction of the robot based on any
obstacles in its path. While the robot executes the searching, if any obstacles is found
on the robot path, the direction is adjusted to run tangent to the obstacle, and so,
the old path is replaced with a new path to avoid the obstacle. Since the mobile
agent continuously update the path based on the sensors information, the obstacle
avoidance analysis and the direction path is constantly replanning. This continuous
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Figure 3. An Example of a Searching Robot in a Room: Starting
from the Base Point, Searching with Obstacles (Chair Legs) Avoid-
ance, and Return to Base

replanning allows the searching robot to handle a highly dynamic environment and
to take advantage of any path free opportunity (the visibility graph).

The sensors installed on the robot such as stereo vision sensors (two CCD cameras
fixed on the left and right side of the searching robot) and laser scanning system
allows the robot to navigate in the defined environment without hitting the walls,
and with obstacle avoidance (collision free). The collision free is implemented for
the static motion and intended for the dynamic motion. The laser scanning system
allows the agent to plan the path and trajectory based on the 3D created map of the
environment. The two CCD cameras synchronously capture the image and combine it
with the 3D created map for the searching object recognition purpose. For the present
described system (car like robot) the obstacles are assumed to be convex polygons.

3. Mobile Agent System Description

The system must be able to simulate objects finding using the knowledges in virtual
reality. In this case, the mobile agent visit, one after another, all or a part of the
virtual reality (using sensor) to whom they ask for certain information. An example
of five searching robots with mobile agents and sensors as shown in Fig 1. When the
agent gathers all the knowledge specified by its user it return to the base. The system
firstly obtains the knowledges that are currently in the virtual reality(is send by the
user) and gives that knowledges to the agent. The mobile agent migrates through
the virtual reality having a list of knowledges, set by the user on behalf of whom it
is working. Once the agent gets all the solutions to its problems it can return to the
base.

Let’s imagine a representation of the knowledge in the form of K x, where x is a
positive number that uniquely identifies a desire (for agent). The mobile agent may
have as its Wishes List (WL):

K 3 , K 18 , K 1 , K 10
A sensor might respond to the following knowledge, K 18, with::

K 20 , K 13 , K 7
We suppose that the sensor return the following new WL:

K 3 , K 1 , K 10 , K 20 , K 7 , K 13,
obtained by replacing knowledge K 18 with new knowledge which will become new
desires for agent. These new desires, along with those which does not yet have an
answer will be the next place to visit. As it is natural, understanding of a certain
knowledge does not imply an understanding of another adjacent, related knowledge.
An example of such knowledge is the fundamental geometrical notion of ”point”.
From here arises the need to define knowledge in primary and complex. Therefore, an
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agent may receive from the sensor, in response to its demands whether new extended
knowledge that will be treated as new desires, or basic knowledge that will not require
further answers. The mission of the mobile agent is considered to be finished when it
has only primary knowledge, and its list of desires is empty.

3.1. The System Communication. The system must be able to make possible the
agents communication, including the communication protocols. The communication
protocols should allow message understanding and wireless transmission. Message
understanding implies decision acceptance or rejection based on the collected sensors
information and other mobile agents information. Mobile agents communication is
based on sending (action) and receiving (perception) messages.

The mobile agents will communicate to each other to achieve the defined goals. The
degree of coherence and coordination comes from the extent to which the system avoid
redundant actions, competition on resources, bottlenecks and the unsafe operating
conditions. The goal is to maintain an overall coherence, without having always a
global control in place. The coordination between mobile agents not entering the
competition is based on cooperation. For the agents entering in the competition, or
those having reciprocal dependence, the coordination is based on negotiation.

In our system, the communication language has two levels:
• Level 1: communication between agents and sensors;
• Level 2: communication between agents.
Communication between agents and sensors (level 1) is in one sense: from sensor

to agent. The agent receive informations from sensor and make decision.
Communication between agents (level 2) is done via messages. An agent can com-

municate with other agent by message passing. An agents that wants to communicate
with another agent first has to create a message object, then send it to the target
agent. A message object has a kind and an optional argument object. The receiver
agent determine what to do by checking the kind of received message and get pa-
rameters as the argument object. For system implementation one can use a subset
of a standard indicators ([18]) of the Knowledge Query and Manipulation Language
(KQML):
tell
: content < expression >
: language < word >
: ontology < word >
: in− reply − to < expression >
: force < word >
: sender < word >
: receiver < word >

This indicators can be used when an mobile agent found an object and announce
its finding. The message agents of our system act somewhat like the active packets
in the capsule tradition of active networking research; they are minimal programs
that carry a payload of communications data across the network. They make their
decisions about where they need to go based on information that routing agents, with
which they share the network, accumulate and cache.

