On the lattice of deductive systems of a residuated lattice

Dana Piciu, Antoaneta Jeflea and Raluca Creţan

Abstract

In any residuated lattice A the set $D s(A)$ of all deductive systems of A forms a pseudo-complemented distributive lattice and we denote by D^{\diamond} the pseudocomplement of D in this lattice (it is proved that $D^{\diamond}=\{a \in A: a \vee x=1$, for every $x \in D\}$). In this paper we give a characterization for regular deductive systems and we study the lattice $\mathrm{Ds}_{p}^{\diamond}(A)$ of deductive systems of the form $[a)^{\diamond}$. If A is a hyperarchymedean residuated lattice, then $D s_{p}^{\diamond}(A)$ is a Boolean algebra. Also, for $X \subseteq A$ we denote by $X^{*}=\{a \in A: a \rightarrow x=x$, for any $x \in X\}$ which is a deductive system and we show that the set $R_{*}(D s(A))=\left\{D \in D s(A): D=D^{* *}\right\}$ does a Boolean algebra.

2000 Mathematics Subject Classification. 03G10; 06B20; 06D15. Key words and phrases. Residuated lattice, Boolean algebra, deductive system, regular deductive system.

1. Introduction

The origin of residuated lattices is in Mathematical Logic without contraction. They have been investigated by Krull ([13]), Dilworth ([7]), Ward and Dilworth ([20]), Ward ([19]), Balbes and Dwinger ([1]) and Pavelka ([16]).

In [10], Idziak prove that the class of residuated lattices is equational. These lattices have been known under many names: BCK- latices in [9], full BCK- algebras in [13], $F L_{e w^{-}}$algebras in [14], and integral, residuated, commutative l-monoids in [3].

Residuated lattices have been studied extensively and include important classes of algebras such as BL-algebras, introduced by Hájek as the algebraic counterpart of his Basic Logic, and MV-algebras, the algebraic setting for Lukasiewicz propositional logic.

Apart from their logical interest, residuated lattices have interesting algebraic properties (see [2], [4], [7], [12], [15], [19], [20]).

In order to simplify the notation a residuated lattice $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ will be referred by its support set A.

By $B(A)$ we denote the Boolean algebra of all complemented elements in the lattice $L(A)=(A, \wedge, \vee, 0,1)$.

In any residuated lattice A the set $D s(A)$ of all deductive systems of A forms a pseudo-complemented distributive lattice and we denote by D^{\diamond} the pseudocomplement of D in this lattice (it is proved that $D^{\diamond}=\{a \in A: a \vee x=1$, for every $x \in D\}$). In this paper we give a characterization for regular deductive systems denoted by $R_{\diamond}(D s(A))=\left\{D \in D s(A): D=D^{\diamond \diamond}\right\}$. Also, for $X \subseteq A$ we denote by $X^{*}=\{a \in A: a \rightarrow x=x$, for any $x \in X\}$ which is a deductive system and we show that the set $R_{*}(D s(A))=\left\{D \in D s(A): D=D^{* *}\right\}$ does a Boolean algebra. We prove that $R_{\diamond}(D s(A)) \subseteq R_{*}(D s(A))$ and $D \in R_{\diamond}(D s(A))$ iff $D=[e)$, with $e \in B(A)$.

Finally, we study the lattice $D s_{p}^{\diamond}(A)$ of deductive systems of the form $[a)^{\diamond}$ with $a \in A$.

If A is a hyperarchymedean residuated lattice, then $D s_{p}^{\diamond}(A)$ is a Boolean algebra.

2. Preliminaries

Definition 2.1. A residuated lattice ([2], [18]) is an algebra $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ of type (2,2,2,2,0,0) equipped with an order \leq satisfying the following:
$\left(L R_{1}\right)(A, \wedge, \vee, 0,1)$ is a bounded lattice;
$\left(L R_{2}\right)(A, \odot, 1)$ is a commutative ordered monoid;
$\left(L R_{3}\right) \odot$ and \rightarrow form an adjoint pair, i.e. $c \leq a \rightarrow b$ iff $a \odot c \leq b$ for all $a, b, c \in A$.
The relations between the pair of operations \odot and \rightarrow expressed by $\left(L R_{3}\right)$, is a particular case of the law of residuation ([2]). Lukasiewicz structure, Gődel structure, Products structure are residuated lattices (see [18]).

Example 2.1. If $\left(A, \vee, \wedge,{ }^{\prime}, 0,1\right)$ is a Boolean algebra and we define for every $x, y \in$ $A, x \odot y=x \wedge y, x \rightarrow y=x^{\prime} \vee y$, then $(A, \vee, \wedge, \odot, \rightarrow, 0,1)$ become a residuated lattice.
Remark 2.1. [18] A residuated lattice $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is an $M V$-algebra iff it satisfies the additional condition: $(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x$, for any $x, y \in A$.

We give an example of finite residuated lattice:
Example 2.2. ([11]) Let $A=\{0, a, b, c, 1\}$ with $0<a, b<c<1$, but a, b are incomparable. A become a residuated lattice relative to the following operations:

\rightarrow	0	a	b	c	1								
0	1	1	1	1	1								
a	b	1	b	1	1								
b	a	a	1	1	1								
c	0	a	b	1	1								
1	0	a	b	c	1	\quad	\odot	0	a	b	c	1	
:---	:---	:---	:---	:---	:---	:---							
0	0	0	0	0	0								
a	0	a	0	a	a								
b		0	0	b	b	b							
1	0	a	b	c	c								
0	a	b	c	1			.						

We refer the reader to [4], [12], [18] for basic results in the theory of residuated lattices. In the following, we only present the material needed in the remainder of the paper.

In what follows by A we denote a residuated lattice; for $x \in A$ and a natural number n, we define $x^{*}=x \rightarrow 0,\left(x^{*}\right)^{*}=x^{* *}, x^{0}=1$ and $x^{n}=x^{n-1} \odot x$ for $n \geq 1$.
Theorem 2.1. ([4], [12], [18]) Let $x, x_{1}, x_{2}, y, y_{1}, y_{2}, z \in A$. Then we have the following rules of calculus:
$\left(c_{1}\right) 1 \rightarrow x=x, x \rightarrow x=1, y \leq x \rightarrow y, x \rightarrow 1=1,0 \rightarrow x=1$;
(c_{2}) $x \odot 0=0, x \odot y \leq x, y$, hence $x \odot y \leq x \wedge y$ and $(x \vee y=1$ implies $x \odot y=x \wedge y)$;
(c_{3}) $(x \leq y$ iff $x \rightarrow y=1)$ and $(x \rightarrow y=y \rightarrow x=1$ iff $x=y)$;
$\left(c_{4}\right) x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y)$ and $x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$;
$\left(c_{5}\right) x \rightarrow(y \rightarrow z)=(x \odot y) \rightarrow z=y \rightarrow(x \rightarrow z)$;
(c6) $x \odot x^{*}=0$ and $x \odot y=0$ iff $x \leq y^{*}$;
(c_{7}) $x \leq x^{* *}, x^{* *} \leq x^{*} \rightarrow x, 1^{*}=0,0^{*}=1 ;$
(c8) $x \rightarrow y \leq y^{*} \rightarrow x^{*}, x^{* * *}=x^{*},(x \odot y)^{*}=x \rightarrow y^{*}=y \rightarrow x^{*}=x^{* *} \rightarrow y^{*}$;
$\left(c_{9}\right) x \odot\left(y_{1} \vee y_{2}\right)=\left(x \odot y_{1}\right) \vee\left(x \odot y_{2}\right),\left(y_{1} \vee y_{2}\right) \rightarrow x=\left(y_{1} \rightarrow x\right) \wedge\left(y_{2} \rightarrow x\right)$ and $x \rightarrow\left(y_{1} \vee y_{2}\right) \geq\left(x \rightarrow y_{1}\right) \vee\left(x \rightarrow y_{2}\right) ;$
$\left(c_{10}\right) x \vee(y \odot z) \geq(x \vee y) \odot(x \vee z)$.
Corollary 2.1. ([12]) Let $a_{1}, \ldots, a_{n} \in A$.
(c_{11}) If $a_{1} \vee \ldots \vee a_{n}=1$, then $a_{1}^{k} \vee \ldots \vee a_{n}^{k}=1$, for every natural number k.
Proposition 2.1. If A is a residuated lattice and $a, b, x \in A$, then
$\left(c_{12}\right): x \vee(a \rightarrow b) \leq(x \vee a) \rightarrow(x \vee b)$.
Proof. We have $(x \vee a) \rightarrow(x \vee b) \stackrel{c_{9}}{=}(x \rightarrow(x \vee b)) \wedge(a \rightarrow(x \vee b))=1 \wedge(a \rightarrow(x \vee b))=$ $a \rightarrow(x \vee b) \stackrel{c_{9}}{\geq}(a \rightarrow x) \vee(a \rightarrow b) \geq x \vee(a \rightarrow b)$.
Proposition 2.2. ([4]) For $e \in A$ the following are equivalent:
(i) $e \in B(A)$;
(ii) $e \vee e^{*}=1$.

