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On the lattice of deductive systems of a residuated lattice

Dana Piciu, Antoaneta Jeflea and Raluca Creţan

Abstract. In any residuated lattice A the set Ds(A) of all deductive systems of A forms a
pseudo-complemented distributive lattice and we denote by D¦ the pseudocomplement of D in
this lattice (it is proved that D¦ = {a ∈ A : a∨x = 1, for every x ∈ D}). In this paper we give

a characterization for regular deductive systems and we study the lattice Ds
¦
p(A) of deductive

systems of the form [a)
¦
. If A is a hyperarchymedean residuated lattice, then Ds¦p(A) is a

Boolean algebra. Also, for X ⊆ A we denote by X∗ = {a ∈ A : a → x = x, for any x ∈ X}
which is a deductive system and we show that the set R∗(Ds(A)) = {D ∈ Ds(A) : D = D∗∗}
does a Boolean algebra.
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1. Introduction

The origin of residuated lattices is in Mathematical Logic without contraction.
They have been investigated by Krull ([13]), Dilworth ([7]), Ward and Dilworth ([20]),
Ward ([19]), Balbes and Dwinger ([1]) and Pavelka ([16]).

In [10], Idziak prove that the class of residuated lattices is equational. These
lattices have been known under many names: BCK- latices in [9], full BCK- algebras
in [13], FLew- algebras in [14], and integral, residuated, commutative l-monoids in [3].

Residuated lattices have been studied extensively and include important classes of
algebras such as BL-algebras, introduced by Hájek as the algebraic counterpart of
his Basic Logic, and MV-algebras, the algebraic setting for ÃLukasiewicz propositional
logic.

Apart from their logical interest, residuated lattices have interesting algebraic prop-
erties (see [2], [4], [7], [12], [15], [19], [20]).

In order to simplify the notation a residuated lattice (A,∧,∨,¯,→, 0, 1) will be
referred by its support set A.

By B(A) we denote the Boolean algebra of all complemented elements in the lattice
L(A) = (A,∧,∨, 0, 1).

In any residuated lattice A the set Ds(A) of all deductive systems of A forms a
pseudo-complemented distributive lattice and we denote by D¦ the pseudocomple-
ment of D in this lattice (it is proved that D¦ = {a ∈ A : a ∨ x = 1, for every
x ∈ D}). In this paper we give a characterization for regular deductive systems de-
noted by R¦(Ds(A)) = {D ∈ Ds(A) : D = D¦¦}. Also, for X ⊆ A we denote by
X∗ = {a ∈ A : a → x = x, for any x ∈ X} which is a deductive system and we show
that the set R∗(Ds(A)) = {D ∈ Ds(A) : D = D∗∗} does a Boolean algebra. We
prove that R¦(Ds(A)) ⊆ R∗(Ds(A)) and D ∈ R¦(Ds(A)) iff D = [e), with e ∈ B(A).
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Finally, we study the lattice Ds¦p(A) of deductive systems of the form [a)¦ with
a ∈ A.

If A is a hyperarchymedean residuated lattice, then Ds¦p(A) is a Boolean algebra.

2. Preliminaries

Definition 2.1. A residuated lattice ([2], [18]) is an algebra (A,∧,∨,¯,→, 0, 1)of
type (2,2,2,2,0,0) equipped with an order ≤ satisfying the following:

(LR1) (A,∧,∨, 0, 1) is a bounded lattice;
(LR2) (A,¯, 1) is a commutative ordered monoid;
(LR3) ¯ and → form an adjoint pair, i.e. c ≤ a → b iff a¯ c ≤ b for all a, b, c ∈ A.

The relations between the pair of operations ¯ and → expressed by (LR3), is a
particular case of the law of residuation ([2]). ÃLukasiewicz structure, Gődel structure,
Products structure are residuated lattices (see [18]).

Example 2.1. If (A,∨,∧,′ , 0, 1) is a Boolean algebra and we define for every x, y ∈
A, x¯ y = x∧ y, x → y = x′ ∨ y, then (A,∨,∧,¯,→, 0, 1) become a residuated lattice.

Remark 2.1. [18]A residuated lattice (A,∧,∨,¯,→, 0, 1) is an MV -algebra iff it
satisfies the additional condition: (x → y) → y = (y → x) → x, for any x, y ∈ A.

We give an example of finite residuated lattice:

Example 2.2. ([11]) Let A = {0, a, b, c, 1} with 0 < a, b < c < 1, but a, b are
incomparable. A become a residuated lattice relative to the following operations:

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

,

¯ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

.

We refer the reader to [4], [12], [18] for basic results in the theory of residuated
lattices. In the following, we only present the material needed in the remainder of the
paper.

In what follows by A we denote a residuated lattice; for x ∈ A and a natural
number n, we define x∗ = x → 0, (x∗)∗ = x∗∗, x0 = 1 and xn = xn−1 ¯ x for n ≥ 1.

Theorem 2.1. ([4], [12], [18]) Let x, x1, x2, y, y1, y2, z ∈ A. Then we have the fol-
lowing rules of calculus:
(c1) 1 → x = x, x → x = 1, y ≤ x → y, x → 1 = 1, 0 → x = 1;
(c2) x¯ 0 = 0, x¯ y ≤ x, y, hence x¯ y ≤ x∧ y and (x∨ y = 1 implies x¯ y = x∧ y);
(c3) (x ≤ y iff x → y = 1) and (x → y = y → x = 1 iff x = y);
(c4) x → y ≤ (z → x) → (z → y) and x → y ≤ (y → z) → (x → z);
(c5) x → (y → z) = (x¯ y) → z = y → (x → z);
(c6) x¯ x∗ = 0 and x¯ y = 0 iff x ≤ y∗;
(c7) x ≤ x∗∗, x∗∗ ≤ x∗ → x, 1∗ = 0 , 0∗ = 1;
(c8) x → y ≤ y∗ → x∗, x∗∗∗ = x∗, (x¯ y)∗ = x → y∗ = y → x∗ = x∗∗ → y∗;
(c9) x ¯ (y1 ∨ y2) = (x ¯ y1) ∨ (x ¯ y2), (y1 ∨ y2) → x = (y1 → x) ∧ (y2 → x) and

x → (y1 ∨ y2) ≥ (x → y1) ∨ (x → y2);
(c10) x ∨ (y ¯ z) ≥ (x ∨ y)¯ (x ∨ z).