3.2. An algorithm for the mobile agents planning. Mobile agents are capable
of traveling collision-free from a start point (S) to a destination point (D) without
the intervention of a human as shown in Fig 3. We cover low level path planning in
static environments context. A static environment consists of stationary obstacles.
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Figure 4. The visibility graph

Here determining a shortest, collision free path from S to D requires knowledge of all
pairs of points visible from each other (without an intervening obstacle), so a visibility
graph is created. Since the obstacles are in motion, the beginning path may no longer
be collision free after a certain period of time. This problem is addressed by using
an accessibility graph to determine whether the current path is still valid or must be
changed. This paper concentrates on techniques we have implemented for finding the
object in the static case.

Obstacles are assumed to be polygons. Our approach assumes that all the polygons
are convex, and this must be verified at input. A polygon is simple if there is no pair
of non consecutive edges sharing a point. A convex polygon is a simple polygon with
a convex set, that is to say, any two points in the polygon can be connected without
going outside the polygon([17]). This validation is achieved by testing each polygon’s
convexity. The convex hull algorithm implemented is Grahams scan. (Ironically,
Graham is the name of the Computer Science Department building at A&T.) It
works in three phases:
(1) Find an extreme point. This point will be the pivot and is guaranteed to be on

the hull. It is chosen to be the point with largest y coordinate.
(2) Sort the points in order of increasing angle about the pivot. We end up with a

star-shaped polygon (one in which one special point, in this case the pivot, can
”see” the whole polygon).

(3) Build the hull, by marching around the star-shaped polygon, adding edges
The visibility graph (Fig. 4) is created by:
• Reading in S, D, and the obstacles.
• Generating all paths possible from S to D.
• Removing those paths obstructed by obstacles.
• Determining the shortest path
Once the Line array only contains those lines that are visible from one another, we

can determine the shortest path from S to D. An adjacency structure contains Points
that are used to represent the visibility graph. We implemented Dijkstras algorithm
to find the shortest path. To create the visibility graph, all of the points need to be
connected together. This is done with a brute force method that starts with S and
connects it with each point; we continue, connecting each pair of points. Given the
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Algorithm 1 Priority queue and inserts/deletes from the binary search tree

procedure insert()
j := 1;
while j ≤ N do

y1 := lines[j].p1.y;
y2 := lines[j].p2.y;
pqinsert(j,y1);
if y1 6= y2 then

pqinsert(j, y2);
j := j + 1;

end if
end while

procedure scan()
while pqsize 6= 0 do

j := pqremove();
x1 := lines[j.i].p1.x;
y1 := lines[j.i].p1.y;
x2 := lines[j.i].p2.x;
y2 := lines[j.i].p2.y;
pqinsert(j, y1);
if j.c = y1 then

bstinsert(j.i, x1);
end if
if j.c = y2 then

bstinsert(j.i, x2);
end if

end while

{Remark: Since our binary search tree is based on line orientation, we use a coun-
terclockwise function to determine if a line should be in the left subtree or right
subtree of another line in the tree. While this function can determine which subtree
of another line a given line belongs to, it also detects if the two lines intersect.}

number of points, N , connecting the graph is done in O(N2) time. Special care must
be taken to ensure that no lines lie within polygons. Once we have an initial graph, we
must remove any lines that intersect with a polygon. We accomplish this by scanning
through the graph in a bottom-to-top method. In order to simulate scanning in lines,
we use a priority queue, binary search tree and linked-list. The binary search tree
is used to insert/delete the points of the lines in a bottom-to-top fashion, while the
linked-list stores intersections found within the tree. By using a binary search tree, as
opposed to nested for loops, our search algorithm runs in O(Nlog2N) versus O(N2)
time. To ensure that the lowest point is used for insertion/deletion, a priority queue
is used. Inserting all the ordinates of the lines generates the priority queue (which
is ordered in nondecreasing order of the ordinates). By removing all the points from
the priority queue and inserting/deleting from our binary search tree accordingly, all
intersections are found. Insertion into the binary search tree is done when the lowest
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point of a line is inserted. Once the line’s other endpoint is found, it is deleted from
the tree (see Algorithm 1).

4. Conclusions and Future Work

In this paper a group of searching robots based on mobile agents for motion plan-
ning and obstacle avoidance in a virtual reality environment was presented. The
robots are defined as an autonomous ground car like vehicles and programmed to
perform objects searching in a defined environment. The robots are equipped with
software (mobile agent) and sensors, and moves based on the described equations of
motion (the kinematics and dynamics of the robots is included).

In the future, new mobile agents searching robots to maneuver in a dynamic envi-
ronment will be proposed. This requires additional functions (methods) and abstrac-
tions (classes) that will work with obstacles in motion.
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