Lemma 2.1. ([4], [12]) If $e \in B(A)$, then
$\left(c_{13}\right) e \odot x=e \wedge x$, for every $x \in A$;
$\left(c_{14}\right) e \wedge(x \vee y)=(e \wedge x) \vee(e \wedge y)$, for every $x, y \in A$.

3. The regular deductive systems of a residuated lattice

Definition 3.1. ([12], [18]) A nonempty subset $D \subseteq A$ is called a deductive system of A if the following conditions are satisfied:
$\left(D s_{1}\right) 1 \in D$;
($D s_{2}$) If $x, x \rightarrow y \in D$, then $y \in D$.
Remark 3.1. ([12], [18]) A nonempty subset $D \subseteq A$ is a deductive system of A if for all $x, y \in A$:
$\left(D s_{1}^{\prime}\right)$ If $x, y \in D$, then $x \odot y \in D$;
($D s_{2}^{\prime}$) If $x \in D, y \in A, x \leq y$, then $y \in D$.
Every deductive system of A is a filter for $L(A)$, but a filter of $L(A)$ is not, in general, deductive system of A (see [18]).

We denote by $D s(A)$ the set of all deductive systems of A.
For a nonempty subset $S \subseteq A$, the smallest deductive system of A which contains S, i.e. $\cap\{D \in D s(A): S \subseteq D\}$, is said to be the deductive system of A generated by S and will be denoted by $[S)$.

If $S=\{a\}$, with $a \in A$, we denote by $[a)$ the deductive system generated by $\{a\}$ ($[a$) is called principal).

For $D \in D s(A)$ and $a \in A$, we denote by $D(a)=[D \cup\{a\}$) (clearly, if $a \in D$, then $D(a)=D)$.
Proposition 3.1. ([12], [18]) Let $S \subseteq A$ a nonempty subset of A, $a \in A, D, D_{1}, D_{2} \in$ Ds (A). Then
(i) If S is a deductive system, then $[S)=S$;
(ii) $[S)=\left\{x \in A: s_{1} \odot \ldots \odot s_{n} \leq x\right.$, for some $n \geq 1$ and $\left.s_{1}, \ldots, s_{n} \in S\right\}$. In particular, [a) $=\left\{x \in A: x \geq a^{n}\right.$, for some $\left.n \geq 1\right\} ;$
(iii) $D(a)=\left\{x \in A: x \geq d \odot a^{n}\right.$, with $d \in D$ and $\left.n \geq 1\right\}$;
(iv) $\left[D_{1} \cup D_{2}\right)=\left\{x \in A: x \geq d_{1} \odot d_{2}\right.$ for some $d_{1} \in D_{1}$ and $\left.d_{2} \in D_{2}\right\}$.

Proposition 3.2. Let $D \in D s(A)$ and $a, b \in A$. Then $D(a) \cap D(b)=D(a \vee b)$.
Proof. Let $x \in D(a) \cap D(b)$. Then there are $d_{1}, d_{2} \in D$ and $m, n \geq 1$ such that $x \geq d_{1} \odot a^{m}$ and $x \geq d_{2} \odot b^{n}$. Then $x \geq\left(d_{1} \odot a^{m}\right) \vee\left(d_{2} \odot b^{n}\right) \stackrel{c_{12}}{\geq}\left(d_{1} \vee d_{2}\right) \odot$ $\left(d_{1} \vee b^{n}\right) \odot\left(d_{2} \vee a^{m}\right) \odot(a \vee b)^{m n}$, hence by Proposition $3.1, x \in D(a \vee b)$, since $d_{1} \vee d_{2}, d_{1} \vee b^{n}, d_{2} \vee a^{m} \in D$. We deduce that $D(a) \cap D(b) \subseteq D(a \vee b)$.

Conversely, let $x \in D(a \vee b)$, there is $d \in D$ and $m \geq 1$ such that $x \geq d \odot(a \vee b)^{m} \geq$ $d \odot a^{m}, d \odot b^{m}$, that is, $D(a \vee b) \subseteq D(a) \cap D(b)$, so we obtain the desired equality.

Corollary 3.1. Let $D \in D s(A)$ and $a_{1}, \ldots, a_{n} \in A$. Then $D\left(a_{1}\right) \cap \ldots \cap D\left(a_{n}\right)=$ $D\left(a_{1} \vee \ldots \vee a_{n}\right)$.
Corollary 3.2. Let $D \in D s(A)$ and $a_{1}, \ldots, a_{n} \in A$ such that $a_{1} \vee \ldots \vee a_{n} \in D$. Then $D\left(a_{1}\right) \cap \ldots \cap D\left(a_{n}\right)=D$.

The lattice $(D s(A), \subseteq)$ is a complete Brouwerian lattice (hence distributive), where for a family $\mathcal{F}=\left(D_{i}\right)_{i \in I}$ of deductive systems, $\inf (\mathcal{F})=\cap_{i \in I} D_{i}$ and $\sup (\mathcal{F})=\left[\cup_{i \in I} D_{i}\right)$. Clearly, in this lattice $\mathbf{0}=\{1\}$ and $\mathbf{1}=A$.

Proposition 3.3. ([17]) If $a, b \in A$, then
(i) $[a)=\{x \in A: a \leq x\}$ iff $a \odot a=a$;
(ii) $a \leq b$ implies $[b) \subseteq[a)$;
(iii) $[a) \cap[b)=[a \vee b)$;
(iv) $[a) \vee[b)=[a \wedge b)=[a \odot b)$;
(v) $[a)=1$ iff $a=1$.

For $D_{1}, D_{2}, D \in D s(A)$ we denote

$$
D_{1} \rightsquigarrow D_{2}=\left\{a \in A: D_{1} \cap[a) \subseteq D_{2}\right\} \text { and } D^{\diamond}=D \rightsquigarrow \mathbf{0}=D \rightsquigarrow\{1\} .
$$

Lemma 3.1. ([6]) If $D_{1}, D_{2} \in D s(A)$ then
(i) $D_{1} \rightsquigarrow D_{2} \in D s(A)$;
(ii) If $D \in D s(A)$, then $D_{1} \cap D \subseteq D_{2}$ iff $D \subseteq D_{1} \rightsquigarrow D_{2}$, that is,

$$
D_{1} \rightsquigarrow D_{2}=\sup \left\{D \in D s(A): D_{1} \cap D \subseteq D_{2}\right\} ;
$$

(iii) $D_{1} \rightsquigarrow D_{2}=\left\{x \in A: x \vee y \in D_{2}\right.$, for all $\left.y \in D_{1}\right\}$.

Corollary 3.3. $(D s(A), \vee, \cap, \rightsquigarrow,\{1\}, A)$ is a Heyting algebra, where for $D \in D s(A)$,

$$
D^{\diamond}=\{x \in A: x \vee y=1, \text { for every } y \in D\}
$$

hence for every $x \in D$ and $y \in D^{\diamond}, x \vee y=1$. In particular, for every $a \in A$,

$$
[a)^{\diamond}=\{x \in A: x \vee a=1\}
$$

Clearly, D^{\diamond} is the pseudocomplement of D in the lattice $D s(A)$.
Remark 3.2. From Lemma 3.1, (ii), we deduce that if $D_{1}, D_{2} \in D s(A)$ and $x \in A$ such that $x \in D_{1}$ and $x \in D_{1} \rightsquigarrow D_{2}$, then $x \in D_{2}$. Also, if $D \in D s(A)$ then $D \rightsquigarrow D=A$ and $D \subseteq D^{\diamond \infty}$.
Proposition 3.4. $D^{\diamond}=\{a \in A: a \rightarrow x=x$ and $x \rightarrow a=a$, for every $x \in D\}$.
Proof. Let $a \in D^{\diamond}$. Since $1=a \vee x \leq[(a \rightarrow x) \rightarrow x] \wedge[(x \rightarrow a) \rightarrow a]$ for every $x \in D$ we deduce that $(a \rightarrow x) \rightarrow x=(x \rightarrow a) \rightarrow a=1$, hence $a \rightarrow x=x$ and $x \rightarrow a=a$, for every $x \in D$.