Corollary 2.1. ([12]) Let a1, ..., an ∈ A.
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(c11) If a1 ∨ ... ∨ an = 1, then ak
1 ∨ ... ∨ ak

n = 1, for every natural number k.

Proposition 2.1. If A is a residuated lattice and a, b, x ∈ A, then
(c12): x ∨ (a → b) ≤ (x ∨ a) → (x ∨ b).

Proof. We have (x∨a) → (x∨b) c9= (x → (x∨b))∧(a → (x∨b)) = 1∧(a → (x∨b)) =

a → (x ∨ b)
c9≥ (a → x) ∨ (a → b) ≥ x ∨ (a → b).¥

Proposition 2.2. ([4]) For e ∈ A the following are equivalent:
(i) e ∈ B(A);

(ii) e ∨ e∗ = 1.

Lemma 2.1. ([4], [12]) If e ∈ B(A), then
(c13) e¯ x = e ∧ x, for every x ∈ A;
(c14) e ∧ (x ∨ y) = (e ∧ x) ∨ (e ∧ y), for every x, y ∈ A.

3. The regular deductive systems of a residuated lattice

Definition 3.1. ([12], [18]) A nonempty subset D⊆ A is called a deductive system
of A if the following conditions are satisfied:

(Ds1) 1 ∈ D;
(Ds2) If x, x → y ∈ D, then y ∈ D.

Remark 3.1. ([12], [18]) A nonempty subset D⊆ A is a deductive system of A if for
all x, y ∈ A :

(Ds′1) If x, y ∈ D, then x¯ y ∈ D;
(Ds′2) If x ∈ D, y ∈ A, x ≤ y, then y ∈ D.

Every deductive system of A is a filter for L(A), but a filter of L(A) is not, in
general, deductive system of A (see [18]).

We denote by Ds(A) the set of all deductive systems of A.
For a nonempty subset S ⊆ A, the smallest deductive system of A which contains

S, i.e. ∩{D ∈ Ds(A) : S ⊆ D}, is said to be the deductive system of A generated by
S and will be denoted by [S).

If S = {a}, with a ∈ A, we denote by [a) the deductive system generated by {a}
([a) is called principal).

For D ∈ Ds(A) and a ∈ A, we denote by D(a) = [D ∪ {a}) (clearly, if a ∈ D, then
D(a) = D).

Proposition 3.1. ([12], [18]) Let S ⊆ A a nonempty subset of A, a ∈ A, D,D1, D2 ∈
Ds(A). Then
(i) If S is a deductive system, then [S) = S;

(ii) [S) = {x ∈ A : s1¯ ...¯sn ≤ x, for some n ≥ 1 and s1, ..., sn ∈ S}. In particular,
[a) = {x ∈ A : x ≥ an, for some n ≥ 1};

(iii) D(a) = {x ∈ A : x ≥ d¯ an, with d ∈ D and n ≥ 1};
(iv) [D1 ∪D2) = {x ∈ A : x ≥ d1 ¯ d2 for some d1 ∈ D1 and d2 ∈ D2}.
Proposition 3.2. Let D ∈ Ds(A) and a, b ∈ A. Then D(a) ∩D(b) = D(a ∨ b).

Proof. Let x ∈ D(a) ∩ D(b). Then there are d1, d2 ∈ D and m,n ≥ 1 such that

x ≥ d1 ¯ am and x ≥ d2 ¯ bn. Then x ≥ (d1 ¯ am) ∨ (d2 ¯ bn)
c12≥ (d1 ∨ d2) ¯

(d1 ∨ bn) ¯ (d2 ∨ am) ¯ (a ∨ b)mn, hence by Proposition 3.1, x ∈ D(a ∨ b), since
d1 ∨ d2, d1 ∨ bn, d2 ∨ am ∈ D. We deduce that D(a) ∩D(b) ⊆ D(a ∨ b).
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Conversely, let x ∈ D(a∨b), there is d ∈ D and m ≥ 1 such that x ≥ d¯(a∨b)m ≥
d¯ am, d¯ bm, that is, D(a ∨ b) ⊆ D(a) ∩D(b), so we obtain the desired equality.¥

Corollary 3.1. Let D ∈ Ds(A) and a1, ..., an ∈ A. Then D(a1) ∩ ... ∩ D(an) =
D(a1 ∨ ... ∨ an).

Corollary 3.2. Let D ∈ Ds(A) and a1, ..., an ∈ A such that a1 ∨ ... ∨ an ∈ D. Then
D(a1) ∩ ... ∩D(an) = D.

The lattice (Ds(A),⊆ ) is a complete Brouwerian lattice (hence distributive), where
for a family F = (Di)i∈I of deductive systems, inf(F) = ∩

i∈I
Di and sup(F) = [ ∪

i∈I
Di).

Clearly, in this lattice 0 = {1} and 1 = A.

Proposition 3.3. ([17]) If a, b ∈ A, then
(i) [a) = {x ∈ A : a ≤ x} iff a¯ a = a ;

(ii) a ≤ b implies [b) ⊆ [a);
(iii) [a) ∩ [b) = [a ∨ b);
(iv) [a) ∨ [b) = [a ∧ b) = [a¯ b);
(v) [a) = 1 iff a = 1.

For D1, D2, D ∈ Ds(A) we denote

D1 Ã D2 = {a ∈ A : D1 ∩ [a) ⊆ D2} and D¦ = D Ã 0 = D Ã {1}.
Lemma 3.1. ([6]) If D1, D2 ∈ Ds(A) then
(i) D1 Ã D2 ∈ Ds(A);

(ii) If D ∈ Ds(A), then D1 ∩D ⊆ D2 iff D ⊆ D1 Ã D2, that is,

D1 Ã D2 = sup{D ∈ Ds(A) : D1 ∩D ⊆ D2};
(iii) D1 Ã D2 = {x ∈ A : x ∨ y ∈ D2, for all y ∈ D1}.
Corollary 3.3. (Ds(A),∨,∩,Ã, {1}, A) is a Heyting algebra, where for D ∈ Ds(A),

D¦ = {x ∈ A : x ∨ y = 1, for every y ∈ D},
hence for every x ∈ D and y ∈ D¦, x ∨ y = 1. In particular, for every a ∈ A,

[a)¦ = {x ∈ A : x ∨ a = 1}.
Clearly, D¦ is the pseudocomplement of D in the lattice Ds(A).