For $X \subseteq A$ we denote by $X^{*}=\{a \in A: a \rightarrow x=x$, for any $x \in X\}$.
Proposition 3.5. $X^{*} \in D s(A)$, for every set $X \subseteq A$.
Proof. Obvious $1 \in X^{*}$ since by $c_{1}, 1 \rightarrow x=x$, for any $x \in X$. Let $a, b \in X^{*}$. Then $a \rightarrow x=x$ and $b \rightarrow x=x$, for any $x \in X$. By c_{5}, we have $(a \odot b) \rightarrow x=a \rightarrow$ $(b \rightarrow x)=a \rightarrow x=x$, hence $a \odot b \in X^{*}$. If $a \leq b$ and $a \in X^{*}$ then $a \rightarrow x=x$, for any $x \in X$. By $c_{4}, 1=a \rightarrow b \leq(b \rightarrow x) \rightarrow(a \rightarrow x)$, so $(b \rightarrow x) \rightarrow(a \rightarrow x)=1$. Using c_{1}, $x \leq b \rightarrow x \leq a \rightarrow x=x$, for every $x \in X$, so $b \rightarrow x=x$. We deduce $b \in X^{*}$.

Proposition 3.6. If $D \in D s(A)$, then $D^{\diamond} \subseteq D^{*}$.
Proof. Let $a \in D^{\diamond}$ and $x \in D$. Then $a \vee x=1 \Rightarrow(a \vee x) \rightarrow x=1 \rightarrow x=x \stackrel{c_{9}}{\Rightarrow}$ $(a \rightarrow x) \wedge(x \rightarrow x)=x \Rightarrow(a \rightarrow x) \wedge 1=x \Rightarrow a \rightarrow x=x \Rightarrow a \in D^{*} \Rightarrow D^{\diamond} \subseteq D^{*}$.
Remark 3.3. By Remark 2.1, if the residuated lattice A is a $M V$-algebra then $D^{\diamond}=D^{*}$.

Proposition 3.7. For every subset $X \subseteq A$, we have $X \cap X^{*}=\emptyset$ or $X \cap X^{*}=\{1\}$.
Proof. If $1 \in X$, since $X^{*} \in D s(A)$ we deduce that $1 \in X \cap X^{*}$. Let $x \in X \cap X^{*}$. Then $x \rightarrow x=x$, so $x=1$ and $X \cap X^{*}=\{1\}$.

If $1 \notin X$ we prove that $X \cap X^{*}=\emptyset$. Suppose that exists $x \in X \cap X^{*}$, obvious, $x \neq 1$. Then $x \rightarrow x=x$, so $x=1$, a contradiction.

Corollary 3.4. If $D \in D s(A)$, then $D \cap D^{*}=\{1\}$.
Lemma 3.2. Let X, Y two subsets of A. If $X \subseteq Y$ then $Y^{*} \subseteq X^{*}$.
Proof. Let $y \in Y^{*}$. Then $y \rightarrow z=z$, for every $z \in Y$. Since $X \subseteq Y$ we deduce that $y \rightarrow z=z$, for every $z \in X$, so $y \in X^{*}$, that is, $Y^{*} \subseteq X^{*}$.

Proposition 3.8. Let $D_{1}, D_{2} \in D s(A)$. Then $D_{1} \cap D_{2}=\{1\}$ iff $D_{1} \subseteq D_{2}^{*}$.
Proof. Suppose that $D_{1} \cap D_{2}=\{1\}$. Let $d_{1} \in D_{1}$. For any $d_{2} \in D_{2}, d_{2}, d_{1} \leq$ $\left(d_{1} \rightarrow d_{2}\right) \rightarrow d_{2}$ so $\left(d_{1} \rightarrow d_{2}\right) \rightarrow d_{2} \in D_{1} \cap D_{2}=\{1\}$. We obtain $d_{1} \rightarrow d_{2}=d_{2}$, hence $d_{1} \in D_{2}^{*}$.

Conversely, we assume that $D_{1} \subseteq D_{2}^{*}$. Since $D_{1}, D_{2} \in D s(A), 1 \in D_{1} \cap D_{2} \subseteq$ $D_{2}^{*} \cap D_{2}=\{1\}$, by Remark 3.4, that is, $D_{1} \cap D_{2}=\{1\}$.
Lemma 3.3. If $D \in D s(A)$ then $D \subseteq D^{* *}$.
Proof. Let $d \in D$. For any $x \in D^{*}$, since D, D^{*} are deductive systems and $x, d \leq(d \rightarrow x) \rightarrow x$, we deduce that $(d \rightarrow x) \rightarrow x \in D \cap D^{*}=\{1\}$, so, $d \rightarrow x=x$, hence $D \subseteq D^{* *}$.

Remark 3.4. The set of deductive systems $D s(A)$ forms two pseudocomplemented lattices (with * and with \diamond). By Remark 3.3, if the residuated lattice A is a MValgebra, then the two pseudocomplemented lattices coincide.

Remark 3.5. It follows from Glivenko's theorem that the sets $R_{*}(D s(A))=\{D \in$ $\left.D s(A): D=D^{* *}\right\}$ and $R_{\diamond}(D s(A))=\left\{D \in D s(A): D=D^{\diamond \infty}\right\}$ are Boolean algebras. For $D_{1}, D_{2} \in D s(A)$, $\left(D_{1}^{*} \cap D_{2}^{*}\right)^{*}$ (respectively, $\left.\left(D_{1}^{\diamond} \cap D_{2}^{\diamond}\right)^{\diamond}\right)$ is the least deductive system including D_{1}, D_{2}. Hence for $D_{1}, D_{2} \in D s(A)$, we have sup $\left\{D_{1}, D_{2}\right\}$ in $R_{*}(D s(A))$ (respectively, $R_{\diamond}(D s(A))$) is $\left(D_{1}^{*} \cap D_{2}^{*}\right)^{*}$ (respectively, $\left.\left(D_{1}^{\diamond} \cap D_{2}^{\diamond}\right)^{\diamond}\right)$.
Remark 3.6. If $D \in D s(A)$ then $\left(D=D^{* *}\right.$ iff $\left.D \vee D^{*}=A\right)$ and $\left(D=D^{\infty}\right.$ iff $D \vee D^{\diamond}=A$).
Theorem 3.1. $R_{\diamond}(D s(A)) \subseteq R_{*}(D s(A))$.
Proof. By Proposition 3.6, we have $D^{\diamond} \subseteq D^{*}$. Let $D \in R_{\diamond}(D s(A))$. Then $D \vee D^{\diamond}=$ A. But $A=D \vee D^{\diamond} \subseteq D \vee D^{*}$, so $D \vee D^{*}=A$, hence $D \in R_{*}(D s(A))$.

Proposition 3.9. The following assertions are equivalent:
(i) $e \in B(A)$;
(ii) $[e)^{\diamond}=\left[e^{*}\right)$;
(iii) $[e)^{\infty}=[e)$.

Proof. $(i) \Rightarrow(i i)$. Let $e \in B(A)$. Since $e \vee e^{*}=1$ and $[e)^{\diamond}=\{x \in A: e \vee x=1\}$ we deduce that $e^{*} \in[e)^{\diamond}$, so $\left[e^{*}\right) \subseteq[e)^{\diamond}$. If $x \in[e)^{\diamond}$, since $e \vee x=1$, we have $e^{*}=e^{*} \wedge 1=e^{*} \wedge(e \vee x) \stackrel{c_{13}}{=} e^{*} \odot(e \vee x) \stackrel{c}{\underline{c_{9}}}\left(e^{*} \odot e\right) \vee\left(e^{*} \odot x\right) \stackrel{c_{13}}{=} 0 \vee\left(e^{*} \wedge x\right)=e^{*} \wedge x$, so $e^{*} \leq x$. It follow that $x \in\left[e^{*}\right)$ and we deduce $[e)^{\diamond}=\left[e^{*}\right)$.
$(i i) \Rightarrow(i)$. Using Proposition 2.2, $[e)^{\diamond}=\left[e^{*}\right) \Rightarrow e^{*} \in[e)^{\diamond} \Rightarrow e \vee e^{*}=1 \Rightarrow e \in B(A)$.
$(i) \Rightarrow(i i i) . e \in B(A) \Rightarrow[e)^{\infty}=\left[e^{*}\right)^{\diamond} \stackrel{e^{*} \in B}{=}{ }^{(A)}\left[e^{* *}\right)=[e)$.
$\left(\right.$ iii) $\Rightarrow(i)$. Since $[e)^{\infty}=\left\{x \in A: x \vee y=1\right.$, for every $\left.y \in[e)^{\diamond}\right\}=\{x \in A: x \vee y=1$, for every $\left.y \in\left[e^{*}\right)\right\}=\left\{x \in A: x \vee y=1\right.$, for every $\left.y \geq e^{*}\right\}$ and $e \in[e]=[e)^{\infty}$ we deduce that $e \vee e^{*}=1$, so $e \in B(A)$

Remark 3.7. If $e \in B(A)$, then $[e) \in R_{\diamond}(D s(A))$.
Theorem 3.2. Let $D \in D s(A)$. The following assertions are equivalent:
(i): $D \in R_{\diamond}(D s(A))$;
(ii): there is $e \in B(A)$ such that $D=[e)$.

Proof. $(i) \Rightarrow(i i)$. Let $D \in R_{\diamond}(D s(A)) ;$ since $D \vee D^{\diamond}=A$, there exist $e \in D$, $a \in D^{\diamond}$ such that $e \odot a=0$.

Since $a \in D^{\diamond}$, we have $a \vee e=1$. Using c_{2} we deduce that $a \wedge e=a \odot e=0$, that is, $e \in B(A)$.

For every $x \in D, a \vee x=1$. We have $e \wedge x=0 \vee(e \wedge x)=(e \wedge a) \vee(e \wedge x) \stackrel{c_{14}}{=}$ $e \wedge(a \vee x)=e \wedge 1=e$, so $e \leq x$, that is, $D=[e)$.
(ii) $\Rightarrow(i)$. By Proposition 3.9, (iii).

We say that the inverse image of an deductive system under a morphism of residuated lattices is also a deductive system. Hence we have the following results:

Theorem 3.3. Let A, B two residuated lattices and $f: A \rightarrow B$ a morphism of residuated lattice. If Y is a nonempty subset of B, then $f^{-1}\left(Y^{*}\right)$ is a deductive system of A containing $\left[f^{-1}(Y)\right]^{*}$. Moreover, if D is deductive system of B, then $f^{-1}\left(D^{\diamond}\right)$ is a deductive system of A containing $\left[f^{-1}(D)\right]^{\circ}$.
Theorem 3.4. Let A, B two residuated lattices, $f: A \rightarrow B$ a morphism of residuated lattice and $X \subseteq A$ a nonempty subset of A. Then $f\left(X^{*}\right) \subseteq[f(X)]^{*}$.

Proof. Let $b \in f\left(X^{*}\right)$ and $y \in f(X)$. Then there exist $a \in X^{*}$ and $x \in X$ such that $f(a)=b$ and $f(x)=y$. Since $a \in X^{*}$ and $x \in X$ we deduce that $a \rightarrow x=x$. It follows that $b \rightarrow y=f(a) \rightarrow f(x)=f(a \rightarrow x)=f(x)=y$, so, $b \in[f(X)]^{*}$. We deduce that $f\left(X^{*}\right) \subseteq[f(X)]^{*}$
Theorem 3.5. Let A, B two residuated lattices, $f: A \rightarrow B$ a surjective morphism of residuated lattice and $D \in D s(A)$. Then
(i): $f\left(D^{\diamond}\right), f\left(D^{*}\right) \in D s(B)$;
(ii): $f\left(D^{\diamond}\right) \subseteq[f(D)]^{\diamond}$ and $f\left(D^{*}\right) \subseteq[f(D)]^{*}$;
(iii): If D^{*} (respectively D^{\diamond}) is a maximal deductive system of A such that $f\left(D^{*}\right)$ (respectively $f\left(D^{\diamond}\right)$) is a proper, then $f\left(D^{*}\right)$ (respectively $f\left(D^{\diamond}\right)$) is a maximal deductive system of B.

Proof. (i). Obviously, $1=f(1) \in f\left(D^{\diamond}\right)$. Let $x, y \in f\left(D^{\diamond}\right)$, that is there are $a, b \in D^{\diamond}$ such that $f(a)=x$ and $f(b)=y$. Since $D^{\diamond} \in D s(A)$, we deduce that $a \odot b \in D^{\diamond}$ and $x \odot y=f(a) \odot f(b)=f(a \odot b) \in f\left(D^{\diamond}\right)$. Let $x, y \in B$ such that $x \leq y$ and $x \in f\left(D^{\diamond}\right)$. Hence, there is $a \in D^{\diamond}$ such that $f(a)=x$ and since f is surjective, there exists $b \in A$ such that $f(b)=y$. Then $y=x \vee y=f(a) \vee f(b)=f(a \vee b)$ and $a \vee b \geq a \in D^{\diamond}$, so $a \vee b \in D^{\diamond}$ and $y \in f\left(D^{\diamond}\right)$. We obtain that $f\left(D^{\diamond}\right) \in D s(B)$. Similarly for $f\left(D^{*}\right) \in D s(B)$.
(ii). Following from Theorem 3.4.
(iii). Let D^{\prime} be a proper deductive system of B such that $f\left(D^{*}\right) \subseteq D^{\prime}$. We have that $D^{*} \subseteq f^{-1}\left(f\left(D^{*}\right)\right) \subseteq f^{-1}\left(D^{\prime}\right)$ and since $f^{-1}\left(D^{\prime}\right)$ is a proper deductive system of A, we must have $D^{*}=f^{-1}\left(D^{\prime}\right)$. We deduce that $f\left(D^{*}\right)=f\left(f^{-1}\left(D^{\prime}\right)\right)=D^{\prime}$, since f is a surjective morphism. Similarly for $f\left(D^{\diamond}\right)$.

Remark 3.8. For $D \in D s(A)$, if D^{\diamond} is a maximal deductive system of A, by Remark 3.6 we deduce that $D^{\diamond}=D^{*}$, and by Theorem 3.5 if $f: A \rightarrow B$ is a surjective morphism of residuated lattice, then $f\left(D^{*}\right)=f\left(D^{\diamond}\right)$ is a maximal deductive system of B.

With any deductive system D of A we can (see [12], [18]) associate a congruence θ_{D} on A by defining : $(a, b) \in \theta_{D}$ iff $a \rightarrow b, b \rightarrow a \in D$ iff $(a \rightarrow b) \odot(b \rightarrow a) \in D$. Conversely, for $\theta \in \operatorname{Con}(A)$, the subset D_{θ} of A defined by $a \in D_{\theta}$ iff $(a, 1) \in \theta$ is a deductive system of A. Moreover the natural maps associated with the above are mutually inverse and establish an isomorphism between the lattices $D s(A)$ and $\operatorname{Con}(A)$.

For $a \in A$, let a / D be the equivalence class of a modulo θ_{D}. If we denote by A / D the quotient set A / θ_{D}, then A / D becomes a residuated lattice with the natural operations induced from those of A. Clearly, in $A / D, \mathbf{0}=0 / D$ and $\mathbf{1}=1 / D$.

Proposition 3.10. Let $D \in D s(A)$, and $a, b \in A$, then
(i) $a / D=1 / D$ iff $a \in D$, hence $a / D \neq \mathbf{1}$ iff $a \notin D$;
(ii) $a / D=0 / D$ iff $a^{*} \in D$;
(iii) If D is proper and $a / D=0 / D$, then a $\notin D$;
(iv) $a / D \leq b / D$ iff $a \rightarrow b \in D$.

Remark 3.9. Let A, B two residuated lattices. We define on $A \times B$, the operations $\wedge_{\times}, \vee_{\times}, \odot_{\times}, \rightarrow_{\times}$for every $(a, b),\left(a^{\prime}, b^{\prime}\right) \in A \times B$ by $(a, b) \wedge_{\times}\left(a^{\prime}, b^{\prime}\right)=\left(a \wedge a^{\prime}, b \wedge b^{\prime}\right)$, $(a, b) \vee_{\times}\left(a^{\prime}, b^{\prime}\right)=\left(a \vee a^{\prime}, b \vee b^{\prime}\right),(a, b) \odot_{\times}\left(a^{\prime}, b^{\prime}\right)=\left(a \odot a^{\prime}, b \odot b^{\prime}\right),(a, b) \rightarrow_{\times}\left(a^{\prime}, b^{\prime}\right)=$ $\left(a \rightarrow a^{\prime}, b \rightarrow b^{\prime}\right)$. Clearly, $\left(A \times B, \wedge_{\times}, \vee_{\times}, \odot_{\times}, \rightarrow_{\times},(0,0),(1,1)\right)$ is a residuated lattice.

Theorem 3.6. Let X and Y be nonempty subsets of residuated lattices A and B, respectively. Then:
(i): $X^{*} \times Y^{*}=(X \times Y)^{*}$
(ii): $A / X^{*} \times B / Y^{*} \approx(A \times B) /(X \times Y)^{*}$.