Remark 3.2. From Lemma 3.1, (ii), we deduce that if D1, D2 ∈ Ds(A) and x ∈ A
such that x ∈ D1 and x ∈ D1 Ã D2, then x ∈ D2. Also, if D ∈ Ds(A) then
D Ã D = A and D ⊆ D¦¦.

Proposition 3.4. D¦ = {a ∈ A : a → x = x and x → a = a, for every x ∈ D}.
Proof. Let a ∈ D¦. Since 1 = a ∨ x ≤ [(a → x) → x] ∧ [(x → a) → a] for every

x ∈ D we deduce that (a → x) → x = (x → a) → a = 1, hence a → x = x and
x → a = a, for every x ∈ D. ¥

For X ⊆ A we denote by X∗ = {a ∈ A : a → x = x, for any x ∈ X}.
Proposition 3.5. X∗ ∈ Ds(A), for every set X ⊆ A.

Proof. Obvious 1 ∈ X∗ since by c1, 1 → x = x, for any x ∈ X. Let a, b ∈ X∗ .
Then a → x = x and b → x = x, for any x ∈ X. By c5, we have (a ¯ b) → x = a →
(b → x) = a → x = x, hence a¯ b ∈ X∗. If a ≤ b and a ∈ X∗ then a → x = x, for any
x ∈ X. By c4, 1 = a → b ≤ (b → x) → (a → x), so (b → x) → (a → x) = 1. Using c1,
x ≤ b → x ≤ a → x = x, for every x ∈ X, so b → x = x. We deduce b ∈ X∗.¥
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Proposition 3.6. If D ∈ Ds(A), then D¦ ⊆ D∗.

Proof. Let a ∈ D¦ and x ∈ D. Then a ∨ x = 1 ⇒ (a ∨ x) → x = 1 → x = x
c9⇒

(a → x) ∧ (x → x) = x ⇒ (a → x) ∧ 1 = x ⇒ a → x = x ⇒ a ∈ D∗ ⇒ D¦ ⊆ D∗.¥
Remark 3.3. By Remark 2.1, if the residuated lattice A is a MV−algebra then
D¦ = D∗.

Proposition 3.7. For every subset X ⊆ A, we have X ∩X∗ = ∅ or X ∩X∗ = {1}.
Proof. If 1 ∈ X, since X∗ ∈ Ds(A) we deduce that 1 ∈ X ∩X∗. Let x ∈ X ∩X∗.

Then x → x = x, so x = 1 and X ∩X∗ = {1}.
If 1 /∈ X we prove that X ∩ X∗ = ∅. Suppose that exists x ∈ X ∩ X∗, obvious,

x 6= 1. Then x → x = x, so x = 1, a contradiction.¥
Corollary 3.4. If D ∈ Ds(A), then D ∩D∗ = {1}.
Lemma 3.2. Let X, Y two subsets of A. If X ⊆ Y then Y ∗ ⊆ X∗.

Proof. Let y ∈ Y ∗. Then y → z = z, for every z ∈ Y. Since X ⊆ Y we deduce
that y → z = z, for every z ∈ X, so y ∈ X∗, that is, Y ∗ ⊆ X∗.¥
Proposition 3.8. Let D1, D2 ∈ Ds(A). Then D1 ∩D2 = {1} iff D1 ⊆ D∗

2 .

Proof. Suppose that D1 ∩ D2 = {1}. Let d1 ∈ D1. For any d2 ∈ D2, d2, d1 ≤
(d1 → d2) → d2 so (d1 → d2) → d2 ∈ D1 ∩D2 = {1}. We obtain d1 → d2 = d2, hence
d1 ∈ D∗

2 .
Conversely, we assume that D1 ⊆ D∗

2 . Since D1, D2 ∈ Ds(A), 1 ∈ D1 ∩ D2 ⊆
D∗

2 ∩D2 = {1}, by Remark 3.4, that is, D1 ∩D2 = {1}. ¥
Lemma 3.3. If D ∈ Ds(A) then D ⊆ D∗∗.

Proof. Let d ∈ D. For any x ∈ D∗, since D,D∗ are deductive systems and
x, d ≤ (d → x) → x, we deduce that (d → x) → x ∈ D ∩D∗ = {1}, so, d → x = x,
hence D ⊆ D∗∗. ¥
Remark 3.4. The set of deductive systems Ds(A) forms two pseudocomplemented
lattices (with ∗ and with ¦). By Remark 3.3, if the residuated lattice A is a MV -
algebra, then the two pseudocomplemented lattices coincide.

Remark 3.5. It follows from Glivenko’s theorem that the sets R∗(Ds(A)) = {D ∈
Ds(A) : D = D∗∗} and R¦(Ds(A)) = {D ∈ Ds(A) : D = D¦¦} are Boolean al-
gebras. For D1, D2 ∈ Ds(A), (D∗

1 ∩ D∗
2)∗ (respectively, (D¦

1 ∩ D¦
2)¦) is the least

deductive system including D1, D2. Hence for D1, D2 ∈ Ds(A), we have sup{D1, D2}
in R∗(Ds(A)) (respectively, R¦(Ds(A)) ) is (D∗

1 ∩D∗
2)∗ (respectively, (D¦

1 ∩D¦
2)¦).

Remark 3.6. If D ∈ Ds(A) then (D = D∗∗ iff D ∨ D∗ = A) and (D = D¦¦ iff
D ∨D¦ = A).

Theorem 3.1. R¦(Ds(A)) ⊆ R∗(Ds(A)).