Proof. (i). We have that $(X \times Y)^{*}=\{(a, b) \in A \times B:(a, b) \rightarrow(x, y)=(x, y)$, for all $(x, y) \in X \times Y\}=\{(a, b) \in A \times B:(a \rightarrow x, b \rightarrow y)=(x, y)$, for all $(x, y) \in$ $X \times Y\}=\{(a, b) \in A \times B: a \rightarrow x=x$ and $b \rightarrow y=y$, for all $(x, y) \in X \times Y\}=\{a \in$ $A: a \rightarrow x=x$, for all $x \in X\} \times\{b \in B: b \rightarrow y=y$, for all $y \in Y\}=X^{*} \times Y^{*}$.
(ii). Note that $X^{*} \times Y^{*} \in D s(A \times B)$. Consider the surjective morphisms $p_{X^{*}}$: $A \rightarrow A / X^{*}, p_{X^{*}}(a)=a / X^{*}$ for every $a \in A$ and $p_{Y^{*}}: B \rightarrow B / Y^{*}, p_{Y^{*}}(b)=b / Y^{*}$ for every $b \in B$. We define $f:(A \times B) \rightarrow A / X^{*} \times B / Y^{*}$ by $f(a, b)=\left(a / X^{*}, b / Y^{*}\right)$, for every $(a, b) \in A \times B$. Then f is a surjective morphisms. We denote the filter kernel by $\operatorname{Ker}(f)=f^{-1}\left(\left(1 / X^{*}, 1 / Y^{*}\right)\right)$ and using Proposition 3.10, $\operatorname{Ker}(f)=\{(a, b) \in A \times B$: $\left.f(a, b)=\left(1 / X^{*}, 1 / Y^{*}\right)\right\}=\left\{(a, b) \in A \times B:\left(a / X^{*}, b / Y^{*}\right)=\left(1 / X^{*}, 1 / Y^{*}\right)\right\}=$ $\left\{(a, b) \in A \times B: a / X^{*}=1 / X^{*}, b / Y^{*}=1 / Y^{*}\right\}=\left\{(a, b) \in A \times B: a \in X^{*}, b \in Y^{*}\right\}=$ $X^{*} \times Y^{*}$.

By the first isomorphism theorem and (i), we deduce that $(A \times B) /(X \times Y)^{*} \approx$ $A / X^{*} \times B / Y^{*}$.

Analogously we obtain:

Theorem 3.7. Let A and B two residuated lattices and $D_{1} \in D s(A), D_{2} \in D s(B)$. Then:
(i): $D_{1}^{\diamond} \times D_{2}^{\diamond}=\left(D_{1} \times D_{2}\right)^{\diamond}$
(ii): $A / D_{1}^{\diamond} \times B / D_{2}^{\diamond} \approx(A \times B) /\left(D_{1} \times D_{2}\right)^{\diamond}$.

4. The lattice $\mathbf{D s} \stackrel{\diamond}{\diamond}(A)$

We denote by $D s_{p}^{\diamond}(A)=\left\{[a)^{\diamond}: a \in A\right\}$.
Proposition 4.1. If $a, b \in A$, then
(i): $a \leq b \Rightarrow[a)^{\diamond} \subseteq[b)^{\diamond}$;
(ii): $[a)^{\diamond} \cap[b)^{\diamond}=[a \odot b)^{\diamond}=[a \wedge b)^{\diamond}$;
(iii): $[a \rightarrow b)^{\diamond} \subseteq[a)^{\diamond} \rightsquigarrow[b)^{\diamond}$;
$(i v):\left[a \vee a^{*}\right)^{\diamond}=[a)^{\diamond} \vee\left[a^{*}\right)^{\diamond}$.
Proof. (i). If $x \in[a)^{\diamond}$ then $x \vee a=1$, but $a \leq b$, hence $1=x \vee a \leq x \vee b$, so $x \vee b=1$. We deduce $x \in[b)^{\diamond}$.
(ii). We have $a \odot b \leq a \wedge b \leq a, b$, then using (i) we deduce that $[a \odot b)^{\diamond} \subseteq[a \wedge b)^{\diamond} \subseteq$ $[a)^{\diamond},[b)^{\diamond}$, that is, $[a \odot b)^{\diamond} \subseteq[a \wedge b)^{\diamond} \subseteq[a)^{\diamond} \cap[b)^{\diamond}$.

Let now $x \in[a)^{\diamond} \cap[b)^{\diamond}$, that is, $a \vee x=b \vee x=1$.
By $c_{10}, x \vee(a \odot b) \geq(x \vee a) \odot(x \vee b)=1$, hence $x \vee(a \odot b)=1$, that is, $x \in[a \odot b)^{\diamond}$
It follows that $[a)^{\diamond} \cap[b)^{\diamond} \subseteq[a \odot b)^{\diamond}$, hence $[a)^{\diamond} \cap[b)^{\diamond}=[a \odot b)^{\diamond}=[a \wedge b)^{\diamond}$.
(iii). Let $x \in[a \rightarrow b)^{\diamond} \Leftrightarrow x \vee(a \rightarrow b)=1$. We have that $x \in[a)^{\diamond} \rightsquigarrow[b)^{\diamond} \Leftrightarrow x \vee y \in$ $[b)^{\diamond}$, for any $y \in[a)^{\diamond}$. Let so $y \in[a)^{\diamond} \Leftrightarrow a \vee y=1$. We prove that $b \vee(x \vee y)=1$.

By c_{12} we deduce $1=x \vee(a \rightarrow b) \leq(x \vee a) \rightarrow(x \vee b) \Rightarrow 1=(x \vee a) \rightarrow(x \vee b) \Rightarrow x \vee$ $a \leq x \vee b$. Then $x \vee y \vee a \leq x \vee y \vee b \Rightarrow x \vee 1 \leq x \vee y \vee b \Rightarrow x \vee y \vee b=1 \Rightarrow x \in[a)^{\diamond} \rightsquigarrow[b)^{\diamond}$.
$(i v)$. Since $a, a^{*} \leq a \vee a^{*}$ we deduce by (i), that $[a)^{\diamond},\left[a^{*}\right)^{\diamond} \subseteq\left[a \vee a^{*}\right)^{\diamond} \Rightarrow[a)^{\diamond} \vee\left[a^{*}\right)^{\diamond} \subseteq$ $\left[a \vee a^{*}\right)^{\diamond}$.

Conversely, let $x \in\left[a \vee a^{*}\right)^{\diamond}$. We have $x \vee\left(a \vee a^{*}\right)=1 \Rightarrow(x \vee a) \vee a^{*}=1$ and $\left(x \vee a^{*}\right) \vee a=1 \Rightarrow x \vee a \in\left[a^{*}\right)^{\diamond}$ and $x \vee a^{*} \in[a)^{\diamond}$.

By $c_{10}, x=x \vee\left(a \odot a^{*}\right) \geq(x \vee a) \odot\left(x \vee a^{*}\right)$. Since $x \vee a \in\left[a^{*}\right)^{\diamond}$ and $x \vee a^{*} \in[a)^{\diamond}$ we deduce that $x \in[a)^{\diamond} \vee\left[a^{*}\right)^{\diamond}$, so $\left[a \vee a^{*}\right)^{\diamond} \subseteq[a)^{\diamond} \vee\left[a^{*}\right)^{\diamond}$.

Finally, $\left[a \vee a^{*}\right)^{\diamond}=[a)^{\diamond} \vee\left[a^{*}\right)^{\diamond}$.
Remark 4.1. $[a)^{\diamond} \rightsquigarrow[b)^{\diamond} \varsubsetneqq[a \rightarrow b)^{\diamond}$. Indeed, if we consider the residuated lattice A from Example 2.2, then $[0)^{\diamond}=[a)^{\diamond}=[b)^{\diamond}=[c)^{\diamond}=\{1\},[1)^{\diamond}=A$ and $[a)^{\diamond} \rightsquigarrow[b)^{\diamond}=$ $\{x \in A: x \vee 1=1\}=A$ but $[a \rightarrow b)^{\diamond}=[b)^{\diamond}=\{1\}$.
Proposition 4.2. If $e \in B(A)$ and $[e)^{\diamond}=\{1\}$ then $e=0$.
Proof. Since by Propositions 3.3 and 3.9, $[e)^{\diamond}=\left[e^{*}\right)=\left\{x \in A: x \geq e^{*}\right\}=\{1\}$ and $e^{*} \in\left[e^{*}\right)$ we deduce that $e^{*}=1$ so $e=0$.

Remark 4.2. Since for every $a \in A,[a)^{\diamond}$ is the pseudocomplement of $[a)$ in the lattice $D s(A)$, then:
(i): $[a)^{\diamond}=A \Leftrightarrow a=1$ and $[0)^{\diamond}=\{1\}$;
(ii): $[a) \cap[a)^{\diamond}=\{1\}$;
(iii): $[a)^{\diamond} \cap[a)^{\infty}=\{1\}$;
(iv): $[a)^{\diamond}=[a)^{\infty \infty}$.

Definition 4.1. An element a in a residuated lattice A is called nilpotent iff there exists a natural number n such that $a^{n}=0$. The minimum n such that $a^{n}=0$ is
called nilpotence order of a and will be denoted by ord (a); if there is no such n, then $\operatorname{ord}(a)=\infty$. A residuated lattice A is called locally finite if every $a \in A, a \neq 1$, has finite order.
Proposition 4.3. Let $a \in A$ and a natural number n. Then $[a)^{\diamond}=\left[a^{n}\right)^{\diamond}$.
Proof. By Proposition 4.1, (i), since $a^{n} \leq a$ we obtain $\left[a^{n}\right)^{\diamond} \subseteq[a)^{\diamond}$. Conversely, let $x \in[a)^{\diamond}$. Then $a \vee x=1$. By $c_{11}, 1=a^{n} \vee x^{n} \leq a^{n} \vee x$. We deduce that $a^{n} \vee x=1$, so $x \in\left[a^{n}\right)^{\diamond}$ and $[a)^{\diamond} \subseteq\left[a^{n}\right)^{\diamond}$. Finally, $[a)^{\diamond}=\left[a^{n}\right)^{\diamond}$.

Proposition 4.4. Let $a \in A, a \neq 1$, such that a has a finite order n. Then $[a)^{\diamond}=\{1\}$.
Proof 1. Since n is the finite order of a we have $a^{n}=0$. By Proposition 4.3, $[a)^{\diamond}=\left[a^{n}\right)^{\diamond}=[0)^{\diamond}=\{1\}$.

Proof 2. By definition, $[a)^{\diamond}=\{x \in A: a \vee x=1\}$. Let $x \in[a)^{\diamond}$. Since $1=a \vee x \leq$ $[(a \rightarrow x) \rightarrow x] \wedge[(x \rightarrow a) \rightarrow a]$ we deduce that $(a \rightarrow x) \rightarrow x=(x \rightarrow a) \rightarrow a=1$, hence $a \rightarrow x=x$ and $x \rightarrow a=a$. Now $x=a \rightarrow x=a \rightarrow(a \rightarrow x)=a^{2} \rightarrow x=\ldots=$ $a^{n} \rightarrow x=0 \rightarrow x=1$. We deduce that $[a)^{\diamond}=\{1\}$.

For $a, b \in A$ we denote

$$
[a)^{\diamond} \underline{\vee}[b)^{\diamond}=[a)^{\diamond \infty} \rightsquigarrow[b)^{\diamond}
$$

Proposition 4.5. Let $a, b \in A$. Then $[a)^{\diamond} \underline{\vee}[b)^{\diamond}=[a \vee b)^{\diamond}$.
Proof. By Lemma 3.1, $[a)^{\diamond} \underline{\vee}[b)^{\diamond}=[a)^{\diamond \diamond} \rightsquigarrow[b)^{\diamond}=\left\{x \in A: x \vee y \in[b)^{\diamond}\right.$, for every $\left.y \in[a)^{\infty \infty}\right\}=\left\{x \in A: x \vee y \vee b=1\right.$, for every $\left.y \in[a)^{\infty}\right\}$ and $[a)^{\infty \infty}=\{x \in A: x \vee y=1$, for every $\left.y \in[a)^{\diamond}\right\}=\{x \in A: x \vee y=1$, for every $y \in A$ such that $y \vee a=1\}$. Clearly, $a \in[a)^{\diamond \diamond}$, so for any $x \in[a)^{\diamond} \underline{\vee}[b)^{\diamond}$ we obtain $x \vee a \vee b=1$. This implies $x \in[a \vee b)^{\diamond}$, hence $[a)^{\diamond} \underline{\vee}[b)^{\diamond} \subseteq[a \vee b)^{\diamond}$.

Now, we prove that $[a \vee b)^{\diamond} \subseteq[a)^{\diamond} \underline{\vee}[b)^{\diamond}$. Let $x \in[a \vee b)^{\diamond}$, that is, $x \vee a \vee b=1$. Let $y \in[a)^{\infty \infty}$. We deduce $y \vee z=1$, for $z \in A$ such that $z \vee a=1$. If we denote $t=x \vee b$ we will prove that $\left(t \vee a=1 \Rightarrow t \vee y=1\right.$, for every $\left.y \in[a)^{\diamond \infty}\right)$ equivalent with $\left(t \in[a)^{\diamond} \Rightarrow t \in[a)^{\infty \infty}\right)$ equivalent with $[a)^{\diamond} \subseteq[a)^{\infty \infty \diamond}$. It is an immediate consequence of Remark 4.2, (iv).
Corollary 4.1. For $a, b \in A,[a)^{\diamond} \underline{\vee}[b)^{\diamond}=[a \vee b)^{\diamond} \in D s_{p}^{\diamond}(A)$.
Remark 4.3. If $a, b \in A$, then $[a)^{\diamond},[b)^{\diamond} \subseteq[a)^{\diamond} \underline{\vee}[b)^{\diamond}$ so, $[a)^{\diamond} \vee[b)^{\diamond} \subseteq[a)^{\diamond} \underline{\vee}[b)^{\diamond}=$ $[a \vee b)^{\diamond}$.
Remark 4.4. By Proposition 4.1, $[a)^{\diamond} \vee\left[a^{*}\right)^{\diamond}=[a)^{\diamond} \underline{\vee}\left[a^{*}\right)^{\diamond}=\left[a \vee a^{*}\right)^{\diamond}$.
Proposition 4.6. $a \in B(A) \Leftrightarrow[a)^{\diamond} \underline{\vee}\left[a^{*}\right)^{\diamond}=A$.
Proof. By Proposition 4.5, if $a \in B(A)$ then $[a)^{\diamond} \underline{\vee}\left[a^{*}\right)^{\diamond}=\left[a \vee a^{*}\right)^{\diamond}=[1)^{\diamond}=A$. Conversely, $[a)^{\diamond} \underline{\vee}\left[a^{*}\right)^{\diamond}=\left[a \vee a^{*}\right)^{\diamond}=A$ implies $0 \vee\left(a \vee a^{*}\right)=1 \Rightarrow a \vee a^{*}=1$. By Proposition 2.2 we deduce that $a \in B(A)$.
Theorem 4.1. $\left(D s_{p}^{\diamond}(A), \cap, \underline{\vee},\{1\}, A=[1)^{\diamond}\right)$ is a bounded distributive lattice and $[a)^{\diamond}=[a)^{\infty \infty},[a)^{\diamond} \cap[a)^{\infty}=\{1\},[a)^{\infty \infty} \cap[b)^{\infty \infty}=\left([a)^{\diamond} \underline{\vee}[b)^{\diamond}\right)^{\diamond}=[a \vee b)^{\infty}$, for $a, b \in A$.

Proof. We shall prove that $\underline{\vee}$ is the supremum in this lattice.
It is obvious that, by Proposition 4.1, $a, b \leq a \vee b$ implies $[a)^{\diamond},[b)^{\diamond} \subseteq[a \vee b)^{\diamond}$, $a, b \in A$. For $c \in A$ such that $[a)^{\diamond},[b)^{\diamond} \subseteq[c)^{\diamond}$ we will prove that $[a \vee b)^{\diamond} \subseteq[c)^{\diamond}$. If $t \in[a \vee b)^{\diamond}$, then $t \vee a \vee b=1$, so $t \vee a \in[b)^{\diamond} \subseteq[c)^{\diamond}$. We deduce that $(t \vee c) \vee a=1$, so $t \vee c \in[a)^{\diamond}$. But $[a)^{\diamond} \subseteq[c)^{\diamond}$, implies $t \vee c \in[c)^{\diamond}$ implies $t \vee c=1$ implies $t \in[c)^{\diamond}$.

Thus, $[a \vee b)^{\diamond} \subseteq[c)^{\diamond}$.

Since using Proposition 4.1, $[a)^{\diamond} \cap\left([b)^{\diamond} \underline{\vee}[c)^{\diamond}\right)=[a)^{\diamond} \cap[b \vee c)^{\diamond}=[a \odot(b \vee c))^{\diamond} \stackrel{c 9}{=}$ $[(a \odot b) \vee(a \odot c))^{\diamond}=[a \odot b)^{\diamond} \underline{\vee}[a \odot c)^{\diamond}=\left([a)^{\diamond} \cap[b)^{\diamond}\right) \underline{\vee}\left([a)^{\diamond} \odot[c)^{\diamond}\right)$, for every $a, b, c \in A$ and $\{1\}=[0)^{\diamond}, A=[1)^{\diamond}$, we deduce that the lattice $\left(D s_{p}^{\diamond}(A), \cap, \underline{\vee},\{1\}, A\right)$ is distributive and bounded.