Proof. By Proposition 3.6, we have D¦ ⊆ D∗. Let D ∈ R¦(Ds(A)). Then D∨D¦ =
A. But A = D ∨D¦ ⊆ D ∨D∗, so D ∨D∗ = A, hence D ∈ R∗(Ds(A)). ¥
Proposition 3.9. The following assertions are equivalent:
(i) e ∈ B(A);

(ii) [e)¦ = [e∗);
(iii) [e)¦¦ = [e).
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Proof. (i) ⇒ (ii). Let e ∈ B(A). Since e ∨ e∗ = 1 and [e)¦ = {x ∈ A : e ∨ x = 1}
we deduce that e∗ ∈ [e)¦, so [e∗) ⊆ [e)¦. If x ∈ [e)¦, since e ∨ x = 1, we have
e∗ = e∗ ∧ 1 = e∗ ∧ (e∨ x) c13= e∗¯ (e∨ x) c9= (e∗¯ e)∨ (e∗¯ x) c13= 0∨ (e∗ ∧ x) = e∗ ∧ x,
so e∗ ≤ x. It follow that x ∈ [e∗) and we deduce [e)¦ = [e∗).

(ii) ⇒ (i). Using Proposition 2.2, [e)¦ = [e∗) ⇒ e∗ ∈ [e)¦ ⇒ e∨e∗ = 1 ⇒ e ∈ B(A).

(i) ⇒ (iii). e ∈ B(A) ⇒ [e)¦¦ = [e∗)¦
e∗∈B(A)

= [e∗∗) = [e).
(iii) ⇒ (i). Since [e)¦¦ = {x ∈ A : x∨y = 1, for every y ∈ [e)¦} = {x ∈ A : x∨y = 1,

for every y ∈ [e∗)} = {x ∈ A : x ∨ y = 1, for every y ≥ e∗} and e ∈ [e) = [e)¦¦ we
deduce that e ∨ e∗ = 1, so e ∈ B(A).¥
Remark 3.7. If e ∈ B(A), then [e) ∈ R¦(Ds(A)).

Theorem 3.2. Let D ∈ Ds(A). The following assertions are equivalent:
(i): D ∈ R¦(Ds(A));
(ii): there is e ∈ B(A) such that D = [e).

Proof. (i) ⇒ (ii). Let D ∈ R¦(Ds(A)) ; since D ∨ D¦ = A, there exist e ∈ D,
a ∈ D¦ such that e¯ a = 0.

Since a ∈ D¦ , we have a ∨ e = 1. Using c2 we deduce that a ∧ e = a¯ e = 0, that
is, e ∈ B(A).

For every x ∈ D, a ∨ x = 1. We have e ∧ x = 0 ∨ (e ∧ x) = (e ∧ a) ∨ (e ∧ x) c14=
e ∧ (a ∨ x) = e ∧ 1 = e, so e ≤ x, that is, D = [e).

(ii) ⇒ (i). By Proposition 3.9, (iii). ¥
We say that the inverse image of an deductive system under a morphism of resid-

uated lattices is also a deductive system. Hence we have the following results:

Theorem 3.3. Let A,B two residuated lattices and f : A → B a morphism of
residuated lattice. If Y is a nonempty subset of B, then f−1(Y ∗) is a deductive system
of A containing [f−1(Y )]∗. Moreover, if D is deductive system of B, then f−1(D¦) is
a deductive system of A containing [f−1(D)]¦.

Theorem 3.4. Let A,B two residuated lattices, f : A → B a morphism of residuated
lattice and X ⊆ A a nonempty subset of A. Then f(X∗) ⊆ [f(X)]∗.

Proof. Let b ∈ f(X∗) and y ∈ f(X). Then there exist a ∈ X∗ and x ∈ X such
that f(a) = b and f(x) = y. Since a ∈ X∗ and x ∈ X we deduce that a → x = x.
It follows that b → y = f(a) → f(x) = f(a → x) = f(x) = y, so, b ∈ [f(X)]∗. We
deduce that f(X∗) ⊆ [f(X)]∗.¥
Theorem 3.5. Let A,B two residuated lattices, f : A → B a surjective morphism of
residuated lattice and D ∈ Ds(A). Then

(i): f(D¦), f(D∗) ∈ Ds(B);
(ii): f(D¦) ⊆ [f(D)]¦ and f(D∗) ⊆ [f(D)]∗;
(iii): If D∗ (respectively D¦) is a maximal deductive system of A such that f(D∗)

(respectively f(D¦)) is a proper, then f(D∗) (respectively f(D¦)) is a maximal
deductive system of B.

Proof. (i). Obviously, 1 = f(1) ∈ f(D¦). Let x, y ∈ f(D¦), that is there are
a, b ∈ D¦ such that f(a) = x and f(b) = y. Since D¦ ∈ Ds(A), we deduce that
a¯ b ∈ D¦ and x¯ y = f(a)¯ f(b) = f(a¯ b) ∈ f(D¦). Let x, y ∈ B such that x ≤ y
and x ∈ f(D¦). Hence, there is a ∈ D¦ such that f(a) = x and since f is surjective,
there exists b ∈ A such that f(b) = y. Then y = x ∨ y = f(a)∨ f(b) = f(a ∨ b) and
a ∨ b ≥ a ∈ D¦, so a ∨ b ∈ D¦ and y ∈ f(D¦). We obtain that f(D¦) ∈ Ds(B).
Similarly for f(D∗) ∈ Ds(B).
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(ii). Following from Theorem 3.4.
(iii). Let D′ be a proper deductive system of B such that f(D∗) ⊆ D′. We have

that D∗ ⊆ f−1(f(D∗)) ⊆ f−1(D
′
) and since f−1(D

′
) is a proper deductive system of

A, we must have D∗ = f−1(D
′
). We deduce that f(D∗) = f(f−1(D

′
)) = D′, since f

is a surjective morphism. Similarly for f(D¦).¥

Remark 3.8. For D ∈ Ds(A), if D¦ is a maximal deductive system of A, by Remark
3.6 we deduce that D¦ = D∗, and by Theorem 3.5 if f : A → B is a surjective
morphism of residuated lattice, then f(D∗) = f(D¦) is a maximal deductive system
of B.

With any deductive system D of A we can (see [12], [18]) associate a congruence
θD on A by defining : (a, b) ∈ θD iff a → b, b → a ∈ D iff (a → b) ¯ (b → a) ∈ D.
Conversely, for θ ∈ Con(A), the subset Dθ of A defined by a ∈ Dθ iff (a, 1) ∈ θ
is a deductive system of A. Moreover the natural maps associated with the above
are mutually inverse and establish an isomorphism between the lattices Ds(A) and
Con(A).