Applying Remark 4.2 we get that $[a)^{\diamond}=[a)^{\infty \infty},[a)^{\diamond} \cap[a)^{\infty \diamond}=\{1\}$.
The equality $[a)^{\infty \diamond} \cap[b)^{\infty}=\left([a)^{\diamond} \underline{\vee}[b)^{\diamond}\right)^{\diamond}$, for $a, b \in A$ is equivalent with $[a)^{\infty \diamond} \cap$ $[b)^{\infty \infty}=[a \vee b)^{\infty}$, for $a, b \in A$.

Let $x \in[a)^{\infty} \cap[b)^{\infty}$. We deduce that $x \vee y=1$, for every $y \in[a)^{\diamond}$ and $x \vee z=1$, for every $z \in[b)^{\diamond}$. Let $t \in[a \vee b)^{\diamond}$. We obtain $t \vee a \vee b=1 \Rightarrow t \vee a \in[b)^{\diamond} \Rightarrow x \vee t \vee a=$ $1 \Rightarrow x \vee t \in[a)^{\diamond} \Rightarrow x \vee(x \vee t)=1 \Rightarrow x \vee t=1$. Thus, $[a)^{\infty \infty} \cap[b)^{\infty \infty} \subseteq[a \vee b)^{\infty}$.

Conversely, let $x \in[a \vee b)^{\diamond \diamond}$. Then $x \vee z=1$, for every $z \in A$ such that $z \vee a \vee b=1$. Let $y_{1} \in[a)^{\diamond}$. Then $y_{1} \vee a=1 \Rightarrow y_{1} \vee a \vee b=1 \Rightarrow x \vee y_{1}=1 \Rightarrow x \in[a)^{\infty}$. Let $y_{2} \in[b)^{\diamond}$. Then $y_{2} \vee b=1 \Rightarrow y_{2} \vee a \vee b=1 \Rightarrow x \vee y_{2}=1 \Rightarrow x \in[b)^{\diamond \diamond}$. Thus, $x \in[a)^{\diamond \diamond \cap}$ $[b)^{\infty}$.

Finally, $[a \vee b)^{\infty \infty} \subseteq[a)^{\infty \infty} \cap[b)^{\infty}$, so $[a \vee b)^{\infty \infty}=[a)^{\infty \infty} \cap[b)^{\infty \infty}$.
Remark 4.5. If A is a chain then $D s_{p}^{\diamond}(A)$ is isomorphic with L_{2}, the two-elements Boolean algebra. Indeed, for $a \in A, a \neq 1,[a)^{\diamond}=\{1\}$ and $[1)^{\diamond}=A$.
Remark 4.6. If A is a locally finite residuated lattice, then every element of A has a finite order and by Proposition 4.4 we deduce that $D s_{p}^{\diamond}(A)$ is a Boolean algebra isomorphic with L_{2}.

Remark 4.7. We recall that a residuated lattice is subdirectly irreducible iff it is nontrivial and for any subdirect representation $f: A \rightarrow \prod_{i \in I} A_{i}$, there exists a j such that f_{j} is an isomorphism of A onto A_{j}. In [12] it is proved that in any subdirectly irreducible residuated lattice, if $x \vee y=1$, then $x=1$ or $y=1$. Obviously, if A is a subdirectly irreducible residuated lattice, then $D s_{p}^{\diamond}(A)$ is a Boolean algebra isomorphic with L_{2}.
Remark 4.8. If $e, f \in B(A)$, then $[e)^{\diamond} \underline{\vee}[f)^{\diamond}=[e \vee f)^{\diamond} \stackrel{e \vee f \in B(A)}{=}\left[(e \vee f)^{*}\right)=\left[e^{*} \wedge f^{*}\right)=$ $\left[e^{*} \odot f^{*}\right)=\left[e^{*}\right) \vee\left[f^{*}\right)=(e)^{\diamond} \vee[f)^{\diamond}$, and $[e)^{\diamond} \vee[e)^{\diamond \diamond}=(e)^{\diamond} \underline{\vee}\left[e^{*}\right)^{\diamond}=\left[e \vee e^{*}\right)^{\diamond}=[1)^{\diamond}=A$.
Remark 4.9. If $e \in B(A)$, then $[e)^{\diamond} \in B\left(D s_{p}^{\diamond}(A)\right)$, so $D s_{p}^{\diamond}(B(A))$ is a Boolean subalgebra of $B\left(D s_{p}^{\diamond}(A)\right.$.

In [5] we introduce and characterize the hyperarchimedean residuated lattice.
Definition 4.2. [5] Let A be a residuated lattice. An element $a \in A$ is called archimedean if it satisfy the condition : there is $n \geq 1$ such that $a^{n} \in B(A)$, (equivalent with $a \vee\left(a^{n}\right)^{*}=1$). A residuated lattice A is called hyperarchimedean if all its elements are archimedean.

Proposition 4.7. If A is a hyperarchimedean residuated lattice then $D s_{p}^{\diamond}(A)$ is a Boolean subalgebra of $D s(A)$.

Proof. Since A is a hyperarchimedean residuated lattice then for every $a \in A$ there is a natural number $n \geq 1$ such that $a^{n}=e_{a} \in B(A)$. By Proposition 4.3, $[a)^{\diamond}=\left[a^{n}\right)^{\diamond}=\left[e_{a}\right)^{\diamond}$. We deduce that $\vee=\underline{\vee}$ and $D s_{p}^{\diamond}(A)$ is a Boolean algebra.
Theorem 4.2. If A is a residuated lattice, then the map

$$
f:(A, \wedge, \vee, 0,1) \rightarrow\left(D s_{p}^{\diamond}(A), \cap, \underline{\vee},\{1\}, A\right)
$$

defined by $f(a)=[a)^{\diamond}$, for every $a \in A$ is an ontomorphism of distributive and bounded lattices.

Proof. Let $a, b \in A$. Applying Proposition 4.1 and Corollary 4.1 we obtain that $f(a \wedge b)=[a \wedge b)^{\diamond}=[a)^{\diamond} \cap[b)^{\diamond}=f(a) \cap f(b), f(a \vee b)=[a \vee b)^{\diamond}=[a)^{\diamond} \underline{\vee}[b)^{\diamond}=$ $f(a) \underline{\vee} f(b), f(0)=[0)^{\diamond}=\{1\}$ and $f(1)=[1)^{\diamond}=A$

In [1], if $f: L_{1} \rightarrow L_{2}$ is a morphism of bounded lattices, then we denote the ideal kernel by $\operatorname{Ker}(f)=f^{-1}(\{0\})=\left\{x \in L_{1}: f(x)=0\right\}$.
Remark 4.10. Using this notation, by Proposition 4.4, if we denote by Ord $_{\text {finite }}=$ $\{x \in A: x$ has a finite order $\}$, then $\operatorname{Ord}_{\text {finite }} \subseteq \operatorname{Ker}(f)$, where $f: A \rightarrow D s_{p}^{\diamond}(A)$ is the ontomorphism from Theorem 4.2.
Proposition 4.8. If A is a hyperarchimedean residuated lattice then $\operatorname{Ker}(f)=$ Ord $_{\text {finite }}$ is a proper ideal of $L(A)$ and $A / \operatorname{Ker}(f) \approx D s_{p}^{\diamond}(A)$ as Boolean algebras.

Proof. Let $a \in \operatorname{Ker}(f)$. Then $f(a)=\{1\} \Leftrightarrow[a)^{\diamond}=\{1\}$. Since A is a hyperarchimedean residuated lattice then for $a \in A$ there is a natural number $n \geq 1$ such that $a^{n}=e_{a} \in B(A)$. By Proposition 4.3, we deduce that $[a)^{\diamond}=\left[a^{n}\right)^{\diamond}=\left[e_{a}\right)^{\diamond}$. But Propositions 3.9 and 4.2, $\{1\}=\left[e_{a}\right)^{\diamond}=\left[e_{a}^{*}\right)$, so $e_{a}=a^{n}=0$ and a has a finite order. We deduce that $\operatorname{Ker}(f) \subseteq \operatorname{Ord}_{\text {finite }}$. Using Remark 4.10 we deduce that $\operatorname{Ker}(f)=$ Ord $_{\text {finite }}$.

By Proposition 4.7, $A / \operatorname{Ker}(f) \approx D s_{p}^{\diamond}(A)$ as Boolean algebras.
Corollary 4.2. For every residuated lattice $A, f_{\mid B(A)}$ is an injective morphism, so $(B(A), \wedge, \vee, 0,1)$ is a isomorphic with a sublattice of $\left(D s_{p}^{\diamond}(A), \cap, \underline{\vee},\{1\}, A\right)$.