For a ∈ A, let a/D be the equivalence class of a modulo θD. If we denote by
A/D the quotient set A/θD, then A/D becomes a residuated lattice with the natural
operations induced from those of A. Clearly, in A/D, 0 = 0/D and 1 = 1/D.

Proposition 3.10. Let D ∈ Ds(A), and a, b ∈ A, then
(i) a/D = 1/D iff a ∈ D, hence a/D 6= 1 iff a /∈ D;

(ii) a/D = 0/D iff a∗ ∈ D;
(iii) If D is proper and a/D = 0/D, then a /∈ D;
(iv) a/D ≤ b/D iff a → b ∈ D.

Remark 3.9. Let A,B two residuated lattices. We define on A× B, the operations
∧×,∨×,¯×,→× for every (a, b), (a′, b′) ∈ A×B by (a, b) ∧× (a′, b′) = (a ∧ a′, b ∧ b′),
(a, b)∨× (a′, b′) = (a∨ a′, b∨ b′), (a, b)¯× (a′, b′) = (a¯ a′, b¯ b′), (a, b) →× (a′, b′) =
(a → a′, b → b′). Clearly, (A×B, ∧×,∨×,¯×,→×, (0, 0), (1, 1)) is a residuated lattice.

Theorem 3.6. Let X and Y be nonempty subsets of residuated lattices A and B,
respectively. Then:

(i): X∗ × Y ∗ = (X × Y )∗

(ii): A/X∗ ×B/Y ∗ ≈ (A×B)/(X × Y )∗.

Proof. (i). We have that (X × Y )∗ = {(a, b) ∈ A × B : (a, b) → (x, y) = (x, y),
for all (x, y) ∈ X × Y } = {(a, b) ∈ A × B : (a → x, b → y) = (x, y), for all (x, y) ∈
X × Y } = {(a, b) ∈ A×B : a → x = x and b → y = y, for all (x, y) ∈ X × Y } = {a ∈
A : a → x = x, for all x ∈ X}× {b ∈ B : b → y = y, for all y ∈ Y } = X∗ × Y ∗.

(ii). Note that X∗ × Y ∗ ∈ Ds(A × B). Consider the surjective morphisms pX∗ :
A → A/X∗, pX∗(a) = a/X∗ for every a ∈ A and pY ∗ : B → B/Y ∗, pY ∗(b) = b/Y ∗ for
every b ∈ B. We define f : (A×B) → A/X∗ ×B/Y ∗ by f(a, b) = (a/X∗, b/Y ∗), for
every (a, b) ∈ A×B. Then f is a surjective morphisms. We denote the filter kernel by
Ker(f) = f−1((1/X∗, 1/Y ∗)) and using Proposition 3.10, Ker(f) = {(a, b) ∈ A×B :
f(a, b) = (1/X∗, 1/Y ∗)} = {(a, b) ∈ A × B : (a/X∗, b/Y ∗) = (1/X∗, 1/Y ∗)} =
{(a, b) ∈ A×B : a/X∗ = 1/X∗, b/Y ∗ = 1/Y ∗} = {(a, b) ∈ A×B : a ∈ X∗, b ∈ Y ∗} =
X∗ × Y ∗.

By the first isomorphism theorem and (i), we deduce that (A × B)/(X × Y )∗ ≈
A/X∗ ×B/Y ∗.¥

Analogously we obtain:
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Theorem 3.7. Let A and B two residuated lattices and D1 ∈ Ds(A), D2 ∈ Ds(B).
Then:

(i): D¦
1 ×D2

¦ = (D1 ×D2)¦

(ii): A/D¦
1 ×B/D¦

2 ≈ (A×B)/(D1 ×D2)¦.

4. The lattice Ds¦p(A)

We denote by Ds¦p(A) = {[a)¦ : a ∈ A}.
Proposition 4.1. If a, b ∈ A, then

(i): a ≤ b ⇒ [a)¦ ⊆ [b)¦;
(ii): [a)¦ ∩ [b)¦ = [a¯ b)¦ = [a ∧ b)¦;
(iii): [a → b)¦ ⊆ [a)¦ Ã [b)¦;
(iv): [a ∨ a∗)¦ = [a)¦ ∨ [a∗)¦.

Proof. (i). If x ∈ [a)¦ then x ∨ a = 1, but a ≤ b, hence 1 = x ∨ a ≤ x ∨ b, so
x ∨ b = 1. We deduce x ∈ [b)¦.

(ii). We have a¯b ≤ a∧b ≤ a, b, then using (i) we deduce that [a¯b)¦ ⊆ [a∧b)¦ ⊆
[a)¦, [b)¦ , that is, [a¯ b)¦ ⊆ [a ∧ b)¦ ⊆ [a)¦ ∩ [b)¦.

Let now x ∈ [a)¦ ∩ [b)¦, that is, a ∨ x = b ∨ x = 1.
By c10, x∨ (a¯ b) ≥ (x∨a)¯ (x∨ b) = 1, hence x∨ (a¯ b) = 1, that is, x ∈ [a¯ b)¦

.
It follows that [a)¦ ∩ [b)¦ ⊆ [a¯ b)¦, hence [a)¦ ∩ [b)¦ = [a¯ b)¦ = [a ∧ b)¦.
(iii). Let x ∈ [a → b)¦ ⇔ x∨ (a → b) = 1. We have that x ∈ [a)¦ Ã [b)¦ ⇔ x∨ y ∈

[b)¦, for any y ∈ [a)¦. Let so y ∈ [a)¦ ⇔ a ∨ y = 1. We prove that b ∨ (x ∨ y) = 1.
By c12 we deduce 1 = x∨(a → b) ≤ (x∨a) → (x∨b) ⇒ 1 = (x∨a) → (x∨b) ⇒ x∨

a ≤ x∨b. Then x∨y∨a ≤ x∨y∨b ⇒ x∨1 ≤ x∨y∨b⇒ x∨y∨b = 1 ⇒ x ∈ [a)¦ Ã [b)¦.
(iv). Since a, a∗ ≤ a∨a∗ we deduce by (i), that [a)¦, [a∗)¦ ⊆ [a∨a∗)¦ ⇒ [a)¦∨[a∗)¦ ⊆

[a ∨ a∗)¦.
Conversely, let x ∈ [a ∨ a∗)¦. We have x ∨ (a ∨ a∗) = 1 ⇒ (x ∨ a) ∨ a∗ = 1 and

(x ∨ a∗) ∨ a = 1 ⇒ x ∨ a ∈ [a∗)¦ and x ∨ a∗ ∈ [a)¦.
By c10, x = x ∨ (a¯ a∗) ≥ (x ∨ a)¯ (x ∨ a∗). Since x ∨ a ∈ [a∗)¦ and x ∨ a∗ ∈ [a)¦

we deduce that x ∈ [a)¦ ∨ [a∗)¦, so [a ∨ a∗)¦ ⊆ [a)¦ ∨ [a∗)¦.
Finally, [a ∨ a∗)¦ = [a)¦ ∨ [a∗)¦. ¥

Remark 4.1. [a)¦ Ã [b)¦  [a → b)¦. Indeed, if we consider the residuated lattice A
from Example 2.2, then [0)¦ = [a)¦ = [b)¦ = [c)¦ = {1}, [1)¦ = A and [a)¦ Ã [b)¦ =
{x ∈ A : x ∨ 1 = 1} = A but [a → b)¦ = [b)¦ = {1}.
Proposition 4.2. If e ∈ B(A) and [e)¦ = {1} then e = 0.

Proof. Since by Propositions 3.3 and 3.9, [e)¦ = [e∗) = {x ∈ A : x ≥ e∗} = {1}
and e∗ ∈ [e∗) we deduce that e∗ = 1 so e = 0. ¥

Remark 4.2. Since for every a ∈ A, [a)¦ is the pseudocomplement of [a) in the lattice
Ds(A), then:

(i): [a)¦ = A ⇔ a = 1 and [0)¦ = {1};
(ii): [a)∩ [a)¦ = {1};
(iii): [a)¦∩ [a)¦¦ = {1};
(iv): [a)¦ = [a)¦¦¦.

Definition 4.1. An element a in a residuated lattice A is called nilpotent iff there
exists a natural number n such that an = 0. The minimum n such that an = 0 is
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called nilpotence order of a and will be denoted by ord(a); if there is no such n, then
ord(a) = ∞. A residuated lattice A is called locally finite if every a ∈ A, a 6= 1, has
finite order.

Proposition 4.3. Let a ∈ A and a natural number n. Then [a)¦ = [an)¦.

Proof . By Proposition 4.1, (i), since an ≤ a we obtain [an)¦ ⊆ [a)¦. Conversely,
let x ∈ [a)¦. Then a∨x = 1. By c11, 1 = an∨xn ≤ an∨x. We deduce that an∨x = 1,
so x ∈ [an)¦ and [a)¦ ⊆ [an)¦. Finally, [a)¦ = [an)¦. ¥

Proposition 4.4. Let a ∈ A, a 6= 1, such that a has a finite order n. Then [a)¦ = {1}.
Proof 1. Since n is the finite order of a we have an = 0. By Proposition 4.3,

[a)¦ = [an)¦ = [0)¦ = {1}.
Proof 2. By definition, [a)¦ = {x ∈ A : a∨x = 1}. Let x ∈ [a)¦. Since 1 = a∨x ≤

[(a → x) → x] ∧ [(x → a) → a] we deduce that (a → x) → x = (x → a) → a = 1,
hence a → x = x and x → a = a. Now x = a → x = a → (a → x) = a2 → x = ... =
an → x = 0 → x = 1. We deduce that [a)¦ = {1}.¥

For a, b ∈ A we denote

[a)¦ Y [b)¦ = [a)¦¦ Ã [b)¦.

Proposition 4.5. Let a, b ∈ A. Then [a)¦ Y [b)¦ = [a ∨ b)¦.

Proof. By Lemma 3.1, [a)¦ Y [b)¦ = [a)¦¦ Ã [b)¦ = {x ∈ A : x∨ y ∈ [b)¦, for every
y ∈ [a)¦¦} = {x ∈ A : x∨y∨b = 1, for every y ∈ [a)¦¦} and [a)¦¦ = {x ∈ A : x∨y = 1,
for every y ∈ [a)¦} = {x ∈ A : x∨y = 1, for every y ∈ A such that y∨a = 1}. Clearly,
a ∈ [a)¦¦, so for any x ∈ [a)¦ Y [b)¦ we obtain x ∨ a ∨ b = 1. This implies x ∈ [a ∨ b)¦,
hence [a)¦ Y [b)¦ ⊆ [a ∨ b)¦.

Now, we prove that [a ∨ b)¦ ⊆ [a)¦ Y [b)¦. Let x ∈ [a ∨ b)¦, that is, x ∨ a ∨ b = 1.
Let y ∈ [a)¦¦. We deduce y ∨ z = 1, for z ∈ A such that z ∨ a = 1. If we denote
t = x∨ b we will prove that (t∨a = 1 ⇒ t∨y = 1, for every y ∈ [a)¦¦) equivalent with
(t ∈ [a)¦ ⇒ t ∈ [a)¦¦¦) equivalent with [a)¦ ⊆ [a)¦¦¦. It is an immediate consequence
of Remark 4.2, (iv). ¥
Corollary 4.1. For a, b ∈ A, [a)¦ Y [b)¦ = [a ∨ b)¦ ∈ Ds¦p(A).

Remark 4.3. If a, b ∈ A, then [a)¦, [b)¦ ⊆ [a)¦ Y [b)¦ so, [a)¦ ∨ [b)¦ ⊆ [a)¦ Y [b)¦ =
[a ∨ b)¦.

Remark 4.4. By Proposition 4.1, [a)¦ ∨ [a∗)¦ = [a)¦ Y [a∗)¦ = [a ∨ a∗)¦.

Proposition 4.6. a ∈ B(A) ⇔ [a)¦ Y [a∗)¦ = A.