Proof. To prove the injectivity of f, let $e, g \in B(A)$ such that $f(e)=f(g)$. Then $[e)^{\diamond}=[g)^{\diamond}$. Using Proposition 3.9 we deduce that $\left[e^{*}\right)=\left[g^{*}\right)$, so $e^{*}=g^{*}$. Thus, $e=g$.

Proposition 4.9. If $e, f \in B(A)$, then $[e)^{\diamond} \rightsquigarrow[f)^{\diamond}=\left[e^{*} \vee f\right)^{\diamond} \in D s_{p}^{\diamond}(A)$.
Proof. By Proposition 4.5, $[a)^{\diamond \diamond} \rightsquigarrow[b)^{\diamond}=[a)^{\diamond} \underline{\vee}[b)^{\diamond}=[a \vee b)^{\diamond}$, for every $a, b \in A$.
Applying Propositions 3.9 and Remark 4.2 we have that $[e)^{\diamond} \rightsquigarrow[f)^{\diamond}=(e)^{\infty \Delta \diamond} \rightsquigarrow$ $[f)^{\diamond}=\left[e^{*}\right)^{\diamond \diamond} \rightsquigarrow[f)^{\diamond}=\left[e^{*} \vee f\right)^{\diamond} \in D s_{p}^{\diamond}(A)$.
Corollary 4.3. $\left(D s_{p}^{\diamond}(B(A)), \cap, \underline{\vee}, \stackrel{\diamond}{ },\{1\}, A\right)$ is a Boolean algebra and

$$
f_{\mid B(A)}:\left(B(A), \wedge, \vee,{ }^{*}, 0,1\right) \rightarrow\left(D s_{p}^{\diamond}(B(A)), \cap, \underline{\vee}, \stackrel{\diamond}{ },\{1\}, A\right)
$$

defined by $f_{\mid B(A)}(e)=[e)^{\diamond}=\left[e^{*}\right)$, for every $e \in B(A)$ is an isomorphism of Boolean algebras.

Proof. Apply Theorems 4.1, 4.2, Corollary 4.2 and Proposition 4.9
Theorem 4.3. Let $a, b, c \in A$. Then $[c)^{\diamond} \subseteq[a)^{\diamond} \rightsquigarrow[b)^{\diamond} \Leftrightarrow[a)^{\diamond} \cap[c)^{\diamond} \subseteq[b)^{\diamond}$.
Proof. From Lemma 3.1, $[a)^{\diamond} \rightsquigarrow[b)^{\diamond}=\left\{x \in A: x \vee y \in[b)^{\diamond}\right.$, for all $\left.y \in[a)^{\diamond}\right\}$.
Suppose that $[a)^{\diamond} \cap[c)^{\diamond} \subseteq[b)^{\diamond}$ and let $x \in[c)^{\diamond}$. We have that $x \vee c=1$. Let $y \in[a)^{\diamond}$, so $y \vee a=1$. By $c_{10},(x \vee y) \vee(a \odot c) \geq(x \vee y \vee a) \odot(x \vee y \vee c)=$ $(x \vee 1) \odot(y \vee 1)=1 \Rightarrow(x \vee y) \vee(a \odot c)=1 \Rightarrow x \vee y \in[a \odot c)^{\diamond}$. But $[a \odot c)^{\diamond}=[a)^{\diamond} \cap[c)^{\diamond}$ $\subseteq[b)^{\diamond}$, so $x \vee y \in[b)^{\diamond}$, for any $y \in[a)^{\diamond}$. By definition we deduce that $x \in[a)^{\diamond} \rightsquigarrow[b)^{\diamond}$ so, $[c)^{\diamond} \subseteq[a)^{\diamond} \rightsquigarrow[b)^{\diamond}$.

Conversely if we suppose that $[c)^{\diamond} \subseteq[a)^{\diamond} \rightsquigarrow[b)^{\diamond}$, let $x \in[a)^{\diamond} \cap[c)^{\diamond}=[a \odot c)^{\diamond}=$ $[a \wedge c)^{\diamond}$. So, $x \vee(a \wedge c)=1$.

We have $1=x \vee(a \wedge c) \leq(x \vee a) \wedge(x \vee c) \Rightarrow(x \vee a) \wedge(x \vee c)=1 \Rightarrow x \vee a=x \vee c=$ $1 \Rightarrow x \in[a)^{\diamond}$ and $x \in[c)^{\diamond}$. But $[c)^{\diamond} \subseteq[a)^{\diamond} \rightsquigarrow[b)^{\diamond}$ so $x \in[a)^{\diamond} \rightsquigarrow[b)^{\diamond}$. Since $x \in[a)^{\diamond}$ it is easy to show applying Remark 3.2 that $x \in[b)^{\diamond}$. Obviously, $[a)^{\diamond} \cap[c)^{\diamond} \subseteq[b)^{\diamond}$.
Remark 4.11. Since $\left(D s_{p}^{\diamond}(A), \cap,[1)^{\diamond}=A\right)$ is a commutative monoid using Theorems 4.1 and 4.3 we deduce that $\left(D s_{p}^{\diamond}(B(A)), \cap, \underline{\vee}, \rightsquigarrow,\{1\}, A\right)$ is a residuated lattice.

References

[1] R. Balbes, Ph. Dwinger: Distributive Lattices, University of Missouri Press, 1974.
[2] T. S. Blyth, M. F. Janovitz: Residuation Theory, Pergamon Press, 1972.
[3] W. J. Blok, D. Pigozzi: Algebraizable Logics, Memoirs of the American Mathematical Society, No. 396, Amer. Math. Soc, Providence, 1989.
[4] D. Buşneag, D. Piciu: Residuated lattice of fractions relative to an \wedge-closed system, Bulletin mathematique de la Société de Science Mathematiques de Roumanie, tome 49(97), no. 1 (2006), 13-24.
[5] D. Buşneag, D. Piciu: Archimedean residuated lattice, submitted.
[6] R. Cretan, A. Jeflea: On the lattice of congruence filters of a residuated lattice, Annals of University of Craiova, Math. Comp. Sci. Ser., Vol. 33 (2006), 174-188.
[7] R. P. Dilworth: Non-commutative residuated lattices, Transactions of the American Mathematical Society 46 (1939), 426-444.
[8] P. Hájek: Metamathematics of Fuzzy Logic, Kluwer Academic Publ., Dordrecht, 1998.
[9] U. Hőhle: Commutative residuated monoids, in: U. Hőhle, P. Klement (eds), Non-classical Logics and Their Aplications to Fuzzy Subsets, Kluwer Academic Publishers, 1995.
[10] P. M. Idziak: Lattice operations in BCK-algebras, Mathematica Japonica, 29(1984), 839-846.
[11] A. Iorgulescu: Algebras of logic as BCK algebras, Ed. ASE, Bucharest, 2008.
[12] T. Kowalski, H. Ono: Residuated lattices: an algebraic glimpse at logic without contraction, 2001.
[13] W. Krull: Axiomatische Begründung der allgemeinen Ideal theorie, Sitzungsberichte der physikalisch medizinischen Societäd der Erlangen 56 (1924), 47-63.
[14] M. Okada, K. Terui: The finite model property for various fragments of intuitionistic linear logic, Journal of Symbolic Logic, 64 (1999), 790-802.
[15] H. Ono, Y. Komori: Logics without the contraction rule, Journal of Symbolic Logic, 50 (1985), 169-201.
[16] J. Pavelka: On fuzzy logic II. Enriched residuated lattices and semantics of propositional calculi, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 25 (1979), 119-134.
[17] D. Piciu: Algebras of fuzzy logic, Ed. Universitaria, Craiova, 2007.
[18] E. Turunen: Mathematics Behind Fuzzy Logic, Physica-Verlag, 1999.
[19] M. Ward: Residuated distributive lattices, Duke Mathematical Journal 6 (1940), 641-651.
[20] M. Ward, R. P. Dilworth: Residuated lattices, Transactions of the American Mathematical Society 45 (1939), 335-354.
(Dana Piciu) Department of Mathematics, University of Craiova,
Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania, Tel. \& Fax: 40-251412673
E-mail address: danap@central.ucv.ro
(Antoaneta Jeflea) Faculty of Bookkeeping Financial Management,
University Spiru Haret, 32-34, Unirii st., Constantza, Romania
E-mail address: antojeflea@yahoo.com
(Raluca Creţan) Technological Secondary School Ion Mincu,
3, Locotenent Dumitru Petrescu st., Tg. Jiu
E-mail address: ralucacretan11@yahoo.com