Proof. By Proposition 4.5, if a ∈ B(A) then [a)¦ Y [a∗)¦ = [a ∨ a∗)¦ = [1)¦ = A.
Conversely, [a)¦ Y [a∗)¦ = [a ∨ a∗)¦ = A implies 0 ∨ (a ∨ a∗) = 1 ⇒ a ∨ a∗ = 1. By
Proposition 2.2 we deduce that a ∈ B(A).¥
Theorem 4.1. (Ds¦p(A),∩,Y, {1}, A = [1)¦) is a bounded distributive lattice and
[a)¦ = [a)¦¦¦, [a)¦∩ [a)¦¦ = {1}, [a)¦¦∩ [b)¦¦ = ([a)¦ Y [b)¦)¦ = [a ∨ b)¦¦, for a, b ∈ A.

Proof. We shall prove that Y is the supremum in this lattice.
It is obvious that, by Proposition 4.1, a, b ≤ a ∨ b implies [a)¦, [b)¦ ⊆ [a ∨ b)¦,

a, b ∈ A. For c ∈ A such that [a)¦, [b)¦ ⊆ [c)¦ we will prove that [a ∨ b)¦ ⊆ [c)¦. If
t ∈ [a ∨ b)¦, then t ∨ a ∨ b = 1, so t ∨ a ∈ [b)¦ ⊆ [c)¦. We deduce that (t ∨ c) ∨ a = 1,
so t ∨ c ∈ [a)¦. But [a)¦ ⊆ [c)¦, implies t ∨ c ∈ [c)¦ implies t ∨ c = 1 implies t ∈ [c)¦.

Thus, [a ∨ b)¦ ⊆ [c)¦.
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Since using Proposition 4.1, [a)¦ ∩ ([b)¦ Y [c)¦) = [a)¦ ∩ [b ∨ c)¦ = [a ¯ (b ∨ c))¦ c9=
[(a ¯ b) ∨ (a ¯ c))¦ = [a ¯ b)¦ Y [a ¯ c)¦ = ([a)¦ ∩ [b)¦) Y ([a)¦ ¯ [c)¦), for every
a, b, c ∈ A and {1} = [0)¦, A = [1)¦, we deduce that the lattice (Ds¦p(A),∩, Y, {1}, A)
is distributive and bounded.

Applying Remark 4.2 we get that [a)¦ = [a)¦¦¦, [a)¦∩ [a)¦¦ = {1}.
The equality [a)¦¦∩ [b)¦¦ = ([a)¦ Y [b)¦)¦, for a, b ∈ A is equivalent with [a)¦¦∩

[b)¦¦ = [a ∨ b)¦¦, for a, b ∈ A.
Let x ∈ [a)¦¦∩ [b)¦¦ . We deduce that x ∨ y = 1, for every y ∈ [a)¦ and x ∨ z = 1,

for every z ∈ [b)¦. Let t ∈ [a∨ b)¦. We obtain t∨a∨ b = 1 ⇒ t∨a ∈ [b)¦ ⇒ x∨ t∨a =
1 ⇒ x ∨ t ∈ [a)¦ ⇒ x ∨ (x ∨ t) = 1 ⇒ x ∨ t = 1. Thus, [a)¦¦∩ [b)¦¦ ⊆ [a ∨ b)¦¦.

Conversely, let x ∈ [a∨b)¦¦. Then x∨z = 1, for every z ∈ A such that z∨a∨b = 1.
Let y1 ∈ [a)¦. Then y1 ∨ a = 1 ⇒ y1 ∨ a ∨ b = 1 ⇒ x ∨ y1 = 1 ⇒ x ∈ [a)¦¦. Let
y2 ∈ [b)¦. Then y2∨b = 1 ⇒ y2∨a∨b = 1 ⇒ x∨y2 = 1 ⇒ x ∈ [b)¦¦. Thus, x ∈ [a)¦¦∩
[b)¦¦ .

Finally, [a ∨ b)¦¦ ⊆ [a)¦¦∩ [b)¦¦, so [a ∨ b)¦¦ = [a)¦¦∩ [b)¦¦. ¥
Remark 4.5. If A is a chain then Ds¦p(A) is isomorphic with L2, the two-elements
Boolean algebra. Indeed, for a ∈ A, a 6= 1, [a)¦ = {1} and [1)¦ = A.

Remark 4.6. If A is a locally finite residuated lattice, then every element of A has
a finite order and by Proposition 4.4 we deduce that Ds¦p(A) is a Boolean algebra
isomorphic with L2.

Remark 4.7. We recall that a residuated lattice is subdirectly irreducible iff it is
nontrivial and for any subdirect representation f : A → Π

i∈I
Ai, there exists a j such

that fj is an isomorphism of A onto Aj . In [12] it is proved that in any subdirectly
irreducible residuated lattice, if x ∨ y = 1, then x = 1 or y = 1. Obviously, if A is a
subdirectly irreducible residuated lattice, then Ds¦p(A) is a Boolean algebra isomorphic
with L2.

Remark 4.8. If e, f ∈ B(A), then [e)¦Y[f)¦ = [e∨f)¦
e∨f∈B(A)

= [(e∨f)∗) = [e∗∧f∗) =
[e∗¯f∗) = [e∗)∨[f∗) = [e)¦∨[f)¦, and [e)¦Y[e)¦¦ = [e)¦Y[e∗)¦ = [e∨e∗)¦ = [1)¦ = A.

Remark 4.9. If e ∈ B(A), then [e)¦ ∈ B(Ds¦p(A)), so Ds¦p(B(A)) is a Boolean
subalgebra of B(Ds¦p(A).

In [5] we introduce and characterize the hyperarchimedean residuated lattice.

Definition 4.2. [5] Let A be a residuated lattice. An element a ∈ A is called
archimedean if it satisfy the condition : there is n ≥ 1 such that an ∈ B(A),(equivalent
with a ∨ (an)∗ = 1). A residuated lattice A is called hyperarchimedean if all its ele-
ments are archimedean.

Proposition 4.7. If A is a hyperarchimedean residuated lattice then Ds¦p(A) is a
Boolean subalgebra of Ds(A).

Proof. Since A is a hyperarchimedean residuated lattice then for every a ∈ A
there is a natural number n ≥ 1 such that an = ea ∈ B(A). By Proposition 4.3,
[a)¦ = [an)¦ = [ea)¦. We deduce that ∨ = Y and Ds¦p(A) is a Boolean algebra.

Theorem 4.2. If A is a residuated lattice, then the map

f : (A,∧,∨, 0, 1) → (Ds¦p(A),∩,Y, {1}, A),

defined by f(a) = [a)¦, for every a ∈ A is an ontomorphism of distributive and
bounded lattices.
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Proof. Let a, b ∈ A. Applying Proposition 4.1 and Corollary 4.1 we obtain that
f(a ∧ b) = [a ∧ b)¦ = [a)¦ ∩ [b)¦ = f(a) ∩ f(b), f(a ∨ b) = [a ∨ b)¦ = [a)¦ Y [b)¦ =
f(a) Y f(b), f(0) = [0)¦ = {1} and f(1) = [1)¦ = A.¥

In [1], if f : L1 → L2 is a morphism of bounded lattices, then we denote the ideal
kernel by Ker(f) = f−1({0}) = {x ∈ L1 : f(x) = 0}.
Remark 4.10. Using this notation, by Proposition 4.4, if we denote by Ordfinite =
{x ∈ A : x has a finite order}, then Ordfinite ⊆ Ker(f), where f : A → Ds¦p(A) is
the ontomorphism from Theorem 4.2.

Proposition 4.8. If A is a hyperarchimedean residuated lattice then Ker(f) =
Ordfinite is a proper ideal of L(A) and A/Ker(f) ≈ Ds¦p(A) as Boolean algebras.

Proof. Let a ∈ Ker(f). Then f(a) = {1} ⇔ [a)¦ = {1}. Since A is a hyperar-
chimedean residuated lattice then for a ∈ A there is a natural number n ≥ 1 such
that an = ea ∈ B(A). By Proposition 4.3, we deduce that [a)¦ = [an)¦ = [ea)¦.
But Propositions 3.9 and 4.2, {1} = [ea)¦ = [e∗a), so ea = an = 0 and a has a fi-
nite order. We deduce that Ker(f) ⊆ Ordfinite. Using Remark 4.10 we deduce that
Ker(f) = Ordfinite.

By Proposition 4.7, A/Ker(f) ≈ Ds¦p(A) as Boolean algebras.¥
Corollary 4.2. For every residuated lattice A, f|B(A) is an injective morphism, so
(B(A),∧,∨, 0, 1) is a isomorphic with a sublattice of (Ds¦p(A),∩, Y, {1}, A).

Proof. To prove the injectivity of f , let e, g ∈ B(A) such that f(e) = f(g). Then
[e)¦ = [g)¦. Using Proposition 3.9 we deduce that [e∗) = [g∗), so e∗ = g∗. Thus, e = g.
¥
Proposition 4.9. If e, f ∈ B(A), then [e)¦ Ã [f)¦ = [e∗ ∨ f)¦ ∈ Ds¦p(A).

Proof. By Proposition 4.5, [a)¦¦ Ã [b)¦ = [a)¦ Y [b)¦ = [a∨ b)¦, for every a, b ∈ A.
Applying Propositions 3.9 and Remark 4.2 we have that [e)¦ Ã [f)¦ = [e)¦¦¦ Ã

[f)¦ = [e∗)¦¦ Ã [f)¦ = [e∗ ∨ f)¦ ∈ Ds¦p(A). ¥
Corollary 4.3. (Ds¦p(B(A)),∩, Y,¦ , {1}, A) is a Boolean algebra and

f|B(A) : (B(A),∧,∨,∗ , 0, 1) → (Ds¦p(B(A)),∩, Y,¦ , {1}, A)

defined by f|B(A)(e) = [e)¦ = [e∗), for every e ∈ B(A) is an isomorphism of Boolean
algebras.

Proof. Apply Theorems 4.1, 4.2, Corollary 4.2 and Proposition 4.9 .¥
Theorem 4.3. Let a, b, c ∈ A. Then [c)¦ ⊆ [a)¦ Ã [b)¦ ⇔ [a)¦ ∩ [c)¦ ⊆ [b)¦.

Proof. From Lemma 3.1, [a)¦ Ã [b)¦ = {x ∈ A : x ∨ y ∈ [b)¦, for all y ∈ [a)¦}.
Suppose that [a)¦ ∩ [c)¦ ⊆ [b)¦ and let x ∈ [c)¦. We have that x ∨ c = 1. Let

y ∈ [a)¦, so y ∨ a = 1. By c10, (x ∨ y) ∨ (a ¯ c) ≥ (x ∨ y ∨ a) ¯ (x ∨ y ∨ c) =
(x∨1)¯(y∨1) = 1 ⇒ (x∨y)∨(a¯c) = 1 ⇒ x∨y ∈ [a¯c)¦. But [a¯c)¦ = [a)¦∩ [c)¦

⊆ [b)¦, so x ∨ y ∈ [b)¦, for any y ∈ [a)¦. By definition we deduce that x ∈ [a)¦ Ã [b)¦

so, [c)¦ ⊆ [a)¦ Ã [b)¦.
Conversely if we suppose that [c)¦ ⊆ [a)¦ Ã [b)¦, let x ∈ [a)¦ ∩ [c)¦ = [a ¯ c)¦ =

[a ∧ c)¦. So, x ∨ (a ∧ c) = 1.
We have 1 = x∨ (a∧ c) ≤ (x∨a)∧ (x∨ c) ⇒ (x∨a)∧ (x∨ c) = 1 ⇒ x∨a = x∨ c =

1 ⇒ x ∈ [a)¦ and x ∈ [c)¦. But [c)¦ ⊆ [a)¦ Ã [b)¦ so x ∈ [a)¦ Ã [b)¦. Since x ∈ [a)¦

it is easy to show applying Remark 3.2 that x ∈ [b)¦. Obviously, [a)¦ ∩ [c)¦ ⊆ [b)¦.¥
Remark 4.11. Since (Ds¦p(A),∩, [1)¦ = A) is a commutative monoid using Theorems
4.1 and 4.3 we deduce that (Ds¦p(B(A)),∩, Y,Ã, {1}, A) is a residuated lattice.
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